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Iceberg calving is an important mass loss mechanism from ice shelves and tidewater glaciers for many mid-
and high-latitude glaciers and ice caps, yet the process is not well represented in prognostic models of ice
dynamics. Benn and others (2007) proposed a calving criterion appropriate for both grounded and floating glacier
tongues or ice shelves. This criterion assumes that the calving is triggered by the downward propagation of
transverse surface crevasses, near the calving front, as a result of the extensional stress regime. The crevasse
depth is calculated following Nye (1957), assuming that the base of a field of closely spaced crevasses lies at a
depth where the longitudinal tensile strain rate tending to open the crevasse equals the creep closure resulting
from the ice overburden pressure. Crevasses partially or totally filled with water will penetrate deeper, because
of the contribution of water pressure to the opening of the crevasse. This criterion is readily incorporated into
glacier and ice sheet models, but has not been fully validated with observations. We apply a three-dimensional
extension of Benn and others’ (2007) criterion, incorporated into a full-Stokes model of glacier dynamics, to
estimate the current position of the calving front of Johnsons Glacier, Antarctica. We develop four experiments:
(i) an straightforward three-dimensional extension of Benn and other’s (2007) model; (2) an improvement to the
latter that computes the tensile deviatoric stress opening the crevasse using the full-stress solution; (iii) a further
improvement based on finding the depth at which the model-computed tensile deviatoric stress, considered as
a function of depth, equals the ice overburden closure pressure; (iv) an experiment that adds, to the above, the
effect of a threshold strain rate required for crevasses initiation. We found that the improvements considered in
experiments (ii) and (iii) were necessary to reproduce accurately the observed calving front. Our modelling results
also suggest that Johnsons Glacier has a polythermal structure, in contrast with the temperate structure suggested
by earlier studies.
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Motivation
The calving problem

Most used models:

Water depth at front. Problems:
◮ Highly empirical - distinct for different glaciers.
◮ Does not describe the physical mechanism.

Height above buoyancy. Problem:
◮ Does not allow floating ice tongues/shelves.

Other models:

Force imbalance at terminal ice cliffs.

Undercutting by subaqueous melting.

Torque arising from buoyant forces.

A recent model:

Model of crevasse formation (Benn et al., 2007).
Advantages:

◮ Strongly based on physics, allowing its use as pronostic model.
◮ Allows the development of floating ice tongues.
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Model of crevasse formation
Basics. Benn et al. (2007)
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Model of crevasse formation
Glacier front evolution
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Model of crevasse formation
Limitations and extension

Present limitations of crevasse formation model

Bidimensional

So far applied together with simple dynamical models:
◮ Driving stress balanced by basal drag
◮ Driving stress balanced by lateral drag
◮ A combination of both

Our contribution

3D extension

Application using a full-Stokes dynamical model

Improved crevasse depth computation
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3D calving model
Key aspects

L becomes a function of x,y.

ǫ̇∗ ( = ǫxx = ∂u
∂x

in 2D model ) now becomes strain rate along ice flow
direction

ǫ̇∗ ≈
‖u2 − u1‖

‖x2 − x1‖
.

ǫ̇∗ determined from velocity field solution of a 3D full-Stokes model.

Improved crevasse depth computation ⇒ Experiments.
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3D calving model
Experiments

Experiment 1. Benn’s model
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Experiment 2

Tensile deviatoric stress calculated
directly from constitutive relation
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Experiment 3

Exp. 2 + Tensile deviatoric stress as a function of depth

Experiment 4

Exp. 3 + Introduce a ‘yield strain rate’
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Dynamical model equations

∂σij

∂xj

+ ρgi = 0 conservation of linear momentum

∂ui

∂xi

= 0 conservation of mass

ǫ̇ij = Aτn−1τij constitutive relation
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Boundary conditions
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Boundary conditions
Basal sliding

Present implementation (1st approach)
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Application: Johnsons glacier
Location of Livingston Island and Hurd Peninsula, and surface map of Johnsons

and Hurd glaciers (South Shetland Islands, Antartica).

Limitations:

Short time series of front position (5 yr.).

Flat slope of seabed in proglacial area.

Resulting in nearly constant front position.

⇒ Application restricted to estimating model-predicted front position.

12



Surface topography and ELA
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Radar profiles, bathymetry and subglacial relief map
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Model parameters tuning. K uniform
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Not in good agreement with observations near the glacier front.
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Model parameters tuning. Nonuniform K

K weighted according to position (2 zones, nearly coincident with
accumulation & ablation).

Aimed at closer agreement between computed and observed velocities.

60

80

100

120

140140

160

160

18
0

1
8
0

180

2
0

0

20
0

200

2
2
0

220
220

220

2
4
0

240

240

260

2
6
0

260

2
8
0

280

300

320

b

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

K (ma Pa )
-1 -1

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

7

E (m a )
-1

B
 (

M
p
a
 a

)
1
/3

a

Distance (km)

D
is

ta
n
c
e
 (

k
m

)

Much better agreement with observations near the glacier front.
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Predicted front position. Experiment 1
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Predicted front position. Experiment 2
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Predicted front position. Experiment 3
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Predicted front position. Experiment 4
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Conclusions and outlook

Conclusions

Our three-dimensional extension of Benn’s calving criterion, with
Nye’s formula, does not accurately reproduce the observed front
position unless a large amount of water filling the near-front crevasses
is hypothesized.

21



Conclusions and outlook

Conclusions

Our three-dimensional extension of Benn’s calving criterion, with
Nye’s formula, does not accurately reproduce the observed front
position unless a large amount of water filling the near-front crevasses
is hypothesized.

The modified criterion for crevasse depth, which computes the
deviatoric longitudinal stress opening the crevasse using the full-stress
solution, substantially improves the results. No water in crevasses is
necessary. Crevasse depth slightly overestimated.

22



Conclusions and outlook

Conclusions

Our three-dimensional extension of Benn’s calving criterion, with
Nye’s formula, does not accurately reproduce the observed front
position unless a large amount of water filling the near-front crevasses
is hypothesized.

The modified criterion for crevasse depth, which computes the
deviatoric longitudinal stress opening the crevasse using the full-stress
solution, substantially improves the results. No water in crevasses is
necessary. Crevasse depth slightly overestimated.

The model that considers the tensile deviatoric stress opening the
crevasse as a function of depth provides the best fit to observations
with a small amount of water filling the crevasses.

23



Conclusions and outlook

Conclusions

Our three-dimensional extension of Benn’s calving criterion, with
Nye’s formula, does not accurately reproduce the observed front
position unless a large amount of water filling the near-front crevasses
is hypothesized.

The modified criterion for crevasse depth, which computes the
deviatoric longitudinal stress opening the crevasse using the full-stress
solution, substantially improves the results. No water in crevasses is
necessary. Crevasse depth slightly overestimated.

The model that considers the tensile deviatoric stress opening the
crevasse as a function of depth provides the best fit to observations
with a small amount of water filling the crevasses.

Introducing a ’yield strain rate’does not improve the fit to
observations, unless a slightly larger amount of water is assumed.
Such a yield strain rate is a physically plausible mechanism to
overcome the fracture toughness of the ice.
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Conclusions and outlook

Outlook

Improving the representation of basal sliding.
Some alternatives:

◮ Improving the estimates of τb and Hw .

Application of the calving model to a glacier with a good record of
front positions (e.g. Hansbreen), allowing use of transient model in
prognostic mode.
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