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Abs t r ac t . Glass-box test data generation (TDG) is the process of au­
tomatically generating test input data for a program by considering its 
internal structure. This is generally accomplished by performing sym­
bolic execution of the program where the contents of variables are ex­
pressions rather than concrete values. The main idea in CLP-based TDG 
is to translate imperative programs into equivalent CLP ones and then 
rely on the standard evaluation mechanism of CLP to symbolically ex­
ecute the imperative program. Performing symbolic execution on large 
programs becomes quickly expensive due to the large number and the 
size of paths that need to be explored. In this paper, we propose com­
positional reasoning in CLP-based TDG where large programs can be 
handled by testing parts (such as components, modules, libraries, meth­
ods, etc.) separately and then by composing the test cases obtained for 
these parts to get the required information on the whole program. Im­
portantly, compositional reasoning also gives us a practical solution to 
handle native code, which may be unavailable or written in a different 
programming language. Namely, we can model the behavior of a native 
method by means of test cases and compositional reasoning is able to 
use them. 

1 Introduction 

Test da ta generation (TDG) is the process of automatically generating test cases 
for interesting test coverage criteria. Coverage criteria aim at measuring how 
well the program is exercised by a test suite. Examples of coverage criteria are: 
statement coverage which requires tha t each line of the code is executed; path 
coverage which requires tha t every possible trace through a given part of the code 
is executed; loop-k (resp. block-k ) which limits to a threshold k the number of 
times we iterate on loops (resp. visit blocks in the control flow graph [1]). Among 
the wide variety of approaches to T D G (see e.g. [22]), our work focuses on glass-
box testing, where test cases are obtained from the concrete program in contrast 
to black-box testing, where they are deduced from a specification of the program. 
Also, our focus is on static testing, where we assume no knowledge about the 
input data, in contrast to dynamic approaches [7,14] which execute the program 
to be tested for concrete input values. 



The standard approach to generating test cases statically is to perform a sym­
bolic execution of the program [15,5,13,18,19,6,21], where the contents of vari­
ables are expressions rather than concrete values. Symbolic execution produces a 
system of constraints consisting of the conditions to execute the different paths. 
This happens, for instance, in branching instructions, like if-then-else, where we 
might want to generate test cases for the two alternative branches and hence 
accumulate the conditions for each path as constraints. The symbolic execu­
tion approach has been combined with the use of constraint solvers [19,13,21] in 
order to handle the constraint systems by solving the feasibility of paths and, 
afterwards, to instantiate the input variables. For instance, a symbolic JVM 
machine which integrates several constraint solvers has been designed in [19] 
for TDG of Java (bytecode) programs. In general, a symbolic machine requires 
non-trivial extensions w.r.t. a non-symbolic one like the JVM: (1) it needs to 
execute (imperative) code symbolically as explained above, (2) it must be able 
to non-deterministically execute multiple paths (as without knowledge about the 
input data non-determinism usually arises). 

In recent work [11], we have proposed a CLP-based approach to TDG of imper­
ative programs consisting of three main ingredients: (i) The imperative program 
is first translated into an equivalent CLP one, named CLP-translated program in 
what follows. The translation can be performed by partial evaluation [10] or by 
traditional compilation, (ii) Symbolic execution on the CLP-translated program 
can be performed by relying on the standard evaluation mechanism of CLP, which 
provides backtracking and handling of symbolic expressions for free, (iii) The use 
of dynamic memory requires to define heap-related operations that, during TDG, 
take care of constructing complex data structures with unbounded data (e.g., re­
cursive data structures). Such operations can be implemented in CLP [11]. 

It is well-known that symbolic execution might become computationally in­
tractable due to the large number of paths that need to be explored and also 
to the size of their associated constraints (see [20]). While compositionality has 
been applied in many areas of static analysis to alleviate these problems, it is 
less widely used in TDG (some notable exceptions in the context of dynamic 
testing are [8,3]). In this paper, we propose a compositional approach to static 
CLP-based TDG for imperative languages. In symbolic execution, composition­
ality means that when a method m invokes another method p for which TDG 
has already been performed, the execution can compose the test cases available 
for p (also known as method summary for p) with the current execution state and 
continue the process, instead of having to symbolically execute p again. By test 
cases or method summary, we refer to the set of path constraints obtained by 
symbolically executing p using a certain coverage criterion. Compositional TDG 
has several advantages over global TDG. First, it avoids repeatedly performing 
TDG of the same method. Second, components can be tested with higher pre­
cision when they are chosen small enough. Third, since separate TDG is done 
on parts and not on the whole program, total memory consumption may be 
reduced. Fourth, separate TDG can be performed in parallel on independent 
computers and the global TDG time can be reduced as well. 



class R { 

int n; int d; 

void simplify(){ 

int gcd = A.gcd(n,d); 

n = n/gcd; d = d/gcd;} 

static R[] simp(R[] rs){ 

int length = rs.length; 

R[] oldRs = new R [length] ; 

arraycopy(rs,oldRs,length); 

for (int i = 0; i < length; 

rs [i].simplify() ; 

return oldRs;}} 

i++) 

c 

} 

Lass A { 

static int abs(int x){ 

if (x >= 0) return x; 

else return -x; 

} 
static int gcd(int a,int b){ 

int res; 

while (b != 0){ 

res = a°/b; a = b; b = res;} 

return abs(a); 

} 

Fig. 1. Java source of working example 

Furthermore, having a compositional TDG approach in turn facilitates the 
handling of native code, i.e., code which is implemented in a different language. 
This is achieved by modeling the behavior of native code as a method summary 
which can be composed with the current state during symbolic execution in 
the same way as the test cases inferred automatically by the testing tool are. 
By treating native code, we overcome one of the inherent limitations of symbolic 
execution (see [20]). Indeed, improving the efficiency of TDG and handling native 
code are considered main challenges in the fields of symbolic execution and TDG. 

We report on a prototype implementation in PET [2], a Partial-Evaluation 
based Test case generation tool for Java bytecode. Experimental results on a set 
of medium-sized benchmarks already show that compositional TDG can highly 
improve the performance over non-compositional TDG. 

2 CLP-Based Test Case Generation 

In this section, we summarize the CLP-based approach to TDG for imperative 
languages introduced in [1] and recently extended to object-oriented languages 
with dynamic memory in [11]. For simplicity, we do not take aliasing of references 
into account and simplify the language by excluding inheritance and virtual 
invocations. However, these issues are orthogonal to compositionality and our 
approach could be applied to the complete framework of [11]. Also, although our 
approach is not tied to any particular imperative language, as regards dynamic 
memory, we assume a Java-like language. In [10], it has been shown that Java 
bytecode (and hence Java) can be translated into the equivalent CLP-programs 
shown below. 

2.1 From Imperative to Equivalent CLP Programs 

A CLP-translated 'program as defined in [11] is made up of a set of predicates. 
Each predicate is defined by one or more mutually exclusive clauses. Each clause 



receives as input a possibly empty list of arguments Argsin and an input heap 
Hin, and returns a possibly empty output Argsout, a possibly modified output 
heap Hout, and an exception flag indicating whether the execution ends normally 
or with an uncaught exception. The body of a clause may include a set of guards 
(comparisons between numeric da ta or references, etc.) followed by different 
types of instructions: arithmetic operations and assignment statements, calls 
to other predicates, instructions to create objects and arrays and to consult the 
array length, read and write accesses to object fields or array positions, as defined 
by the following grammar: 

Clause 
G 
B 

= Pred (Argsin,ArgSout,Hi„,Hout,ExFlag) :- [G,]B\,Bi,. . . ,B„. 
= Num* ROp Num* \ Ref \== Ref2 

= Var # = Num* AOp Num* \ Pred (Argsin,Argsout,Hin,Hout, ExFlag) \ 
new_object(ii, C* ,Ref ,H) |new_array(ii, T,Num*,Ref,H) |length(H,Ref,Var)\ 
get_field(ii,Ref ,FSig, Var) | setJ\e\ó(H,Ref ,FSig,Data* ,H) | 
get_array (H, Ref, Num*, Var) | set_array(_ff,Ref,Num*,Data*,H) 

Pred 
Args 
Data 
Ref 

ExFlag 

: Block | MSig ROp 
-W I [Data*|Args] AOp 
: Num | Ref | ExFlag T 
- null | r(Var) FSig 
- ok | exc(Var) H 

= #> I #< I #>= I #=< I #= I #\= 
= + | - | * | / | mod 
= bool | int | C | array(T) 
= C:FN 
= Var 

Non-terminals Block, Num, Var, FN, MSig and C denote, resp., the set of predi­
cate names, numbers, variables, field names, method signatures and class names. 
Clauses can define both methods which appear in the original source program 
(MSig), or additional predicates which correspond to intermediate blocks in the 
program (Block). An asterisk on a non-terminal denotes tha t it can be either as 
defined by the grammar or a (possibly constraint) variable. 

Example 1. Fig. 1 shows the Java source of our running example and Fig. 2 the 
CLP-translated version of method simp obtained from the bytecode. The main 
features tha t can be observed from the translation are: (1) All clauses contain in­
put and output arguments and heaps, and an exception flag. Reference variables 

s i m p ( [ r ( R s ) ] , [Ret] ,H 0 ,H 3 ,EF) : - length(H0 , R s , L e n ) , L e n # > = 0 , new_array(H0 , 'R ' ,Len, OldRs .Hi ) , 
a r r a y c o p y ( [ r ( R s ) , r ( 0 1 d R s ) , L e n ] , [ ] , H i , H 2 , E F P ) , r l ( [ E F P , r ( R s ) , r ( O l d R s ) , L e n ] , [ R t ] , H 2 , H 3 , E F ) . 

simp ( [ n u l l ] , _ , H i r l , H o u t , e x c ( E R e f ) ) : - new_object(H i r l , >NPE> ,ERef , H o u t ) . 

r l ( [ o k , R s , O l d R s , L e n g t h ] , [ R e t ] , H i , H 2 , E F ) : - l o o p ( [ R s , O l d R s , L e n g t h , 0 ] , [ R e t ] , H i , H 2 , E F ) . 
r l ( [ e x c ( E R e f ) , _ , _ , J , _ ,H ,H ,exc (ERef ) ) . 

l o o p ( [ _ , O l d R s , L e n g t h , I ] , [ O l d R s ] , H , H , o k ) : - I #>= Length . 
loop ( [Rs , OldRs, L, I ] , [Ret] ,H i ,H 2 ,EF) : - I # < L , l o o p b o d y K [Rs, O ldRs ,L , I ] , [Ret] ,Hi ,H2 ,EF) . 

l o o p b o d y l ( [ r ( R s ) , O l d R s , L e n g t h , I ] , [Ret] ,H i ,H 2 ,EF) : - length (Hi ,Rs ,L) , L #>= 0 , I #< L, 
g e t _ a r r a y ( H i , R s , I , R S j ) , loopbody2( L r ( R s ) , O l d R s , L e n g t h , I , R s s ] , [ R e t ] , H i , H 2 , E F ) . 

l o o p b o d y 2 ( [ R s , O l d R s , L e n g t h , I , r ( R s j ) ] , [ R e t ] ,H i ,H 3 ,EF) : - s i m p l i f y ( [ r ( R s ¡ ) ] , [ ] , H i , H 2 , E F P ) , 
l o o p b o d y 3 ( [ E F p , R s , O l d R s , L e n g t h , I ] , [ R e t ] , H 2 , H 3 , E F ) . 

l o o p b o d y 2 ( [ _ , _ , _ , _ , n u l l ] ,_,Hi ,H2 , exc (ERef)) : - new_object(Hi , 'NPE',ERef ,H2) . 

l o o p b o d y 3 ( [ o k , R s , 0 1 d R s , L , I ] , [ R e t ] , H i , H 2 , E F ) : - Ip #= 1+1, l o o p ( [ R s , O l d R s , L , I p ] , [ R e t ] , H i , H 2 , E F ) . 
loopbody3( [exc (ERef) ,_,_,_, J , _,H,H, exc (ERef)) . 

Fig. 2. CLP Translation associated to bytecode of method simp 



are of the form r(V) and we use the same variable name V as in the program. 
E.g., argument Rs of simp corresponds to the method input argument. (2) Java 
exceptions are made explicit in the translated program, e.g., the second clauses 
for predicates simp and loopbody2 capture the null-pointer exception (NPE). (3) 
Conditional statements and iteration in the source program are transformed into 
guarded rules and recursion in the CLP program, respectively, e.g., the for-loop 
has been converted to the recursive predicate loop. (4) Methods (like simp) and 
intermediate blocks (like r l ) are uniformly represented by means of predicates 
and are not distinguishable in the translated program. 

2.2 Symbolic Execution 

When the imperative language does not use dynamic memory, CLP-translated 
programs can be executed by using the standard CLP execution mechanism with 
all arguments being free variables. However, in order to generate heap-allocated 
data structures, it is required to define heap-related operations which build the 
heap associated with a given path by using only the constraints induced by 
the visited code. Fig. 3 summarizes the CLP-implementation of the operations 
in [11] to create heap-allocated data structures (like new_object and new_array) 
and to read and modify them (like set_field, etc.) which use some auxiliary pred­
icates (like deterministic versions of member member_det, of replace replace_det, 
and nthO and replace_nthO for arrays) which are quite standard and hence their 
implementation is not shown. 

The intuitive idea is that the heap during symbolic execution contains two 
parts: the known part, with the cells that have been explicitly created during 
symbolic execution appearing at the beginning of the list, and the unknown 
part, which is a logic variable (tail of the list) in which new data can be added. 

Importantly, the definition of get_cell/3 distinguishes two situations when 
searching for a reference: (i) It finds it in the known part (second clause). Note 
the use of syntactic equality rather than unification, since references at execution 
time can be variables, (ii) Otherwise, it reaches the unknown part of the heap (a 
logic variable), and it allocates the reference (in this case a variable) there (first 
clause). 

The heaps generated by using the operations in Fig. 3 adhere to this grammar: 

Heap ::= \\ | [Loc\Heap] Cell ::= objected*¡Fields*) \ array(T*,Num*,Args*) 
hoc ::= (Num*,Cell) Fields ::= 0 | [f(FN,Data*)\Fields*] 

Observe that a heap is represented as a list of locations which are pairs made up 
of a unique reference and a cell, which in turn can be an object or an array. An 
object contains its type and its list of fields, each of them contains its signature 
and data contents. An array contains its type, its length and the list of its ele­
ments. An important point to note is that the list of fields of an object is always 
in normal form, i.e., all fields of the class are present and ordered. This is accom­
plished by the calls to predicate normalize/2 within get_field/3 and set_field/4, 
which initializes the list of fields producing the corresponding template list if it 



has not been initialized yet. Note tha t this initialization is only produced the 
first time a call to get_field/3 or set_field/4 is performed on an object. In con­
trast , in [11] the list of fields can be partial (not all fields are present but just 
those tha t have been accessed) and is not ordered (fields occur in the order they 
are accessed during the corresponding execution). The need for normalization is 
motivated later in Sec. 3.1. 

Example 2. Let us consider a branch of the symbolic execution of method simp 
which s tar ts from simp(A¡n ,Ao u t ,H¡n ,Ho u t ,EF), the empty s tate </>o = (0,0) and 
which (by ignoring the call to arraycopy for simplicity) executes the predi­
cates s i m p i ^ lengths > ^ new_array^ r l i —> loopi —> > ^ t rue . The subindex 1 
indicates tha t we pick up the first rule defining a predicate for execution. As cus­
tomary in CLP, a state </> consists of a set of bindings a and a constraint store 0. 
The final s tate of the above derivation is <f>f = (af, Of) with a¡ = {A¡„ = [r(Rs)], 
Aout = [r(C)], Hin = [(Rs,array(T,L,_))|_], Hout = [(C, array('R', L, _))|Hin], EF = ok} and 
Of = {L = 0}. This can be read as "if the array at location Rs in the input heap 
has length 0, then it is not modified and a new array of length 0 is returned". 
This derivation corresponds to the first test case in Table 3 where a graphical 
representation for the heap is used. For readability, in the table we have applied 
the store substi tution to both Heapin and Heapout terms. 

2.3 M e t h o d S u m m a r i e s O b t a i n e d by T D G 

It is well-known tha t the execution tree to be traversed in symbolic execution is in 
general infinite. This is because iterative constructs such as loops and recursion 
whose number of iterations depends on the input values usually induce an infinite 
number of execution paths when executed with unknown input values. It is 
therefore essential to establish a termination criterion which, in the context of 
TDG, is usually defined in terms of the so-called coverage criterion (see Sec. 1). 
Given a method m and a coverage criteria, C, in what follows, we denote by 
SYMBOLlC-ExECUTlON(m, C) the process of generating the minimal execution 
tree which guarantees tha t the test cases obtained from it will meet the given 
coverage criterion. The concept of method summary corresponds to the finite 
representation of its symbolic execution for a given coverage criterion. 

Def in i t ion 1 ( m e t h o d s u m m a r y ) . LetT^ be the finite symbolic execution tree 
of method m obtained by using a coverage criterion C. Let B be the set of successful 
branches inT^ and m(Argsin,Argsout,Hin,Hout,EF) be its root. A method sum­
mary for m w.r.t. C, denoted S^, is the set of 6-tuples associated to each branch 
b G B of the form: (a (Argsin),a (Argsout),a (Hin),a (Hout),a (EF),0), where a and 
0 are the set of bindings and constraint store, resp., associated to b. 

Each tuple in a summary is said to be a (test) case of the summary, denoted c, 
and its associated state 4>c comprises its corresponding a and 6, also referred to as 
context (¡>c. Intuitively, a method summary can be seen as a complete specification 
of the method for the considered coverage criterion, so tha t each summary case 



new_object(H,C,Ref,H') 

new_array(H,T,L,Ref,H') 

length (H , Ref, L) 

get_field(H,Ref,FSig,V) 

get_array(H,Ref,l,V) 

set_field(H,Ref,FSig,V,H') 

set_array(H,Ref,l,V,H' 

build_object(C,Ob), new_ref(Ref), H' = [ (Ref,Ob)|H]. 

build_array(T,L,Arr), new_ref(Ref), H' = [ (Ref,Arr) |H]. 

get_cell(H,Ref,Cell), Cell = array(_,L,_). 

get_cell(H,Ref,Ob), FSig = C:FN, Ob = object(T,Fields), 

T = C, normalize(C,Fields), member_det(f ield(FN,V),Fields) 

get_cell(H,Ref,Arr), Arr = array(_,_,Xs), nthO(l,Xs,V). 

get_cell(H,Ref,Ob), FSig = C:FN, Ob = object(T,Fields), 

T = C, normalize(C,Fields), 

replace_det(Fields,field(FN,_),field(FN,V),Fields'), 

set_cell(H,Ref,object(T,Fields'),H'). 

get_cell(H,Ref,Arr), Arr = array(T,L,Xs), 

replace_nthO(Xs,l,V,Xs'), set_cell(H,Ref,array(T,L,Xs'),H'). 

get_cell(H,Ref,Cell) 

get_cell([(Ref',Cell')|_],Ref,Cell) 

get_cell([_|RH],Ref,Cell) 

set_cell(H,Ref,Cell,H') 

set_cell([(Ref',_)|H],Ref,Cell,H') 

set_cell([(Ref',Cell ')|H'[,Ref, Cell,H) 

var(H), I, H = [(Ref,Cell)|_], 

Ref = = Re f , I, Cell = Cell'. 

get_cell(RH,Ref,Cell). 

var(H), I, H' = [(Ref,Cell)|H], 

Ref = = Re f , I, H' = [(Ref,Cell 

H = [ (Ref ' ,Cel l ' ) |H" ] , set_cell(H',Ref,Cell,H" 

Fig. 3. Heap operations for symbolic execution [11] 

corresponds to the path constraints associated to each finished path in the corre­
sponding (finite) execution tree. Note that, though the specification is complete 
for the criterion considered, it will be, in general, a partial specification for the 
method, since the finite tree may contain incomplete branches which, if further 
expanded, may result in (infinitely) many execution paths. 

Example 3. Table 1 shows the summary obtained by symbolically executing 
method simplify using the block-2 coverage criterion of [1] (see Sec. 1): The 
summary contains 5 cases, which correspond to the different execution paths 
induced by calls to methods gcd and abs. For the sake of clarity, we adopt 
a graphical representation for the input and output heaps. Heap locations are 
shown as arrows labeled with their reference variable names. Split-circles repre­
sent objects of type R and fields n and d are shown in the upper and lower part, 

Table 1. Summary of method simplify 

Heapi, Heapou EF Constraints 

A -> 

A -> 

A 

A -> 

A -> 

A -> 

© A . © B ^ t L 
A ^ 

A ^ 

ok F<0, N=-F, M=F/N 

ok F>0 

exc(B) 

ok Q<0, F mod G=0, K=-G, M=F/K, N=G/K 

ok Q>0, F mod G=0, M=F/G 



compose_summary(Call) :-

Call =. . [M,Am ,Aout,Hm ,Ho u t ,EF], 
summary(M,SA¡n,SAout,SH¡n,SHou 

compose_hin(H¡n,SH¡n), 

compose_hout(H¡n,SHout,Hout), 
load_store(o"). 

,SEF,a), 
EF, 

compose_hin(_,SH) :- var(SH), I. 
compose_hin(H,[(R,Cell)|SH]) :-

get_cell(H,R,Cell'), Cell' = Cell, 
compose_hin(H,SH). 

compose_hout(H,SH,H) :- var(SH), 

compose_hout( H ¡n, [(Ref, Cell) |SHout] 

set_cell(H¡n,Ref,Cell,H'), 

compose_hout( H' ,S Ho u t , Hout). 

,Hout) :-

Fig. 4. The composition operation 

respectively. Exceptions are shown as starbursts, like in the special case of the 
fraction "0/0", for which an arithmetic exception (AE) is thrown due to a divi­
sion by zero. In summary examples of Tables 2 and 3, split-rectangles represent 
arrays, with the length of the array in the upper part and its list of values (in 
Prolog syntax) in the lower one. 

In a subsequent stage, it is possible to produce actual values from the obtained 
path constraints (e.g., by using labeling mechanisms in standard clpfd domains) 
therefore obtaining executable test cases. However, this is not an issue of this 
paper and we will rely on the method summaries only in what follows. 

3 A Compositional CLP-Based T D G Approach 

The goal of this section is to study the compositionality of the CLP-based ap­
proach to TDG of imperative languages presented in the previous section. 

3.1 Composition in Symbolic Execution 

Let us assume that during the symbolic execution of a method m, there is a 
method invocation to p within a state </>. In the context of our CLP approach, 
the challenge is to define a composition operation so that, instead of symbolically 
executing p its (previously computed) summary Sp can be reused. For this, TDG 
for m should produce the same results regardless of whether we use a summary 
for p or we symbolically execute p within TDG for m, in a non-compositional 
way. 

Fig. 4 shows such a composition operation (predicate compose_summary/l). 
The idea is therefore to replace, during symbolic execution, every method invo­
cation top by a call compose_summary(p(...)) when there is a summary available 
for it. Intuitively, given the variables of the call to p, with their associated state 
</>, compose_summary/l produces, on backtracking, a branch for each compatible 
case c e Sp, composes its state </>c with </> and produces a new state </>' to continue 
the symbolic execution with. We assume that the summary for a method p is 
represented as a set of facts of the form summary(p,SA¡n,SAout,SH¡n,SHout,SEF,é>). 
Roughly speaking, state </>c is compatible with </> if: 1) the bindings and con­
straints on the arguments can be conjoined, and 2) the structures of the input 



heaps match. This means that , for each location which is present in both heaps, 
its associated cells match, which in turn requires tha t their associated bindings 
and constraints can be conjoined. Note tha t compatibility of a case is checked 
on the fly, so tha t if </> is not compatible with </>c some call in the body of com-
pose_summary/l will fail. 

As it can be observed by looking at the code of compose_summary/l, the in­
put and output arguments, and the exception flags are simply unified, while the 
constraint store 0 is trivially incorporated by means of predicate load_store/l. 
However, the heaps require a more sophisticated t reatment , mainly due to the 
underlying representation of sets (of objects) as Prolog lists. Predicate com-
pose_hin/2 composes the input heap of the summary case SH¡n with the current 
heap H¡n, producing the composed input heap in H¡n. To accomplish this, com-
pose_hin/2 traverses each cell in SH¡n, and: 1) if its associated reference is not 
present in H¡n (first rule of get_cell/3 succeeds), it is added to it, 2) if is is present 
in H¡n (second rule of get_cell/3 succeeds) then the cells are unified. This is pos­
sible since we are assuming tha t every object tha t arises in the heap during 
symbolic execution has its list of fields in normal form (see Sec. 2.2). This allows 
using just unification (Cell = Cell') for the aim of matching cells. 

Similarly, compose_hout/3 composes the output heap of the summary case 
SHo u t with the current heap H¡n, producing the composed output heap in Hout. 
As can be seen in Figure 4, compose_hout/3 traverses each cell in SHo u t and, if 
its associated reference is not present in H (first rule of set_cell/4 succeeds), then 
it is added to it. Otherwise (second rule of set_cell/4 succeeds) it overwrites the 
current cell. In both cases, set_cell/4 produces a new heap H' which is passed as 
first argument to the recursive call to compose_hout/3. This process continues 
until there are no more cells in SHou t , in which case the current heap is returned. 
Again this is possible thanks to the normal form of object fields. 

As noticed before, further features of imperative languages not considered in 
this paper, such as inheritance and pointer aliasing, can be handled by com-
pose_summary/l for free by just using the corresponding extensions of get_cell/3 
and set_cell/4 defined in [11]. 

Example 4- When symbolically executing simp, the call simplify(A¡n,Aout,H¡n,Hout, 
EF) arises in one of the branches with state a = {A¡„ = [r(E0)], Aout = [], H¡„ = 
[(O^rrayCR'^JEOl-])), (Rs, arrayCR', L, [E0|_]))|RHin]} and 6 = {L > 0} . The com­
position of this s tate with the second summary case of s i m p l i f y succeeds and 
produces the state a' = t rU{E0 = B, RHin = [(B,ob('R', [field(n, F),field(d, 0)]))|_], 
Hout=[. - • , (B,ob('R' ; [field(n, 1), field(d, 0)]))|_]} and 0'={L > 0, F > 0}. The dots in 
Hout denote the rest of the cells in H¡n. 

3.2 A p p r o a c h e s t o C o m p o s i t i o n a l T D G 

In order to perform compositional TDG, two main approaches can be considered: 



Table 2. Summary of method arraycopy 

Ain Aout Heapin Heapout EF Constraints 

[X,Y,0] 

[r(A),null,Z] 

[null.Y.Z] 

[X,Y,Z] 

[r(A),r(B),l] 

H 

A -> 

H 

H 

A -> 

Context-sensitive. Starting from an entry method m (and possibly a set of pre­
conditions), TDG performs a top-down symbolic execution such that, when a 
method call p is found, its code is executed from the actual state </>. In a context-
sensitive approach, once a method is executed, we store the summary computed 
for p in the context </>. If we later reach another call to p within a (possibly differ­
ent) context </>', we first check if the stored context is sufficiently general. In such 
case, we can adapt the existing summary for p to the current context </>' (by re­
lying on the operation in Fig. 4). At the end of each execution, it can be decided 
which of the computed (context-sensitive) summaries are stored for future use. 
In order to avoid the problems of computing summaries which end up being not 
sufficiently general, in the rest of this paper we focus in the context-insensitive 
approach presented below. 

Context-insensitive. Another possibility is to perform the TDG process in a 
context-insensitive way. Algorithm 1 presents this strategy, by abstracting some 
implementation-related details. Intuitively, the algorithm proceeds in the follow­
ing steps. First, it computes the call graph (line 3) for the entry method m-p of 
the program under test, which gives us the set of methods that must be tested. 
The strongly connected components (SCCs for short) for such graph are then 
computed in line 4. SCCs are then traversed in reverse topological order starting 
from an SCC which does not depend on any other (line 6). The idea is that each 
SCC is symbolically executed from its entry mscc w.r.t. the most general context 
(i.e., true) (line 8). If there are several entries to the same SCC, the process is 
repeated for each of them. Hence, it is guaranteed that the obtained summaries 
can always be adapted to more specific contexts. 

In general terms, the advantages of the context-insensitive approach are that 
composition can always be performed and that only one summary needs to be 
stored per method. However, since no context information is assumed, summaries 
can contain more test cases than necessary and can be thus more expensive to 
obtain. In contrast, the context-sensitive approach ensures that only the required 
information is computed, but it can happen that there are several invocations to 
the same method that cannot reuse previous summaries (because the associated 
contexts are not sufficiently general). In such case, it is more efficient to obtain 
the summary without assuming any context. 

B -» 
L2 

IV9I 1 

H 

A -> 

A i 
A i 
A -> 

L 

M-l 

LI 
[VI 1 

Bit 

B -» 
L2 

[VI 1 

ok 

^ exc(B) 

exc(A) 

exc(A) 

ok 

0 

Z>0, L>0 

Z>0 

Z<0 

L1>1, L2> 



A l g o r i t h m 1. Context-insensitive compositional T D G 
Input: Program V', Coverage criterion C 
Output: Test suite T for program V w.r.t. C 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10: 
11: 

procedure BOTTOM-UP-TDG(:P, C) 
Let m-p be the entry method of V 
Q <— callGraph(m-p) 
SCC <— stronglyC onnectedC omponents(Q) 
SCC' <— buildTopologicalOrderList(SCC) 
for all sec e SCC' do 

for all m s c c e entry Methods (sec) do 
S ™ " 1 <— SYMBOLIC-EXECUTION(mscc,C) 

end for 
end for 

end procedure 

3 .3 H a n d l i n g N a t i v e C o d e dur ing S y m b o l i c E x e c u t i o n 

An inherent limitation of symbolic execution is the handling of native code, 
i.e., code implemented in another (lower-level) language. Symbolic execution 
of native code is not possible since the associated code is not available and it 
can only be handled as a black box. In the context of hybrid approaches to 
T D G which combine symbolic and concrete execution, a solution is concolic ex­
ecution [9] where concrete execution is performed on random inputs and pa th 
constraints are collected at the same time; native code is executed for concrete 
values. Although we believe tha t such approach could be also adapted to our 
CLP framework, we concentrate here on a purely symbolic approach. In this 
case, the only possibility is to model the behavior of the native code by means 
of specifications. Such specifications can be in turn treated as summaries for the 
corresponding native methods. They can be declared by the code provider or 
automatically inferred by a TDG tool for the corresponding language. Interest­
ingly, the composition operator uses them exactly in the same way as it uses the 
summaries obtained by applying our own symbolic execution mechanism. Let us 
see an example. 

Example 5. Assume tha t method arraycopy is native. A method summary for 
arraycopy can be provided, as shown in Table 2, where we have (manually) 
specified five cases: the first one for arrays of length zero, the second and third 
ones for null arrays, the fourth one for a negative length, and finally a normal 
execution of non-null arrays. Now, by using our compositional reasoning, we can 
continue symbolic execution for simp by composing the specified summary of 
arraycopy within the actual context. In Table 3, we show the entire summary 
of method simp for a block-2 coverage criterion obtained by relying on the 
summaries for s i m p l i f y and arraycopy shown before. 

A practical question is how method summaries for native code should be pro­
vided. A s tandard way is to use assertions (e.g., in JML in the case of Java) 
which could be parsed and easily transformed into our Prolog syntax. 



3.4 Compositionality of Different Coverage Criteria 

Though we have presented in Sec. 3.1 above a mechanism for reusing existing 
summaries during TDG, not all coverage criteria behave equally well w.r.t. com­
positionality. A coverage criterion C is compositional if whenever performing 
TDG of a method m w.r.t. C, if we use a previously computed summary for a 
method p w.r.t. C in a context which is sufficiently general, the results obtained 
for m preserve criterion C. In other words, if a criterion is compositional, we do 
not lose the required coverage because of using summaries. 

Unfortunately, not all coverage criteria are compositional. For example, state­
ment coverage is not compositional, as illustrated in the example below. 

Example 6. Consider the following simple method: 

p(int a . int b){ i f (a > 0 || b > 0) S;} 

where S stands for any statement, and the standard shortcut semantics for Java 
boolean expressions is used. This means that as soon as the expression has a 
definite true or false value, it is not further evaluated. In our case, once the 
subexpression a > 0 takes the value true, the whole condition definitely takes 
the value true, the subexpression b > 0 is not evaluated, and S is executed. 

If assuming the top (most general) context, a summary with a single case 
{a > 0} is sufficient to achieve statement coverage. Consider now that p is called 
from an outer scope with a more restricted context in which a < 0. Then, using 
such summary instead of performing symbolic execution of p does not preserve 
statement coverage, since it is not guaranteed that statement S is visited. It 
depends on the particular value picked for b for testing, which is unconstrained 
in the summary. If the value for b is picked to be greater than zero, statement 
coverage is satisfied, but not otherwise. Note that by considering a context where 
a < 0 from the beginning, a summary with the single entry {b > 0} would be 
computed instead. 

Table 3. Summary of method simp 

Ain Aout Heapin Heapout EF Constraints 

r(A) r(B) A • 

null X H 

r(A; 

r(A 

r(A 

r(A 

r(A 

r(A 

r(C) A -» 

r(C) A -» 

X A ^ 

r(C) A -» 

r(C) A -> 

X A ^ 

0 

II 

1 
[r(B)] 

1 
[r(B)] 

1 
[r(B)] 

1 
[r(B)] 

1 
[r(B)] 

1 
[null] 

A -+ 

A 

A -> 

A -> 

A -* 

A -+ 

A -> 

A -> 

B 

r 
E 

r 
E 

r 
E 

r 
E 

7C "* 

)c -> 

)c -» 

) c -

E 

r 
B 

r 
B 

r 
E 

r 
E 

[null] [null] 

ok I 

3Xc(A) t 

ok P<0, K=-P, M=P/K 

ok P>c 

exc(D) I 

ok G<0, Pmod G=0, K=-G,M=P/K,N=G/K 

ok G>0, P mod G=0, M=P/G 

9Xc(B) i 



As this example illustrates, a challenge in compositional reasoning is to preserve 
coverage when using summaries previously computed for a context </> which is suf­
ficiently general, but not identical to </>', the one which appears during the particu­
lar invocation of the method. More precisely, compositionality of coverage criteria 
requires that the following property holds: given a summary S obtained for p in a 
context (¡> w.r.t. C, a summary S' for a more restricted context </>' can be obtained 
by removing from S those entries which are incompatible with context </>'. 

For instance, the block-A; coverage criterion used in the examples of the paper 
is compositional. This is because there is a one to one correspondence between 
entries in the summary and non-failing branches in the symbolic execution tree 
obtained for </>. If we are now in a more restricted context </>', those branches which 
become failing branches are exactly those whose precondition is incompatible with 
</>'. Therefore, we obtain identical results by working at the level of the symbolic 
execution tree or that of the entries in the summary. 

Table 4. Benchmarks 

Benchmark 

NodeStack 
ArrayStack 
NodeQueue 
NodeList 
Doubly LinkedList 
SortedListlnt 
S LP riority Queue 
Binary SearchTree 
SLIntMaxNode 
SearchTreelnt 

N M s 

6 
7 
6 

19 
13 

6 
12 
14 

9 
9 

R C s 

3 
3 
3 
9 
2 
2 

14 
15 

2 
1 

R M s 

12 
11 
15 
33 
20 

8 
42 
54 
12 
10 

RIs 

94 
103 
133 
449 
253 
155 
515 
717 
232 
189 

Tdec 

32 
39 
48 

277 
107 
58 

330 
620 

99 
75 

In fact, we can classify coverage criteria into two categories: local and global. 
A criterion is local when the decision on whether the path should be included or 
excluded in the summary can be taken by looking at the corresponding path only. 
A criterion is global when we need to look at other paths before determining whether 
to include a given path in the summary or not. As examples, both block-k and depth-
k are local, whereas statement coverage is global: a given path is not needed if it does 
not visit statements not covered by any of the previously considered paths. 

In general, local criteria are compositional, whereas global criteria are not. The 
reason for such non-compositionality is that we may decide not to include certain 
paths which are not required for achieving the criterion in a context </> but which are 
needed in a more specific context </>', since other paths which achieved the criterion 
are now incompatible with the context and have been removed from the summary. 

3.5 Reusing Summaries Obtained for Different Criteria 

In the discussion about compositionality presented in Sec. 3.4 above, we always 
assume that the same criterion C is used both for m and the summary of p. 
Another interesting practical question is: given a summary computed for p w.r.t. 
a criteria C", can we use it when computing test cases for m w.r.t. a criteria C? 



As an example, by focusing on block-A;, assume that C corresponds to k = 3 
and C to k = 2. We can clearly adapt the summaries obtained for k = 3 to the 
current criteria k = 2. Even more, if one uses the whole summary for k = 3, 
the required coverage k = 2 is ensured, although unnecessary test cases are 
introduced. On the contrary, if C corresponds to k = 2 and C to k = 3 the 
coverage criterion is not preserved for m. However, this can be acceptable when 
we would like to perform TDG of different levels to different parts of the code, 
depending on their size, relevance, level of trust, etc. For instance, code which 
is safety-critical can be more exhaustively tested using coverage criteria that 
ensures a higher degree of coverage. In contrast, code which is more stable (e.g., 
library methods) can be tested using more lightweight coverage criteria. 

Another issue is what happens when the existing summary is for a completely 
unrelated criterion. There, it is not possible to guarantee that the criterion for 
m is guaranteed. Nevertheless, such summaries can be used for obtaining infor­
mation on the output states of p in order to be able to continue the symbolic 
execution of m after the calls to p terminate. This is especially relevant when p 
is native, since in that case performing symbolic execution instead of using the 
summary is not an alternative. 

Table 5. Experimental results 

B e n c h m a r k 

N o d e S t a c k 

A r r a y S t a c k 

N o d e Q u e u e 

N o d e L i s t 

D o u b l y L inkedLi s t 

S o r t e d L i s t l n t 

S L P r i o r i t y Q u e u e 

B i n a r y S e a r c h T r e e 

S L I n t M a x N o d e 

S e a r c h T r e e l n t 

C o v . 

C r i t . 

b lock -2 
b lock-3 

b lock -2 
b lock-3 

b lock -2 
b lock-3 

b lock -2 
b lock-3 

b lock -2 
b lock-3 

b lock -2 
b lock-3 

b lock -2 
b lock-3 

b lock -2 
b lock-3 

b lock -2 
b lock-3 

b lock -2 
b lock-3 

N o n -

T t c g 

6.7 
6.7 

13.0 
13.3 

10.3 
10.3 

120.0 
130.0 

160.3 
200.0 

133.3 
4233.7 

533 .3 
786.7 

693.0 
1526.7 

299 .7 
28150.3 

279 .7 
45003.0 

• C o m 

N 

9 
9 

15 
15 

15 
15 

102 
102 

116 
133 

49 
447 

266 
350 

307 
559 

109 
2957 

90 
5140 

p o s i t i o n a l 

U S 

112 
112 

203 
203 

160 
160 

1856 
1856 

5060 
6068 

2781 
63593 

5828 
7910 

9210 
21162 

5012 
328096 

5707 
553536 

C C 

100% 
100% 

100% 
100% 

100% 
100% 

9 6 % 
9 6 % 

9 9 % 
9 9 % 

100% 
100% 

9 4 % 
9 4 % 

9 6 % 
9 6 % 

100% 
100% 

100% 
100% 

T t c g 

10.3 
6.7 

13.0 
13.0 

13.0 
13.3 

103.7 
110.3 

130.3 
160.3 

77.0 
1713.0 

566 .7 
856.3 

706 .3 
1486.7 

230.0 
20419.7 

143.0 
20236.7 

C o m p o s i t 

N 

9 
9 

15 
15 

15 
15 

102 
102 

116 
133 

49 
447 

266 
350 

307 
559 

109 
2957 

90 
5140 

U S 

94 
94 

161 
161 

149 
149 

684 
684 

1967 
2164 

775 
6542 

1195 
1369 

5203 
11143 

1172 
34770 

726 
12980 

i o n a l 

C C 

100% 
100% 

100% 
100% 

100% 
100% 

96% 
96% 

99% 
99% 

100% 
100% 

94% 
94% 

96% 
96% 

100% 
100% 

100% 
100% 

S G 

11 
12 

10 
10 

13 
13 

52 
28 

39 
12 

22 
5 

114 
62 

4 6 3 
63 

27 
8 

33 
8 

S C 

12 
11 

10 
10 

13 
13 

28 
52 

12 
51 

5 
176 

62 
128 

63 
733 

8 
520 

8 
232 

G a i n s 

ATtdg 

0.65 
1.00 

1.00 
1.03 

0.79 
0.78 

1.16 
1.18 

1.23 
1.25 

1.73 
2.47 

0.94 
0.92 

0.98 
1.03 

1.30 
1.38 

1.96 
2.22 

4 Experimental Results 

We have implemented our proposed compositional approach using the context-
insensitive algorithm in Sec. 3.2 within PET [2], an automatic TDG tool for 



Java bytecode, which is available for download and for online use through its 
web interface at h t t p : / / c o s t a . l s . f i . u p m . e s / p e t . 

In this section we report on some experimental results which aim at demon­
strating the applicability and effectiveness of compositional TDG. As bench­
marks, we consider a set of classes implementing some traditional data 
structures ranging from simple stacks and queues to sorted and non-sorted linked 
lists (both singly and doubly linked lists), priority queues and binary search 
trees. Some benchmarks are taken from the net.datastructures library [12], a 
well-known library of algorithms and data-structures for Java. Table 4 shows 
the list of benchmarks we have used, together with some static information: the 
number of methods for which we have generated test cases (column NMs); the 
number of reachable classes, methods and Java bytecode instructions (columns 
RCs, RMs and RIs) (excluding code of the Java libraries) and the time taken 
by PET to decompile the bytecode to CLP (T,¡ec), including parsing and load­
ing all reachable classes. All times are in milliseconds and are obtained as the 
arithmetic mean of five runs on an Intel(R) Core(TM)2 Quad CPU Q9300 at 
2.5GHz with 1.95GB of RAM, running Linux 2.6.26 (Debian lenny). 

Table 5 aims at comparing the performance and effectiveness of the com­
positional approach against the non-compositional one by using two coverage 
criteria, block-2 and block-3. In general the latter one expands much further the 
symbolic execution tree, thus allowing us to compare scalability issues. For each 
run, we measure, for both the compositional and non-compositional approaches, 
the time taken by PET to generate the test cases (column T icf l), the number 
of obtained test cases (N), the number of unfolding steps performed during the 
symbolic execution process (US), and the code coverage (CC). In the case of 
the compositional approach we also measure the number of generated summaries 
(SG) and summary compositions performed (SC). The code coverage measures, 
given a method, the percentage of bytecode instructions which are exercised by 
the obtained test cases, among all reachable instructions (including all transi­
tively called methods). This is a common measure in order to reason about the 
effectiveness of the TDG. As expected, the code coverage is the same in both 
approaches, and so is the number of obtained test cases. Otherwise, this would in­
dicate a bug in the implementation. The last column (Z\TÍ(¿S) shows the speedup 
of the compositional approach computed as X/Y where X is the Ticfl value of 
the non-compositional approach and Y the Ticfl value of the compositional one. 

By looking at the gains, we observe that the compositional approach outper­
forms the non-compositional one in most benchmarks. Let us observe also that, 
in general, the further the symbolic execution tree is expanded (i.e., when the 
block-3 criterion is used), the higher the gains are. There are, however, cases 
where the performance of the compositional approach is equal to, or even worse 
than, that of the non-compositional one. Importantly, those cases usually cor­
respond to very simple methods whose complexity is not enough so that the 
overhead of applying the compositional scheme pays off. 

After a careful study of the obtained results, we conclude that there can 
be many factors that influence the performance of the compositional approach. 

http://costa.ls.fi.upm.es/pet


The most important ones are: the complexity of the program under test (espe­
cially that of its call graph and its strongly connected components), the con­
straint solving library, and, the kind of constraint-based operations performed 
and, in particular, whether they are arithmetic constraints or heap related op­
erations. In this direction, we have carried out the following experiment. Given 
a method p which simply calls repeatedly (three or four times) method q, we 
consider two versions of it: q\ which performs both heap and arithmetic opera­
tions, and </2 with arithmetic operations only. This allows us to detect whether 
the kind of constraint-based operations performed influences the performance of 
compositional TDG. As expected, with q\ compositional TDG improves notably 
(two or even three times faster) over non-compositional TDG. Surprisingly, with 
</2 the performance of compositional TDG is basically the same (or even worse). 
This explains the lack of improvements in some of our benchmarks. The reason is 
that the cost of the TDG process is totally dominated by the constraint solving 
operations, in this case by the clpf d solver. Interestingly, if we simplify by hand 
the constraints on the summary of q¿ we do get significant improvements with 
compositional TDG. This illustrates the flexibility of the approach in the sense 
that, provided that a summary is available for a method, it can be worth spend­
ing resources in simplifying the constraint stores. Once this is done, they will be 
used every time a call to the method is found and thus producing a performance 
improvement. On the other hand, this demonstrates that compositional TDG 
can significantly benefit from more efficient constraint solving libraries. 

Overall, our experimental results support our claim that compositional TDG 
improves over non-compositional TDG in terms of scalability. Let us observe 
that, in general, the benchmarks where the improvements are higher correspond 
to those for which a larger number of unfolding steps (column US) is required. 
We have seen also that such improvement could be higher by using a more 
efficient constraint solving library. It remains as future work to experiment in 
such direction. 

5 Conclusions 

Much effort has been devoted in the area of symbolic execution to improve scal­
ability and three main approaches co-exist which, in a sense, complement each 
other. Probably, the most widely used is abstraction, a well-known technique to 
reduce large data domains of a program to smaller domains (see [17]). Another 
scaling technique which is closely related to abstraction is path merging [4,16], 
which consists in denning points where the merging of symbolic execution should 
occur. In this paper, we have focused on yet another complementary approach, 
compositional symbolic execution, a technique widely used in static analysis but 
notably less common in the field of TDG. We have presented a CLP-based ap­
proach to TDG of imperative languages which can be applied in a compositional 
way. This can be important in order to make the approach scalable and, as we 
have seen, also provides a practical way of dealing with native code. 
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