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ABSTRACT

Object tracking through particle filtering has been widely addressed
in recent years. However, most works assume a constant number of
objects or utilize an external detector that monitors the entry or exit
of objects in the scene. In this work, a novel tracking method based
on particle filtering that is able to automatically track a variable
number of objects is presented. As opposed to classical prior data
assignment approaches, adaptation of tracks to the measurements is
managed globally. Additionally, the designed particle filter is able
to generate hypotheses on the presence of new objects in the scene,
and to confirm or dismiss them by gradually adapting to the global
observation. The method is especially suited for environments where
traditional object detectors render noisy measurements and frequent
artifacts, such as that given by a camera mounted on a vehicle, where
it is proven to yield excellent results.

Index Terms— Tracking, particle filter, mixture model,
likelihood, vehicle detection.

1. INTRODUCTION

This work addresses tracking of multiple objects using sequential
data measurements. In practice, the acquisition of measurements
has an inherent degree of uncertainty due to measurement noise,
clutter (false positives), inaccuracies of the model, etc. Hence,
a probabilistic framework that reflects this uncertainty is needed.
The Bayesian approach, especially the particle filter (PF) [1], is
extensively used for this purpose in tracking applications.

Bayesian tracking applied to multiple objects has been
performed in the literature both using individual particle filters
for each target and defining a joint state space comprising all
the objects. The latter is usually preferred when there is some
degree of interaction between objects, and is used in many relevant
works in the field [2][3]. Nevertheless, joint multi-object filters are
unsuitable for tracking a large number of objects in the absence
of a reasonable motion model, as the computational complexity
increases exponentially with the dimension of the state vector. On
the other hand, the use of an individual particle filter for each object
complicates the modeling of object interactions [2].

Recently, some works have been proposed that combine particle
filtering with other techniques in order to optimize computation in
such a way that the joint multi-object tracking is affordable. For
instance, in [4] a level set-based active contour method is utilized to
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build a decision boundary in the state space using shape information
and pose invariance of the tracked object, so that particles out of
the boundary are removed. In [5] a kernel-based Bayesian filtering
framework is proposed which represents likelihood and posterior
densities using Gaussian mixture models, enabling more efficient
sampling in high dimensional spaces. MCMC-based particle filters
that model the interaction of objects using MRF have also been
proposed [2][3].

However, most approaches in the literature impose a constant
number of objects, or alternatively assume that the entry of new
objects is externally managed [6] or manually initialized [7]. In
addition, a random walk is assumed to model the motion of objects.
Thus, the uncertainty in the location of objects is high and a large
amount of particles is needed to sample the state space.

In order to overcome these limitations, in this work a multiple
object tracker based on a particle filter is presented, which is not
only able to automatically handle a variable number of objects but
which also manages object entries and exits intrinsically (i.e., within
the framework of the proposed particle filter), without the need of an
external control module. The filter involves a joint multidimensional
state space with a dynamically changing dimension, which adapts
to the number of objects in the scene. Additionally, as opposed
to classical random walk assumption, a first-order linear predictor
is used for the motion model, which adapts better to the coherent
motion of objects. This allows for the use of smaller sample sets
and hence for a reduction of the computational complexity. The
method uses noisy sequential data measurements, but in contrast
to most approaches in the literature, does not require prior data
assignment. Instead, the proposed algorithm entails a mixture
likelihood model that considers all possible dependencies between
objects and measurements. It is especially suited for scenarios that
feature small/medium number of objects with noisy measurements
and spurious artifacts, such as the traffic scenario given by a camera
mounted on a vehicle. The proposed tracker has been successfully
applied for vehicle tracking in this kind of traffic sequences.

2. MULTIPLE OBJECT TRACKING

The Bayesian approach provides an ideal framework for dynamic
state estimation, as it allows to recursively update the state of
the system with the new measurements. Namely, the aim of
the Bayesian algorithms is to recursively construct the posterior
pdf of the state sequence {xk, k ∈ N} given the measurements
z1:k. Within the Bayesian framework, particle filtering has been
extensively used in many recent works in the field of tracking. The
underlying idea of particle filters is to approximate the posterior
probability density function with a set of discrete representations
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(i.e., particles), and their associated importance weights, as [1]:

p(xk|z1:k) ≈
∑ns

s=1
w

(s)
k δ(xk − x

(s)
k )

where w
(s)
k is the weight associated to particle x

(s)
k . Among the

multiple variations of the importance sampling algorithm, in this
work the SIR (Sampling Importance Resampling) filter is used.
As shown in [1], in this particular case the weights are given by

w
(s)
k ∝ p(zk|x(s)

k ). Additionally, the particles are resampled at
every time index as explained in [1].

2.1. Motion and observation models

In the designed particle filter, the measurements at time k are
given by the observed positions of the objects. Hence, zk is
a vector containing the measured positions of all objects in the
image, i.e., zk = {zj

x,k, zj
y,k}M

j=1, where zj
x,k and zj

y,k are the x-
and y-coordinates of measurement j at time k. The operation of
the PF relies on a good choice of both the motion model and the
observation model, which links the state to the measurements. In this
work, as opposed to classical random walk approaches, the motion
model is assumed to be linear with constant velocity. This model
approximates better the real motion of objects in many applications,
such as vehicle or pedestrian tracking. In reality, the linear motion
of the object is usually distorted by the perspective effect due to the
position of the camera. Hence, we propose to work on a transformed
domain obtained through a plane rectification (usually known as
IPM [8]) that gives a bird’s-eye view of the scene, in which the
movement of the objects is linear. The state vector, xk, is composed
of the position, (xi

k, yi
k), and velocity, (ẋi

k, ẏi
k), of all objects in the

transformed domain, thus if there are N objects in the scene at time
k, it is given by xk = {xi

k, yi
k, ẋi

k, ẏi
k}N

i=1.
On the other hand, a mixture model [9] is used to characterize

the observation process. Since the state vector contains all the
objects in the scene, it is expected that a measurement is found for
each of the objects near the position indicated by the corresponding
element of the state vector. Hence, if the observation comprises
M measurements, the pdf of each measurement, p(zj

k|xk), is
represented as a mixture model,

p(zj
k|xk) =

∑N

i=1
αipi(z

j
k|xi

k) + αuU(zj
k) (1)

where pi(z
j
k|xi

k) = N (zj
k; μi

k, σi
k) for i = 1, . . . , N, with

μi
k = (xi

k, yi
k). The standard deviation σi

k depends on the
measurement noise. That is, we model the probability density of
each measurement via N component densities mixed together with
mixing coefficients αi. These component densities are bivariate
Gaussian distributions centered around the positions of the existing
objects given by the state vector. Observe that measurements that are
close to any of the modes representing the positions of the objects
in the state vector, and measurements that are in the neighborhood
of several of these modes will render high density values. However,
some measurements may be produced by noise rather than by one
of the objects, therefore we include an additional component in (1)
given by a uniform distribution, U(·), with coefficient αu, to model
scattered noise. Formally, to be a proper density function, it must be∫

W
U(·) = 1, where W is the domain of the uniform pdf, i.e., an

image of width w and height h; thus, U(·) = 1/wh.
In addition, all measurements are drawn independently in the

measurement generation process, therefore the joint measurement
density function, p(zk|xk), is modeled as

p(zk|xk) =
∏M

j=1
[
∑N

i=1
αijpi(z

j
k|xi

k) + αuU(zj
k)] (2)

As regards the mixing coefficients, they are defined as

αij = (1−αu)pi(z
j
k|xi

k)/

N∑

t=1

pi(z
j
k|xt

k)

{
i = 1, . . . , N
j = 1, . . . , M

(3)

Namely, the coefficients αij of the Gaussian components are
weighted proportionally to the likelihood of the object to which
they are associated. That is, a high weight is given to the model
pi(z

j
k|xi

k), which indicates the likelihood that object i generated
measurement j, when this likelihood is larger than that of other
objects. The factor (1 − αu) in equation (3) guarantees that∑N

i=1 αij + αu = 1 ∀j, as imposed by the mixture model.
As mentioned above, the components pi of the mixture model
in (1) are bivariate Gaussian distributions centered around xi

k,

pi(z
j
k|xi

k) = 1
2πσ1σ2

exp(− 1
2
[
(z

j
x,k

−xi
k)2

σ2
1

+
(z

j
y,k

−yi
k)2

σ2
2

]). Therefore,

the coefficients αij are given by

αij = (1 − αu)
exp(− 1

2
[
(z

j
x,k

−xi
k)2

σ2
1

+
(z

j
y,k

−yi
k)2

σ2
2

])

∑N
t=1 exp(− 1

2
[
(z

j
x,k

−xt
k
)2

σ2
1

+
(z

j
y,k

−yt
k
)2

σ2
2

])

On the other hand, the coefficient of the uniform component
αu, parameterizes the importance of the scattered noise within
the mixture model. This coefficient will adopt different values
depending on the reliability of the observation model, as shall be
discussed in Section 3.1.

The power of the mixture model lies in that, given one
measurement, the likelihood of the state vector (i.e., the probability
that such state vector generated that measurement) is composed of
all the the individual probabilities of each object having generated
the measurement, rather than just the likelihood of one of the objects
(namely, the closest to the measurement in typical approaches).
Hence, although a larger weight is assigned to the likelihood
of the object closest to the measurement, the probability of the
measurement being generated by another object or by clutter is also
considered.

In summary, as opposed to classical approaches (e.g., Kalman
filtering, particle filtering after data association stage), with the
proposed approach all objects may contribute to the probability
of observation of each measurement given the state vector, hence
allowing the observation model to gather all possible dependencies
between each measurement and all the set of objects. Besides,
the uniform distribution component of the mixture model captures
possible uncertainties in the measurement generation process.

2.2. Inference of results

At every stage of the object tracking, results must be rendered for
the positions of the objects in the image. These are inferred from the
set of particles active at that point in time, after the resampling stage.
Among all possible average values, the conditional mean estimate of
the state is chosen, which is given by

x̄k =
1

ns

∑ns

s=1
x

(s)
k

where x
(s)
k is the state vector of the s-th particle.

3. AUTOMATIC MANAGEMENT OF ENTRIES AND EXITS

In contrast to most methods in the literature, which make use of
an external detector, we propose to use the intrinsic power of the
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particle filter to also manage the entry and exit of objects, hence
avoiding the need of an external module. As regards object entries,
the system enters a transitory period whenever a measurement
that is not adequately represented by the estimated pdf arises. In
this period, aside of the pdf predicted from previous instants, a
subset of particles is devoted to hypothesize a new pdf with an
extended state vector (that is, to hypothesize a new object). During
the transitory period, if the incoming measurements support the
hypothesis, particles associated to the newly hypothesized pdf will
propagate extensively implying the appearance of a new object, and
only few (if any) particles with the original dimension will remain.
Then, the transitory period ends and the new pdf will be selected.
Conversely, the previous pdf will be propagated if the measurements
do not support the extension of the state vector.

More formally, if at time k one of the elements of the state
vector is not adequately represented by the current set of objects, the
transitory period is triggered. An arbitrary function can be selected
to model the adequation of objects to measurements (in this case,
a Euclidean distance criterion over the transformed domain is used).
At the start of the transitory period, nr particles from the total pool of
ns (nr << ns) particles hypothesize the existence of a new object.
The state vector of these particles is denoted by an apostrophe and
initialized to x′

k = {x̄k,xN+1
k }, where xN+1

k is given by the new

measurement zj
k. Therefore, two pdfs, p and p′, are hypothesized at

time k; the former of dimension N, the latter of dimension N+1:

p = p(xk|z1:k) ≈
∑ns−nr

s=1
w

(s)
k δ(xk − x

(s)
k )

p′ = p(x′
k|z1:k) ≈

∑nr

s=1
w

(s)
k δ(xk − x′(s)

k )

All particles are propagated with the motion model specified
in Section (2.1). The likelihood will be larger for those particles
whose state matches the measurements. Being so, if there are
measurements for the hypothesized new object in the subsequent
frames, the (N+1)-dimension particles (hereafter denoted simply
(N+1)-particles) will prevail in the resampling process due to their
larger likelihood, and therefore they will propagate progressively.
Finally most particles will belong to this class, and the function p′

will be said to model better the posterior density. Conversely, if the
measurements do not support the hypothesized dimension increase,
(N+1)-particles will not propagate. In this case, the posterior density
is modeled by p.

The tracker is also able to manage object exits. In effect, the
tracker correlates the positions of objects at different times, thus it
can also detect when an object abandons the region of interest. When
this happens, the state vector of all particles is reduced accordingly.

3.1. Selection of coefficient αu

The component αu determines the weight of the uniform noise
component in the mixture model. In essence, it parameterizes the
reliability of the measurement generation process. The selection of
this coefficient thus determines the adaptation of the state vector
to the observations: if αu is low, the particles that better match
the measurements will propagate rapidly; conversely, if αu is high,
little confidence is given to the measurements, and the particles will
only slowly adapt to these. Hence, the selection of αu is tightly
related to the multidimensionality of the state vector; indeed, during
transitory periods there is a degree of uncertainty in the reliability of
the measurement vector, as a measurement exits that could either be
produced by noise or due to the entry of an object in the scene. It is
wise then to increase the noise in the observation model via a larger
value of αu during transitory periods. By doing so, the particles

adapt progressively (but slowly) to the measurements, in such a way
that only if the measurements are coherent for a sufficiently large
period of time, one of the dimensions prevails. Then the dimension
of all the particles is homogenized and the particle filter returns to
normal operation.

The value of αu for transitory periods is fixed as a function
of the ratio, F, between the likelihood of a (N+1)-particle and that
of a N-particle, assuming that M measurements, {zj

k}M
j=1, exist

(M > N): N of them (zj
k, 1 < j ≤ N) are close (ideally coincident)

to the N existing objects, one of them (zN+1
k ) is close (ideally

coincident) to the object hypothesized in the transitory period for
the (N+1)-particles, and the remaining measurements (zj

k, j > N+1)
are far from the objects. This will be the scenario when a new object
enters the scene, for which there are consistent measurements in
time. Then, for (N+1)-particles, it is

p(zj
k|xk) �

{
(1 − αu)/(2πσ1σ2) + αu/(wh) if j ≤ N + 1
αu/(wh) otherwise

Therefore, according to equation (2), the likelihood equals

p(zk|xk) = [(1−αu)/(2πσ1σ2)+αu/(wh)]N+1(αu/wh)M−N−1

In contrast, for N-particles, the state vector does not hypothesize
a new object. Thus, the measurement zN+1

k is not near any of the
objects in the state vector, and we have

p(zj
k|xk) �

{
(1 − αu)/(2πσ1σ2) + αu/(wh) if j ≤ N
αu/(wh) otherwise

p(zk|xk) = [(1 − αu)/(2πσ1σ2) + αu/(wh)]N(αu/wh)M−N

The ratio F between likelihoods is then

F =
p(zk|xk) |(N+1)−particle

p(zk|xk) |N−particle
=

(1 − αu)/(2πσ1σ2) + αu/(wh)

αu/(wh)

which after some calculation yields

αu = 1/[1 + (2πσ1σ2)(F − 1)/wh)] (4)

The parameter F represents the ratio of propagation between
both types of particles in the transitory period when the
measurements support the hypothesized dimension increase. As
discussed previously, during the transitory period the ratio F shall
be kept low (e.g., 1 < F < 10) in order for the (N+1)-particles
not to propagate too quickly. Finally, recall that during normal
operation the measurements are assumed to be highly reliable, and
consequently particles must propagate according to their adequation
to the measurements. In this case, αu may adopt a wide range of
values (always smaller than for the transitory period), provided that
it ensures only a marginal contribution of the scattered noise term in
the observation model.

4. EXPERIMENTS AND RESULTS

The method presented in this paper has been applied for vehicle
tracking in the traffic scenario given by a vehicle-mounted camera.
In this environment, vehicle detectors are especially prone to errors
due to the ego motion of the camera. The proposed PF is built upon
the measurements given by an external object detector. The state
vector is composed of the positions (defined as the mid-lower point)
and velocities of the vehicles in the transformed domain given by the
IPM. Tests show that the method is able to provide accurate tracking
of the time-uncorrelated object measurements given by the external
detector, to efficiently manage object entries and to dismiss false
positives due to errors delivered by the detector.
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Distribution of particles (green) in the transformed domain.
Measurements are painted in white and inferred estimates in red.

An example of the behavior of the proposed PF is shown in
Fig. 1. Observe that images represent the bird’s-eye view given
by the IPM. In the normal operation, particles are tightly gathered
around the measured positions of the vehicles (see Fig. 1a). Most
importantly, the proposed method is able to detect and track new
objects, and to discard artifacts. As shown in Fig. 1b, when an
object enters the scene, the PF initially hypothesizes a new object
with a small set of particles (painted in pink). The hypothesis
matches the incoming measurements, thus particles containing it
propagate quickly (see Fig. 1c), and the object is confirmed and
tracked. Analogously, when the detector delivers an erroneous
measurement, the PF initially hypothesizes a new object with a small
set of particles (see Fig. 1d). However, after some frames (Fig. 1e)
these particles fade away, since they are not supported by subsequent
measurements, and the tracker discards the artifact. Remarkably, the
tracker is able to overcome the false positives generated around
existing objects. In effect, in complex environments (such as the
addressed vehicle tracking) detectors are prone to deliver several
measurements for the same object. This is the case for the left
vehicle in Fig. 1f. Traditional rule-based approaches would assign
the nearest measurement to the vehicle and probably create a new
track for the other measurement. In contrast, in our method all
measurements contribute to the likelihood model and therefore the
object is correctly estimated to be in the intermediate region, and
false detections are avoided.

The positions of the vehicles are inferred as the average of the
particles, transformed back to the original domain, as shown in the
examples in Fig. 2. In order to also characterize vehicle dimensions,
bounding boxes are drawn for each vehicle around the position given
by the PF using a gradient-based strategy as in [8]. Fig. 2a-c shows
tracking of two vehicles for normal operation. In Fig. 2d-f, a more
complex scenario is also proven to be satisfactorily solved: first, the
vehicle appearing in the right-hand side is detected (Fig. 2d), then
tracking of the two vehicles in the image is maintained (Fig. 2e), and
finally a new vehicle is detected in the left-hand side (Fig. 2f).

5. CONCLUSIONS

In this work a novel multiple object tracking strategy based on a
variable dimension particle filter has been presented. The proposed
method provides a complete object tracking framework including
object entry and exit management. The tracker is able to overcome
the limitations of classical object detectors, which typically involve
noisy measurements and spurious artifacts. New object appearance

(a) k0 (b) k0 + 60 (c) k0 + 140

(d) k0 (e) k0 + 160 (f) k0 + 215

Fig. 2. Tracking for two example sequences, in the upper and lower
row, respectively.

is managed intrinsically by the proposed PF, which adapts its
dimension to the number of objects in the scene. The strength
of the method lies on the designed mixture observation model,
which gathers all possible dependencies between measurements
and objects. The method is especially applicable for tracking
applications with a small/medium number of objects, such as vehicle
tracking. The method has been proven to perform well for complex
traffic environments with a vehicle-mounted camera.
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