
Towards Compositional CLP-based Test Data
Generation for Imperative Languages
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1 Introduction

Test data generation (TDG) is the process of automatically generating test-cases
for interesting test coverage criteria. The coverage criteria measure how well the
program is exercised by a test suite. Examples of coverage criteria are: statement
coverage which requires that each line of the code is executed; path coverage which
requires that every possible trace through a given part of the code is executed; loop-
k (resp. block-k) which limits to a threshold k the number of times we iterate on
loops (resp. visit blocks in the control flow graph [1]). Among the wide variety of
approaches to TDG (see [20]), our work focuses on glass-box testing, where test-
cases are obtained from the concrete program in contrast to black-box testing, where
they are deduced from a specification of the program. Also, our focus is on static
testing, where we assume no knowledge about the input data, in contrast to dynamic
approaches [6,12] which execute the program to be tested for concrete input values.

The standard approach to generating test-cases statically is to perform a sym-
bolic execution of the program [5,16,17,13,11,19], where the contents of variables
are expressions rather than concrete values. The symbolic execution produces a sys-
tem of constraints consisting of the conditions to execute the different paths. This
happens, for instance, in branching instructions, like if-then-else, where we might
want to generate test-cases for the two alternative branches and hence accumulate
the conditions for each path as constraints. The symbolic execution approach has
been combined with the use of constraint solvers [17,11,19] in order to: handle the
constraints systems by solving the feasibility of paths and, afterwards, to instantiate
the input variables. For instance, a symbolic JVM machine which integrates several
constraints solvers has been designed in [17] for TDG of Java (bytecode) programs.
In general, a symbolic machine requires non-trivial extensions w.r.t. a non-symbolic
one like the JVM: (1) it needs to execute (imperative) code symbolically as explained
above, (2) it must be able to backtrack, as without knowledge about the input data,
the execution engine might need to execute more than one path.

In recent work [10], we have proposed a CLP-based approach to TDG of impera-
tive programs which consists of three main ingredients: (i) The imperative program
is first translated into an equivalent CLP one, named CLP-translated program in
what follows. The translation can be performed by partial evaluation [9] or by tradi-
tional compilation. (ii) Symbolic execution on the CLP-translated program can be
performed by relying on the standard evaluation mechanism of CLP, which provides
backtracking and handling of symbolic expressions for free. (iii) The use of dynamic
memory requires to define heap-related operations which, during TDG, take care
of constructing complex data structures with unbounded data (e.g., recursive data
structures). Such operations can be implemented in CLP [10].

It is well-known that symbolic execution might become computationally in-
tractable due to the large number of paths that need to be explored and also to
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class R {
int n; int d;

void simplify(){
int gcd = A.gcd(n,d);

n = n/gcd; d = d/gcd;}
static R[] simp(R[] rs){
int length = rs.length;

R[] oldRs = new R[length];

arraycopy(rs,oldRs,length);

for (int i = 0; i < length; i++)

rs[i].simplify();

return oldRs;}}

class A {
static int abs(int x){
if (x >= 0) return x;

else return -x;

}
static int gcd(int a,int b){
int res;

while (b != 0){
res = a%b; a = b; b = res;}

return abs(a);

}
}

Fig. 1. Java source of working example

the size of their associated constraints (see [18]). Currently, one of the main chal-
lenges of symbolic execution (and thus of glass-box TDG) is to scale up to larger
applications. While compositionality has been applied in many areas of static anal-
ysis to improve scalability, it is less widely used in TDG (some notable exceptions in
the context of dynamic testing are [7,3]). In this paper, we propose a compositional
approach to static CLP-based TDG for imperative languages. In symbolic execution,
compositionality means that when a method m invokes p, the execution can compose
the test cases available for p (also known as method summary for p) with the current
execution state and continue the process, instead of having to symbolically execute
p. By test cases or method summary, we refer to the set of path constraints obtained
by symbolically executing method p using a certain coverage criterion.

Having a compositional TDG approach in turn facilitates the handling of native
code during symbolic execution, i.e., code which is implemented in a different lan-
guage. This is achieved by modeling the behavior of native code as preconditions in
the input state and postconditions in the output state. Such model can be composed
with the current state during symbolic execution in the same way as the test cases
inferred automatically by the testing tool are. By treating native code, we overcome
one of the inherent limitations of symbolic execution (see [18]). Indeed, both scaling
techniques and handling native code are considered main challenges in the fields of
symbolic execution and TDG.

2 CLP-based Test Case Generation

In this section, we summarize the CLP-based approach to TDG for imperative lan-
guages introduced in [1] and recently extended to object-oriented languages with
dynamic memory in [10]. For simplicity, we do not take aliasing of references into
account and simplify the language by excluding inheritance and virtual invocations.
However, these issues are orthogonal to compositionality and our approach could be
applied to the complete framework of [10]. Also, although our approach is not tied
to any particular imperative language, as regards dynamic memory, we assume a
Java-like language. In [9], it has been shown that Java bytecode (and hence Java)
can be translated into the equivalent CLP-programs shown below.

2.1 From Imperative to Equivalent CLP Programs

A CLP-translated program as defined in [10] is made up of a set of predicates. Each
predicate is defined by one or more mutually exclusive clauses. Each clause receives
as input a possibly empty list of arguments Argsin and an input heap Hin, and
returns a possibly empty output Argsout, a possibly modified output heap Hout,
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simp([r(Rs)],[Ret],H0,H3,EF) :- length(H0,Rs,Len), Len #>= 0, new array(H0,’R’,Len,OldRs,H1),
arraycopy([r(Rs),r(OldRs),Len],[],H1,H2,EF’), r1([EF’,r(Rs),r(OldRs),Len],[Rt],H2,H3,EF).

simp([null], ,Hin,Hout,exc(ERef)) :- new object(Hin,’NPE’,ERef,Hout).

r1([ok,Rs,OldRs,Length],[Ret],H1,H2,EF) :- loop([Rs,OldRs,Length,0],[Ret],H1,H2,EF).
r1([exc(ERef), , , ], ,H,H,exc(ERef)).

loop([ ,OldRs,Length,I],[OldRs],H,H,ok) :- I #>= Length.
loop([Rs,OldRs,L,I],[Ret],H1,H2,EF) :- I #< L, loopbody1([Rs,OldRs,L,I],[Ret],H1,H2,EF).

loopbody1([r(Rs),OldRs,Length,I],[Ret],H1,H2,EF) :- length(H1,Rs,L), L #>= 0, I #< L,
get array(H1,Rs,I,RSi), loopbody2([r(Rs),OldRs,Length,I,Rsi],[Ret],H1,H2,EF).

loopbody2([Rs,OldRs,Length,I,r(Rsi)],[Ret],H1,H3,EF) :- simplify([r(Rsi)],[],H1,H2,EF’),
loopbody3([EF’,Rs,OldRs,Length,I],[Ret],H2,H3,EF).

loopbody2([ , , , ,null], ,H1,H2,exc(ERef)) :- new object(H1,’NPE’,ERef,H2).

loopbody3([ok,Rs,OldRs,L,I],[Ret],H1,H2,EF) :- I’ #= I+1, loop([Rs,OldRs,L,I’],[Ret],H1,H2,EF).
loopbody3([exc(ERef), , , , ], ,H,H,exc(ERef)).

Fig. 2. CLP Translation associated to bytecode of method simp

and an exceptional flag indicating whether the execution ends normally or with an
uncaught exception. The body of a clause may include a set of guards (comparisons
between numeric data or references, etc.) followed by different types of instructions:
arithmetic operations and assignment statements, calls to other predicates, instruc-
tions to create objects and arrays and to consult the array length, read and write
accesses to object fields or array positions, as defined by the following grammar:

Clause ::= Pred (Argsin,Argsout,Hin,Hout,ExFlag) :- [G,]B1,B2,. . . ,Bn.
G ::= Num* ROp Num* | Ref∗1 \== Ref∗2
B ::= Var #= Num* AOp Num* | Pred (Argsin,Argsout,Hin,Hout,ExFlag) |

new object(H,C∗,Ref∗,H) | new array(H,T,Num∗,Ref∗,H) | length(H,Ref∗,Var) |
get field(H,Ref∗,FSig,Var) | set field(H,Ref∗,FSig,Data∗,H) |
get array(H,Ref∗,Num∗,Var) | set array(H,Ref∗,Num∗,Data∗,H)

Pred ::= Block | MSig
Args ::= [] | [Data∗|Args]
Data ::= Num | Ref | ExFlag
Ref ::= null | r(Var)

ExFlag ::= ok | exc(Var)

ROp ::= #> | #< | #>= | #=< | #= | #\=
AOp ::= + | - | ∗ | / | mod

T ::= bool | int | C | array(T)
FSig ::= C:FN
H ::= Var

Non-terminals Block, Num, Var, FN, MSig and C denote, resp., the set of predicate
names, numbers, variables, field names, method signatures and class names. Clauses
can define both methods which appear in the original source program (MSig), or ad-
ditional predicates which correspond to intermediate blocks in the program (Block).
An asterisk on a non-terminal denotes that it can be either as defined by the gram-
mar or a (possibly constraint) variable.

Example 1. Fig. 1 shows the Java source of our running example and Fig. 2 the CLP-
translated version of method simp obtained from the bytecode. The main features
that can be observed from the translation are: (1) All clauses contain input and
output arguments and heaps, and an exceptional flag. Reference variables are of the
form r(V) and we use the same variable name V as in the program. E.g., argument
Rs of simp corresponds to the method input argument. (2) Java exceptions are made
explicit in the translated program, e.g., the second clauses for predicates simp and
loopbody2 capture the null-pointer exception (NPE) and the second one for r1 which
a negative array size exception (NASE). (3) Conditional statements and iteration in
the source program are transformed into guarded rules and recursion in the CLP
program, respectively, e.g., the for-loop corresponds to the recursive predicate loop.
(4) Methods (like simp) and intermediate blocks (like r1) are uniformly represented
by means of predicates and are not distinguishable in the translated program.
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2.2 Symbolic Execution

When the imperative language does not use dynamic memory, CLP-translated pro-
grams can be executed by using the standard CLP execution mechanism with all
arguments being free variables. However, in order to generate heap-allocated data
structures, it is required to define heap-related operations which build the heap
associated with a given path by using only the constraints induced by the visited
code. Fig. 3 summarizes the CLP-implementation of the operations in [10] to create
heap-allocated data structures (like new object and new array) and to read and mod-
ify them (like set field, etc.) which use some auxiliary predicates (like deterministic
versions of member member det, of replace replace det, and nth0 and replace nth for
arrays) which are quite standard and hence their implementation is not shown.

The intuitive idea is that the heap during symbolic execution contains two parts:
the known part, with the cells that have been explicitly created during symbolic
execution which appear at the beginning of the list, and the unknown part, which is
a logic variable (tail of the list) in which new data can be added. Importantly, the
definition of get cell/3 distinguishes two situations when searching for a reference: (i)
It finds it in the known part (second clause). Note the use of syntactic equality rather
than unification since references at execution time can be variables. (ii) Otherwise, it
reaches the unknown part of the heap (a logic variable), and it allocates the reference
(in this case a variable) there (first clause).

Example 2. Let us consider a branch of the symbolic execution of method simp
which starts from simp(Ain,Aout,Hin,Hout,EF), the empty state φ0 = 〈∅, ∅〉 and which
(by ignoring the call to arraycopy for simplicity) executes the predicates simp1→
length→ ≥→ new array→ r11→ loop1→ ≥→ true. The subindex 1 indicates that we
pick up the first rule defining a predicate for execution. As customary in CLP, a
state φ consists of a set of bindings σ and a constraint store θ. The final state of
the above derivation is φf = 〈σf , θf 〉 with σf = {Ain = [r(Rs)], Aout = [0], Hin =

[(Rs, array(T, L, ))| ], Hout = [(0, array(′R′, L, ))|Hin], EF = ok} and θf = {L = 0}. Observe
that a heap is represented as a list of locations which are pairs made up of a unique
reference and a cell, which in turn can be an object or an array. This can be read as
“if the array at location Rs in the input heap has length 0, then it is not modified
and a new array of length 0 is returned”. This derivation corresponds to the first
test case in Table 2 where a graphical representation for the heap is used.

2.3 Method Summaries obtained by TDG

It is well-known that, in symbolic execution, the execution tree to be traversed is
in general infinite. This is because iterative constructs such as loops and recursion
usually induce an infinite number of execution paths when executed without input
values. It is therefore essential to establish a termination criterion which, in the
context of TDG, is usually defined in terms of the so-called coverage criterion (see
Sec. 1). The concept of method summary corresponds to the finite representation of
its symbolic execution for a given coverage criterion.

Definition 1 (method summary). Let T C
m be the finite symbolic execution tree

of method m obtained by using a coverage criterion C. Let B be the set of successful
branches in T C

m and m(Argsin,Argsout,Hin,Hout,EF) be its root. A method summary
for m w.r.t. C, denoted SC

m, is the set of 6-tuples associated to each branch b ∈ B
of the form: 〈σ(Argsin),σ(Argsout),σ(Hin),σ(Hout),σ(EF),θ〉, where σ and θ are the
set of bindings and constraint store, resp., associated to b.
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new object(H,C,Ref,H’) :- build object(C,Ob), new ref(Ref), H’ = [(Ref,Ob)|H].
new array(H,T,L,Ref,H’) :- build array(T,L,Arr), new ref(Ref), H’ = [(Ref,Arr)|H].

length(H,Ref,L) :- get cell(H,Ref,Cell), Cell = array( ,L, ).

get field(H,Ref,FSig,V) :- get cell(H,Ref,Ob), FSig = C:FN, Ob = object(T,Fields),
T = C, member det(field(FN,V),Fields).

get array(H,Ref,I,V) :- get cell(H,Ref,Arr), Arr = array( , ,Xs), nth0(I,Xs,V).

set field(H,Ref,FSig,V,H’) :- get cell(H,Ref,Ob), FSig = C:FN, Ob = object(T,Fields),
T = C, replace det(Fields,field(FN, ),field(FN,V),Fds’),
set cell(H,Ref,object(T,Fds’),H’).

set array(H,Ref,I,V,H’) :- get cell(H,Ref,Arr), Arr = array(T,L,Xs),
replace nth0(Xs,I,V,Xs’), set cell(H,Ref,array(T,L,Xs’),H’).

get cell(H,Ref,Cell) :- var(H), !, H = [(Ref,Cell)| ].
get cell([(Ref’,Cell’)| ],Ref,Cell) :- Ref == Ref’, !, Cell = Cell’.

get cell([ |RH],Ref,Cell) :- get cell(RH,Ref,Cell).

set cell([(Ref’, )|H],Ref,Cell,H’) :- Ref == Ref’, !, H’ = [(Ref,Cell)|H].
set cell([(Ref’,Cell’)|H’],Ref,Cell,H) :- H = [(Ref’,Cell’)|H”], set cell(H’,Ref,Cell,H”).

Fig. 3. Heap operations for symbolic execution [10]

Each tuple in a summary is said to be a (test) case of the summary, denoted c,
and its associated state φc, comprises its corresponding σ and θ, also referred to
as context φc. Intuitively, a method summary can be seen as a complete specifica-
tion of the method for the considered coverage criterion, so that each summary case
corresponds to the path constraints associated with each finished path in the corre-
sponding (finite) execution tree. Note that, though the specification is complete for
the criterion considered, it will be, in general, a partial specification for the method,
as long as there are incomplete branches in the finite tree.

Example 3. The next table shows the summary obtained by symbolically executing
method simplify using the block-2 coverage criterion of [1] (see Sec. 1):

Ain Aout Heapin Heapout EF Constraints

r(B)
C
0B

G
0B ok C<0, J=-C, G=C/J

r(B)
C
0B 1

0B ok C>0

r(B)
0
0B

0
0B AE0 exc(0)

r(B)
C
DB

H
JB ok D<0, K=-D, H=C/K, C mod D=0, J=D/K

r(B)
C
DB

H
1B ok D>0, C mod D=0, C/D=H

The summary contains 5 cases, which correspond to the different execution paths
induced by calls to methods gcd and abs. For the sake of clarity, we adopt a graphical
representation for the input and output heaps. Heap locations are shown as arrows
labeled with their reference variable names. Split-circles represent objects of type
R and fields n and d are shown in the upper and lower part, respectively. Split-
rectangles represent arrays, with the length of the array in the upper part and its
list of values (in Prolog syntax) in the lower one. Exceptions are shown as starbursts,
like in the special case of the fraction “0/0”, for which an arithmetic exception (AE)
is thrown due to a division by zero.

In a subsequent stage, it is possible to produce actual values from the obtained path
constraints (e.g., by using labeling mechanisms in standard clpfd domains) therefore
obtaining executable test-cases. However, this is not an issue of this paper and we
will rely on the method summaries only in what follows.
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compose summary(Call) :-
Call =..[M,Ain,Aout,Hin,Hout,EF],
summary(M,SAin,SAout,SHin,SHout,SEF,σ),
SAin = Ain, SAout = Aout, SEF = EF,
compose hin(Hin,SHin),
compose hout(Hin,SHout,Hout).
load store(σ).

compose hin( ,SH) :- var(SH), !.
compose hin( ,[]).
compose hin(H,[(R,Ce)|SH]) :-

get cell(H,R,Ce’), unify cells(Ce’,Ce),
compose hin(H,SH).

unify cells(ob(T,Fs),ob(T,Fs’)) :-
unify fields(Fs,Fs’).

unify cells(array(T,L,Vs),array(T,L,Vs)).

unify fields( ,Fs) :- var(Fs),!.
unify fields( ,[]).
unify fields(Fs,[field(FName,FV)|RFs]) :-

member det(field(FName,FV’),Fs), !,
FV = FV’, unify fields(Fs,RFs).

compose hout(H,SH,H’) :- var(SH),!.
compose hout(H,[],H).
compose hout(H,[(Ref,C)|SH],H”) :-

get cell(H,Ref,C’), combine cell(C’,C,C”),
set cell(H,(Ref,C”),H’),
compose hout(H’,SH,H”).

combine cell(ob(T,Fs),ob(T,Fs’),ob(T,Fs”)) :-
set fields(Fs,Fs’,Fs”).

combine cell(array(T,L,Vs),array(T,L,Vs’),
array(T,L,Vs”)) :-

set array vs(Vs,Vs’,Vs”).

set fields(Fs,Fs’,Fs) :- var(Fs’),!.
set fields(Fs,[],Fs).
set fields(Fs,[field(FN,FV)|RFs],Fs”) :-

replace det(Fs,field(FN, ),field(FN,FV),Fs’),
set fields(Fs’,RFs,Fs”).

set array vs(Vs,Vs’,Vs) :- var(Vs’),!.
set array vs([],[],[]).
set array vs([ |RVs],[V|RVs’],[V|RVs”]) :-

set array vs(RVs,RVs’,RVs”).

Fig. 4. The composition operation

3 Towards a Compositional CLP-based TDG Approach

The goal of this section is to study the compositionality of the CLP-based approach
to TDG of imperative languages presented in the previous section.

3.1 Composition in Symbolic Execution
Let us assume that during the symbolic execution of a method m, there is a method
invocation to p within a state φ. The challenge is now to define in the context of our
CLP approach a composition operation so that, instead of symbolically executing p,
its (previously computed) summary Sp, can be reused in such a way that the symbolic
execution of m is equivalent as if p was indeed symbolically executed within m.

Fig. 4 shows such a composition operation (predicate compose summary/1). The
idea is therefore to replace during symbolic execution a method invocation I by a call
compose summary(I) when there is a summary available for I. Intuitively, given the
variables of the call to p, with their associated state φ, compose summary/1 produces
a branch (on backtracking) for each compatible case c ∈ Sp, composing its state φc

with φ and producing a new state φ′ to continue the symbolic execution on. We
assume that the summary for a method p is represented as a set of facts of the form
summary(p,SAin,SAout,SHin,SHout,SEF,θ). Roughly speaking, state φc is compatible
with φ if: 1) the bindings and constraints on the arguments can be conjoined, and 2)
the structures of the input heaps match. This means that, for each location which is
present in both heaps, its associated cells match, which in turn requires that their
associated bindings and constraints can be conjoined. Note that compatibility of
a case is checked on the fly, so that if φ is not compatible with φc some call in
compose summary/1 will fail.

As it can be observed by looking at the code of compose summary/1, the in-
put and output arguments, and the exception flags are simply unified, while the
constraint store θ is trivially incorporated by means of predicate load store/1. The
heaps however require a more sophisticated treatment, mainly due to its underlying
representation of sets (of objects and fields) as Prolog lists. Predicate compose hin/2
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Ain Aout Heapin Heapout EF Constraints

[B,C,0] H H ok ∅

[r(B),null,C]
L

[V| ]B
L

[V| ]B NPE1 exc(1) C>0, L>0

[null,B,C] H
NPE2 exc(2) C>0

[B,C,D] H
AE3 exc(3) D<0

[r(B),r(C),1]
L1

[V| ]B
L2

[V2| ]C
L1

[V| ]B
L2

[V| ]C ok L1>1, L2>0

Table 1. Summary of method arraycopy

composes the input heap of the summary case SHin with the current heap Hin pro-
ducing the composed input heap in Hin. To accomplish this, compose hin/2 traverses
each cell in SHin, and binds the appropriate variables in Hin with the appropriate
sub-terms in the cell. Essentially, it produces an equivalent effect as if a sequence of
get field/4 operations for each field in each object in SHin are performed over Hin (or
get array/4 for arrays). Similarly, the effect of compose hout/3 is equivalent as if a
sequence of set field/5 operations for each field in each object in SHout are performed
(or set array/5 for each array element), starting with Hin, and gradually obtaining
new heaps until getting the composed output heap Hout.

Example 4. When symbolically executing simp, the call simplify(Ain,Aout,Hin,Hout,EF)

arises in one of the branches in state σ = {Ain=[r(E0)], Aout=[], Hin=[(0, array(′R′, L, [E0| ])),

(Rs, array(′R′, L, [E0| ]))|RHin]} and θ = {L ≥ 0} . The composition of this state with the
second summary case of simplify succeeds and produces the state σ′ = σ ∪ {E0=B,

RHin=[(B, ob(′R′, [field(n,C), field(d, 0)]))| ], Hout=[. . . , (B, ob(′R′, [field(n, 1), field(d, 0)]))| ]}
and θ′={L ≥ 0,C > 0}. The dots in Hout denote the rest of the cells in Hin.

3.2 Compositional TDG Schemata
In order to design a compositional, incremental approach to TDG, the composition
operation can be incorporated in two main different ways within the testing process:

Context-sensitive. Usually, starting from an entry method m (and possibly a set
of preconditions), TDG performs a top-down symbolic execution such that, when a
method call p is found, its code its executed from the actual state φ. In a context-
sensitive approach, once a method is executed, we store the summary computed for
p in the context φ. If we later reach another call to p within a (possibly different)
context φ′, we first check if the stored context is sufficiently general. In such case,
we can adapt the existing summary for p to the current context φ′ (by relying on
the operation in Fig. 4). At the end of each execution, it can be decided which of
the computed (context-sensitive) summaries are stored for future use.

Context-insensitive. Another possibility is to perform the TDG process in a context-
insensitive way. This can be done by first computing the call graph for the entry
method m and the strongly connected components (SCC) for such graph. The SCCs
can be traversed in reverse topological order starting from the SCC which does not
depend on any other. The idea is that each SCC is symbolically executed from its
entry w.r.t. the most general context (i.e., true). If there are several entries to the
same SCC, the process is repeated for each of them. Hence, it is guaranteed that the
obtained summaries can always be adapted to more specific contexts.

In general terms, the advantage of the context-insensitive approach is that com-
position can always be performed. However, since no context information is assumed,
summaries can contain more test cases than necessary and can be thus more expen-
sive to obtain. In contrast, the context-sensitive approach ensures that only the
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Ain Aout Heapin Heapout EF Constraints

r(B) r(0)
0
[]B

0
[]B

0
[]0 ok ∅

null X H
NPE6 exc(6) ∅

r(B) r(0)
1

[r(D)]B
F
0D

1
[r(D)]B

1
[r(D)]0

L
0D ok F<0, N=-F, L=F/N

r(B) r(0)
1

[r(D)]B
F
0D

1
[r(D)]B

1
[r(D)]0

1
0D ok F>0

r(B) X
1

[r(D)]B
0
0D

1
[r(D)]B

1
[r(D)]0

0
0D AE1 exc(1) ∅

r(B) r(0)
1

[r(D)]B
F
GD

1
[r(D)]B

1
[r(D)]0

M
ND ok G<0, F mod G=0, P=-G, M=F/P, N=G/P

r(B) r(0)
1

[r(D)]B
F
GD

1
[r(D)]B

1
[r(D)]0

M
1D ok G>0, F mod G=0, M=F/G

r(B) X
1

[null]B
1

[null]B
1

[null]0 NPE2 exc(2) ∅

Table 2. Summary of method simp

required information is computed, but it can happen that there are several invo-
cations to the same method which cannot reuse previous summaries (because the
associated contexts were not sufficiently general). In such case, it had been more
efficient to have obtained the summary without assuming any context. It remains as
future work to formalize the above approaches (and possibly hybrid variants) and
experimentally evaluate them.

3.3 Handling Native Code during Symbolic Execution

An inherent limitation of symbolic execution is the handling of native code. This is
code which is implemented in another language. A solution is concolic execution [8]
where concrete execution is performed on random inputs and path constraints are
collected at the same time; native code is executed for concrete values. Although
we believe that such approach could be also adapted to our CLP framework, we
concentrate here on a purely symbolic approach. In this case, the only possibility is to
model the behavior of the native code by means of specifications. Such specifications
can be in turn treated as summaries for the corresponding native methods. They can
be declared by the code provider or automatically inferred by a TDG tool for the
corresponding language. Interestingly, the composition operator uses them exactly
in the same way as it uses the summaries which are obtained by applying our own
symbolic execution mechanism. Let us see an example.

Example 5. Assume that method arraycopy is native. A (complete) specification
of arraycopy can be provided by means of a corresponding method summary, as
shown in Table 1, where we have (manually) specified five cases: the first one for
arrays of length zero, the second and third ones for null arrays, the fourth one for a
negative length, and finally a normal execution of non-null arrays. Now, by using our
compositional reasoning, we can continue symbolic execution for simp by composing
the specified summary of arraycopy within the actual context. In Table 2, we show
the entire summary of method simp for a block-2 coverage criterion obtained by
relying on the summaries for simplify and arraycopy shown before.

A practical question is how specifications for native code should be provided. A
standard way is to use assertions (e.g., in JML in the case of Java) which could be
parsed and easily transformed into our Prolog syntax.

3.4 Completeness w.r.t. Coverage Criteria

When selecting a coverage criterion during TDG, it must be ensured that the test
cases obtained in the summary ensure the coverage established by the criterion, i.e.,
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completeness w.r.t. the criterion in guaranteed. In compositional TDG, the following
question arises: given an existing summary S for p w.r.t. the coverage criterion C, if
while computing a summary for m w.r.t. C a call to p occurs and we compose S with
the current state, is it ensured that the final summary obtained for m meets criterion
C? This does not hold for all coverage criteria, e.g., for statement coverage.

Example 6. Consider the following simple method:
m(int a,int b){if (a > 0 || b > 0) S;}

Without assuming any context, a summary with a single case {a > 0, b ≤ 0} is
sufficient to achieve statement coverage. However, if m is called from an outer scope
with a more restricted context (e.g., a < 0), such summary is no longer valid to
achieve statement coverage since statement S would not be visited.

Intuitively, completeness in compositional reasoning does not hold for a criterion
when it does not meet the following property: given a summary S obtained for m in
a context φ w.r.t. C, test cases for a more restricted context φ′ cannot be obtained by
adapting S to context φ′. On the contrary, when such property holds, the coverage
criterion is compositional in the sense that completeness w.r.t. coverage is ensured.
For instance, the block-k coverage criterion used in the examples of the paper is
compositional. This is because, by restricting the context to φ′, we are pruning the
symbolic execution tree obtained for φ. Hence, the test cases for φ′ can be obtained
from the test cases in the summary obtained for φ (by adapting them to φ′).

Another interesting issue to study is whether different (compositional) criteria
can be combined during TDG. In other words, given a summary computed for p
w.r.t. a criteria C ′, can we use it when computing test cases for m w.r.t. a criteria
C? By focusing on block-k, assume that C ′ corresponds to k = 3 and C to k = 2.
We can clearly adapt the summaries obtained for k = 3 to the current criteria k = 2.
Even more, if one uses the whole summary for k = 3, the required coverage k = 2 is
ensured, although unnecessary test cases are introduced.

4 Conclusions and Future Work
Much effort has been been devoted in the area of symbolic execution to alleviate scal-
ability problems and three main approaches co-exist which, in a sense, complement
each other. Probably, the most widely used is abstraction, a well-known technique
to reduce large data domains of a program to smaller domains (see [15]). Another
scaling technique which is closely related to abstraction is path merging [4,14], which
consists in defining points where the merging of symbolic execution should occur.
In this abstract, we have focused on yet another complementary approach, compo-
sitional symbolic execution, a technique widely used in static analysis but notably
less common in the field of TDG. We have outlined how the CLP-based approach
to TDG of imperative languages can be applied in a compositional way. This is es-
sential in order to make the approach scalable and, as we have seen, also provides a
practical way of dealing with native code.

In a longer version of this abstract, we plan to extend our work along several
directions. From the theoretical side, we plan to develop concrete TDG strategies
which rely on the composition operator (along the lines discussed in Sec. 3.2). We
also want to further study completeness issues by characterizing the features that a
coverage criterion must have in order to enable (complete) compositional reasoning.
On the practical side, we want to be able to generate JUnit test cases from our Prolog
terms and, also, be able to translate specifications provided by means of assertions
into our Prolog format. Finally, we will carry out an experimental evaluation in the
PET system, a Partial Evaluation-based TDG tool [2].
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2. E. Albert, M. Gómez-Zamalloa, and G. Puebla. PET: A Partial Evaluation-based Test
Case Generation Tool for Java Bytecode. In ACM SIGPLAN Workshop on Partial
Evaluation and Semantics-based Program Manipulation (PEPM), pages 25–28, Madrid,
Spain, January 2010. ACM Press.

3. Saswat Anand, Patrice Godefroid, and Nikolai Tillmann. Demand-driven compositional
symbolic execution. In C. R. Ramakrishnan and Jakob Rehof, editors, TACAS, volume
4963 of Lecture Notes in Computer Science, pages 367–381. Springer, 2008.

4. Tamarah Arons, Elad Elster, Shlomit Ozer, Jonathan Shalev, and Eli Singerman. Effi-
cient symbolic simulation of low level software. In DATE, pages 825–830. IEEE, 2008.

5. L. A. Clarke. A system to generate test data and symbolically execute programs. IEEE
Trans. Software Eng., 2(3):215–222, 1976.

6. R. Ferguson and B. Korel. The chaining approach for software test data generation.
ACM Trans. Softw. Eng. Methodol., 5(1):63–86, 1996.

7. Patrice Godefroid. Compositional dynamic test generation. In Martin Hofmann and
Matthias Felleisen, editors, POPL, pages 47–54. ACM, 2007.

8. Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: directed automated random
testing. In Vivek Sarkar and Mary W. Hall, editors, PLDI, pages 213–223. ACM, 2005.
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