
PET: A Partial Evaluation-based 
Test Case Generation Tool for Java Bytecode 

Elvira Albert 
Complutense University of Madrid 

elvira@sip.ucm.es 

Miguel Gómez-Zamalloa 
Complutense University of Madrid 

mzamalloa@fdi.ucm.es 

Germán Puebla 
Technical University of Madrid 

german@fi.upm.es 

Abstract 
PET is a prototype Partial .Evaluation-based 7est case generation 
tool for a subset of Java bytecode programs. It performs white-box 
test generation by means of two consecutive Partial Evaluations, 
(PE). The first PE decompiles the Java bytecode program into an 
equivalent CLP (Constraint Logic Programming) counterpart. The 
second PE generates a test-case generator from the CLP program. 
This generator captures interesting test coverage criteria and it is 
able to generate further test cases on demand. For the first PE, PET 
incorporates an existing tool which decompiles bytecode to CLP. 
The main contribution of this work is the implementation of the 
second PE and the proof of concept of the approach. This has re­
quired the development of a partial evaluator for CLP with appro­
priate control strategies to ensure the required coverage criteria and 
to generate test-case generators. PET can be downloaded as free 
software from its web site, where a repository of examples and a 
web interface are also provided. Though PET has to be extended 
to be applicable to larger programs, we argue that it provides some 
evidence that the approach can be of practical interest. 

Categories and Subject Descriptors D.2.5 [Software Engineer­
ing]: Symbolic execution; F.3.2 [Logics and Meaning of Pro­
grams]: Partial evaluation 

General Terms Languages, Theory, Reliability 

Keywords Testing, Test-case generation, Partial evaluation, Sym­
bolic execution, Constraint Logic Programming 

1. Introduction 
One of the most successful techniques to-date for reasoning about 
program correctness and detecting bugs is systematic program test­
ing. In testing, the System Under Test (SUT) is run on a series of test 
cases and the result computed by the SUT is compared with that ex­
pected. A test suite refers to a collection of test cases which are ap­
plied to a SUT. Though program testing is a relatively lightweight 
technique when compared to full formal verification, it neverthe­
less implies a significant cost. In order to keep it as low as possible, 
it is essential to select the test suite in such a way that a certain cov­
erage criterion (see e.g., [16] for a survey) is achieved by using a 
minimal number of test cases. Such coverage criteria are heuristics 

which try to estimate how well the program is exercised by a test 
suite. Examples of coverage criteria are statement coverage, which 
requires that each line of the code is executed, path coverage which 
requires that every possible trace through a given part of the code 
is executed, etc. 

Test Data Generation (TDG) can be done dynamically [2], by 
executing the SUT for concrete input values, or statically, where 
no knowledge about the input data is assumed. On another di­
mension, test data generation can be classified into black box ap­
proaches, where the internals of the SUT are ignored and program 
specifications are used to guide TDG, and white-box approaches, 
where the internals of the SUT are exploited for guiding the TDG 
process. The standard way of performing static white-box gener­
ation of test cases is to perform a symbolic execution of the pro­
gram [8, 5, 11, 12, 14] whereby instead of on actual values, pro­
grams are executed on symbolic values, sometimes represented 
as constraint variables. Such constraints are accumulated as each 
branch of the execution tree is expanded. The constraints in feasi­
ble branches provide pre-conditions on the input data which guar­
antee that the corresponding branch will be executed at run-time. 
Concrete input values which satisfy the constraints can then be ob­
tained. These values become the input data for a test case which can 
be used for running the program. Then, an oracle, i.e., the user or 
some (partial) specification, should be consulted in order to decide 
whether the actual output of is correct and to modify it otherwise. 
Then, a complete input-output pair can be stored as a test case. 

In this work we present PET, a prototype tool for static white-
box TDG of Java bytecode. Our tool works at the bytecode [9] level 
because it is common in Java applications to have access to the 
bytecode, often bundled in jar files, but not to the source code. This 
is even more so in commercial software and in mobile code. PET is 
based on the approach proposed in [1] and its main novelty is that 
the TDG process is based on Partial Evaluation [6] (PE) of Con­
straint Logic Programs [10] (CLP). PE is a well-known program 
transformation technique which specializes programs w.r.t. part of 
their input data. A unique feature of PET is that the test-case gen­
erators it produces can be used for generating further test-cases on 
demand without having to start the TDG process from scratch. 

In its current form, PET has the following limitations: (1) It 
can only generate test data for numeric arguments (not objects 
nor arrays), (2) floating-point numbers are not handled, (3) static 
fields are not handled, and, (4) native code is not handled. As 
mentioned later in Section 4, we are are currently working towards 
the extensions to overcome such limitations. 

2. Architecture of PET 
Fig. 1 shows the overall architecture of PET. The dashed frames 
represent the two main phases of the process: the transformation of 
the bytecode into a CLP representation (PE 1); and the actual test 

mailto:elvira@sip.ucm.es
mailto:mzamalloa@fdi.ucm.es
mailto:german@fi.upm.es


JBC 

param 

CLP DECOMP 

1 
CLP 

PE 1 

UNFOLD 

• • - - - - • 

CLP(R) 
CLP(FD) 

eval 
tree 

CODE 
GENERATOR 

test 
cases 

PE 2 

test case 
generator 

loop init 

Figure 3. Input to PET: Bytecode of running example 

Figure 1. Architecture of PET 

case generation (PE 2). Input and output of the system are depicted, 
respectively, on the left and the right: PET takes a Java bytecode 
program JBC and a description of the coverage criterion, and yields 
as output a set of test cases which guarantee that the selected 
coverage criterion is achieved and, optionally, a test case generator. 
There are several parameters, named param in the figure, which 
can be used for deciding which intermediate steps are viewed in 
the output. We now discuss the three steps in the TDG process. 

CLP Decompilation. During PE 1, the incoming JBC is trans­
formed into an equivalent CLP program by slightly adapting an ex­
isting decompiler [4]. In particular, CLP DECOMP is an interpretive 
decompiler (i.e., based on the first Futamura projection [3]) which 
partially evaluates a JVM-interpreter written in Prolog w.r.t. an in­
put bytecode and produces as a result a CLP program. The only 
modifications to this decompiler have been to make it accept meth­
ods as decompilation units, since it was applied on whole classes 
(or packages), and to replace in the output Prolog arithmetic with 
constraints. Let us consider method intExp in Fig. 2. The Java 
source is shown only for clarity. PET performs TDG from the byte-
code, which is shown in Fig. 3 inside its control flow graph (CFG). 
Method parameters and local variables in the program are refer­
enced by consecutive natural numbers starting from 0. Observe also 
the use of the operand stack in the bytecode, e.g., conditionals are 
performed against the value at the top of the stack. We refer to [9] 
for further details on the bytecode language. 

Fig. 4 shows the decompiled version of the intExp method. 
It contains CLP(FD) constraints such as N #>=0, in SWI-Prolog 
syntax. Rules which correspond to method entries have two argu­
ments which represent the input and output information. The first 
argument is a list of two elements. In turn, the first one is a list 
which contains the input parameters of the corresponding method 
(i.e., A and N) and the second one is the input heap HIn. The out-

static int intExp(int a,int n){ 
if (n < 0) // Exponent must be non-negative 

throw new ArithmeticException(); 
else if ((a == 0) && (n == 0)) // 0 to 0 is undefined 

throw new ArithmeticException(); 
else { 

int out = 1; 
for (;n >= 0;n--) out = out*a; 
return out; } 

} 

put parameter is a list with three elements, the return value Ret, 
the output heap HOut and the exceptional output behavior EFlag. 
We can observe that blocks in the CFG in Fig. 3 are represented by 
corresponding rules in the CLP program. The for loop has been 
converted into a recursion. The rule for loop init corresponds to 
the block where the loop is initialized. Bytecode instructions are de­
compiled and translated to their corresponding operations in CLP; 
conditional statements are captured by introducing multiple rules 
with disjoint guards. For instance, the conditional ifge 12 at pc 1 
results in two rules for predicate intExp: one for the case when 
n≥0 and another one for n<0. Since we have explicit rules for ex­
ceptional executions, we can generate test-cases for them as well. 
Note that during decompilation we treat the heap as an abstract data 
type with a set of operations which manipulate it. For instance, this 
is the case of the atom new (H1,C,R,H2) in the code above where 
H1 and H2 are the input and output heaps, respectively, C is a class 
identifier and R is a reference to the created object. 

Unfolding. The aim of this phase is to generate a test-suite which 
traverses as many different execution paths as possible. For this, 
and as discussed in Sect. 1, we will perform symbolic execution. A 
key advantage of the CLP decompiled programs w.r.t. their byte-
code counterparts is that symbolic execution does not require to 
build a dedicated symbolic execution mechanism and we use stan­
dard execution. However, we need to supervise execution in order 
to guarantee termination while performing useful unfoldings. This 
is exactly the problem that unfolding rules, denoted UNFOLD in 

intExp([[A,N],HIn],[Ret,HOut,EFlag]) :- N #>= 0, 
cond_l(A,N,HIn,Ret,H0ut,EFlag). 

intExp([[_A,N],HIn],[_Ret,HOut,exception(R)]) :- N #< 0, 
new_(HIn,’ArithException’,R,H2), 
’ArithException.<init>()V’([[ref(R)],H2],[HOut,_]). 

cond_l(A,N,Hl,R,H2,ok) :- A#\=0, loop_init(A,N,Hl,R,H2). 
cond_l(0,N,Hl,Ret,H2,EFlag):- cond_2(N,Hl,Ret,H2,EFlag). 

cond_2(N,Hl,R,H2,ok) :- N#\=0, loop_init(0,N,Hl,R,H2). 
cond_2(0,HI,_Ret,H3,exception(R)) :-

new_(Hl,’ArithException’,R,H2), 
’AritnException.<init>()V ([[ref (R)] ,H2], [H3,_]) . 

loop_init(A,N,Hl,Ret,Hl) :- loop(A,N,l,Ret). 

loop(_A,N,0ut,0ut) :- N #< 0. 
loop(A,N,Out,Ret) :- N #>= 0, Out’ #= Out*A, N’ #= N-l, 

loop(A,N’,0ut’,Ret). 

coverage 

Figure 2. Source code of running example Figure 4. Decompiled CLP Program obtained by PET 



intExp([[A, N], HIn], [Ret, HOut, E]) 

t r u e : B l __ cond_l(. . .) 

^ _ — í = 0 i — {A=0} 
loop_entry(. . .) cond_2(. . .) 

loop(. . .) t r u e : B 2 
rN<0x -~~~~~^IN; = N-1} 

fail loop(. . .) 

<¿^ {JV>0} {Ret=Out^} 

t rue : B3 loopC.. .) fail 

fail 

{JV'>0} 

{JV=0} 

loop_entry(. . .) 

loop(. . .) {N' = N-1} 
{ O u t ' = 1*0} 

loop(. . .) 
{N" = N'-1} 
{ O u t " = 0*0} 

loopC. . .) 

Figure 5. An evaluation tree generated by PET for intExp/2 

the figure, used in partial evaluators of (C)LP, solve. In essence, 
partial evaluators are meta interpreters which given an atom eval­
uate it as determined by the so-called unfolding rule, obtaining an 
evaluation tree. Each non-failing branch in this tree corresponds to 
a computation path. This view of TDG as a PE problem, proposed 
in [1], has the important advantage that we can apply existing, pow­
erful, unfolding rules developed in the context of PE. This is illus­
trated in Fig. 1 by small boxes which represent a bunch of unfolding 
strategies that can be plugged in the system. Currently, PET incor­
porates two unfolding rules: level-fc, which limits the depth of the 
evaluation tree to at most fc levels, and block-fc, which ensures that 
the number of times each block is visited within each path does not 
exceed the given fc. 

Fig. 5 shows the evaluation tree built by PET when selecting 
block-fc with fc=2. I.e., the third time a rule is visited, the path 
is no longer expanded. In the example, PET executes the query 
intExp([[A, N],HIn], [Ret, HOut,E]). Along the execution, a con­
straint store on the program’s variables is obtained which is used 
for inferring the conditions that the input values must satisfy for 
the execution to follow the corresponding path. Such conditions 
appear as labels on the arrows (e.g., TV > 0, A = 0, etc.). We 
rely on an underlying constraint domain to handle the constraint 
store. CLP(FD) is currently used, which imposes an integer domain 
for the program variables. The tree contains both complete and in­
complete branches. In turn, complete branches can be successful 
or failing, labeled respectively as true or fail. Incomplete branches 
have a framed atom as last element. They are no longer expanded 
because the unfolding rule prevent this. In particular, we can see 
that when an atom of the form loop(...) appears for the third time 
in the same branch, the branch is stopped. Note that block-fc with 
fc=1 will in general not visit all blocks in the CFG, since traversing 
the loop body of the for loop requires fc>2 in order to obtain a 
finished path. 

Once an evaluation tree is computed, the constraint stores asso­
ciated to successful branches can be used for obtaining associated 
test cases. For instance, the leftmost branch in the tree (the one 
which ends in an atom labeled as B1), captures the fact that for a 
negative value of N, the output is an exceptional behavior. This is 
associated to the constraints (N < 0,E=exc(R)). Furthermore, our 
system allows providing a specific domain (e.g., N G [—10,10]) 
and use the CLP(FD) predicate labeling/2 to produce actual 
values in this domain compatible with the constraints. In order 
to get only one solution, labeling/2 is called inside the meta-
predicate once/1. For instance, for the above constraints, PET pro­

intExp([[_,N],H],[_,H’,exc(1)]) :- N #< 0. % B1 
intExp([[0,0],H],[_,H’,exc(2)]). % B2 
intExp([[A,0],H],[Ret,H,ok]) :- A #\= 0, Ret = A. % B3 
intExp([[0,N],H],[Ret,H,ok]) :- N #>= 1, N’’ #= N-2, 

loop(0,N’’,0,Ret). 
intExp([[A,N],H],[Ret,H,ok]) :- N #>= 1, A #\= 0, 

N’ #= N-1, 
loop(A,N’,A,Ret). 

loop(_,N,Out,Out) :- N #< 0. 
loop(A,N,Out,Ret) :- N #>= 0, Out’ #= Out*A, 

N’ #= N-1, loop(A,N’,Out’,Ret). 

Figure 6. Output of PET: Test-case generator 

duces the input-output pair ((A=—10, N=—10},E=exc(R)). For 
the path ending in B2, the constraints are (A=0, N=0,E=exc(R)). 
An input-output pair is simply ((A=0, N=0),E=exc(R)). Fi­
nally, for the branch ending in label B3, the constraints obtained 
by PET are (N=0,Ret=A) and a possible input-output pair is 
((A=—10, N=0), Ret=—10). When confronted with this pair, the 
user or oracle should detect that Ret does not have the expected 
value, which indicates that there is a bug in the program, since Ret 
should take the value 0. 

Code Generation. The final objective of partial evaluation is to 
generate optimized residual code. Thus, the unfolding rule dis­
cussed above can be complemented with a code generation phase 
and obtain a full partial evaluator (PE 2 in Fig. 1). For instance, 
consider the successful branch labeled B3 in Fig. 5. The code asso­
ciated to this branch is a rule whose head is the original atom (ap­
plying the mgu’s to it) and the body is made up by the constraints 
gathered along the path: 

intExp([[A,0],H],[Ret,H,ok]) :- A #= 0, Ret = A. 

As proposed in [1], the generation of a residual program composed 
by the rules associated to all non-failing branches in the evaluation 
tree returns a program which can be used as a test-case generator 
for obtaining further test-cases. In Fig. 6, we show a pretty printed 
test-case generator obtained by PET from the evaluation tree in 
Fig. 5. Basically, PET generates constrained rules which integrate 
the store of constraints associated to their corresponding branch, as 
shown above. The first three rules correspond to the three success­
ful branches (B1, B2 and B3) in Fig. 5, from which we obtained 
the three test-cases shown before (after calling labeling/2). The 
other two rules are obtained, as explained above, from the two in­
complete branches which finish in a framed atom. The constraints 
in the different rules, in addition to accumulating the arithmetic op­
erations performed in along the path, act as guards which avoid the 
execution of the alternative paths previously computed. 

Thus, the output of PET is a program which is a generator of 
test-cases for larger values of fc. The execution of this concrete gen­
erator will return on backtracking the (infinite) set of computation 
paths for the intExp program and their corresponding constraints. 
Interestingly, in order to generate test-cases for say, fc = 5, instead 
of starting the process from scratch, we can partially evaluate the 
generator with fc = 3 and obtain (more efficiently) the same set of 
test cases that we would obtain by partially evaluating the original 
CLP program for fc = 5. 

3. Web Site and Experimental Evaluation 
PET is available for download as free software at the PET web site 
http://costa.ls.fi.upm.es/pet. In addition, a web interface 
makes it possible to use PET without having to install it. PET can 
be executed on bytecode programs provided as examples on the 
web site or by uploading them. 

We now present some preliminary experiments which aim at 
illustrating the time taken by PET in order to perform TDG and 

http://costa.ls.fi.upm.es/pet


Bench 

intExp 
intFact 
lcm 
gcd 
varNoRep 
varRep 
combNoRep 
combRep 
perm 
fib 

j?2p 

13.70 
11.10 
11.70 
14.20 
12.00 
11.10 
12.90 
18.00 
12.10 
14.00 

k = 2 
N 
3 
3 
7 
4 
4 
4 
4 
4 
3 
4 

t e g 

4.20 
0.00 
8.20 
2.00 
2.00 
5.80 
4.00 
2.00 
0.00 
2.00 

Tgen 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

Total 
17.90 
11.10 
19.90 
16.20 
14.00 
16.90 
16.90 
20.00 
12.10 
16.00 

k = 5 
N 
9 
6 
19 
10 
7 
7 
7 
7 
6 
7 

t e g 

6.00 
4.20 
72.40 
17.80 
4.20 
2.00 
10.00 
10.00 
4.00 
4.00 

Tgen 
0.00 
3.80 
0.00 
2.20 
0.00 
0.00 
0.00 
0.00 
2.00 
0.00 

Total 
19.70 
19.10 
84.10 
34.20 
16.20 
13.10 
22.90 
28.00 
18.10 
18.00 

Table 1. Some Execution Statistics for PET 

the number of test cases generated when using different criteria. 
Table 3 shows the times taken by the different phases performed 
by PET. All times are in milliseconds, and were obtained as the 
arithmetic mean of five runs on an Intel Core 2 Quad Q9300 
at 2.5GHz with 1.95GB of RAM, running Linux 2.6.26 (Debian 
lenny). As benchmarks, we use a set of methods which perform 
different arithmetic calculations like the greatest-common-divisor, 
the least-common-multiple, the Fibonacci sequence, etc. They are 
all accessible through the web interface. Each row in the table 
corresponds to one benchmark. The second column T j 2p shows the 
times taken by PE 1, including parsing the corresponding .class 
files. The next four columns show different data about PE 2 using 
as coverage criterion the block-k with k = 2. In particular, column 
N shows the number of test-cases obtained, columns T tcg and Tg e n 
show, respectively, the times taken by the generation of the test-
cases, i.e. by the unfolding process, and the generation of the test-
case generator, while column Total show the total time taken by 
PET. The last four columns show the same data as before, but using 
PET with block-k being k = 5. Though we need to experiment 
with larger programs, the execution times of PET are reasonable. 

4. Conclusions and Future Work 
As mentioned in Sect. 1, the standard approach to static white-box 
TDG is to perform symbolic execution. If the language considered 
is Java bytecode, this requires developing a symbolic JVM machine 
which integrates appropriate constraints solvers (e.g., [12]). This 
requires non-trivial extensions w.r.t. a JVM: (1) it needs to execute 
the bytecode symbolically, and (2) it must be able to explore non-
deterministic executions, as without exact knowledge about the in­
put data, execution may follow more than one path. Such multiple 
paths can be traversed via backtracking or by explicitly handling 
sets of paths. The approach taken in [12] is based on a backtracking 
mechanism which is essentially the same as in Prolog. The fact that 
the behavior of bytecode programs is captured as CLP programs 
greatly facilitates symbolic execution, since we can use the under­
lying execution mechanism directly, without the need of devising a 
symbolic JVM. Furthermore, the process of supervising execution 
to avoid non-termination can be formalized as a PE problem. 

We argue that PET has several interesting features: (i) It is 
generic. Our tool can work with other imperative languages, pro­
vided that a CLP decompiler (possibly, but not necessarily based 
on PE) for them is available. In particular, once the CLP decompi-
lation is done, the language features are abstracted away and, the 
whole part related to TDG generation is totally language indepen­
dent. This avoids the difficulties of explicitly dealing with recur­
sion, procedure calls, dynamic memory, exceptions, etc. that sym­
bolic abstract machines typically face. (ii) It is flexible, as differ­
ent coverage criteria can be easily incorporated to our tool just by 
adding the appropriate unfolding rule to the partial evaluator. (iii) 
It is incremental, since our tool can extend test suites with larger 
values of k starting from previously obtained test-case generators. 

We plan to improve PET in several directions. As already men­
tioned, our system is not able to deal with nun-numeric input argu­
ments. To overcome this, we expect to be able to model the heap 
using constraints, as well as along the lines of the recent proposal 
in [13]. Regarding handling floating point numbers, we are working 
on the integration of other constraint domains such as CLP(Q) and 
CLP(R). We will also consider generalized symbolic execution, as 
done for model checking and testing [7, 15], which performs sym­
bolic execution on dynamically allocated structures (e.g., lists and 
trees). Another challenge that we plan to investigate is the genera­
tion of test-cases for programs which use native code, and not only 
pure bytecode. We also believe that our approach could be easily 
extended with support for generating parameterized tests [14]. 

Acknowledgments 
This work was funded in part by the Information Society Technolo­
gies program of the European Commission, Future and Emerging 
Technologies under the IST-231620 HATS project, by the MEC 
under the TIN-2008-05624 DOVES and HI2008-0153 (Accio´n In­
tegrada) projects, by the UCM-BSCH-GR58/08-910502 (GPD-
UCM), and the CAM under the S-0505/TIC/0407 PROMESAS 
project. 

References 
[1] E. Albert, M. Go´mez-Zamalloa, and G. Puebla. Test Data Generation 

of Bytecode by CLP Partial Evaluation. In LOPSTR’08, number 5438 
in LNCS. Springer-Verlag, March 2009. 

[2] R. Ferguson and B. Korel. The chaining approach for software test 
data generation. ACM Trans. Softw. Eng. Methodol., 5(1):63–86, 
1996. 

[3] Y. Futamura. Partial Evaluation of Computation Process - An 
Approach to a Compiler-Compiler. Systems, Computers, Controls, 
2(5):45–50, 1971. 

[4] M. Go´mez-Zamalloa, E. Albert, and G. Puebla. Decompilation of 
Java Bytecode to Prolog by Partial Evaluation. Information and 
Software Technology, 51:1409–1427, October 2009. 

[5] A. Gotlieb, B. Botella, and M. Rueher. A clp framework for 
computing structural test data. In Computational Logic, 2000. 

[6] N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and 
Automatic Program Generation. Prentice Hall, New York, 1993. 

[7] S. Khurshid, C. S. Pasareanu, and W. Visser. Generalized symbolic 
execution for model checking and testing. In TACAS, 2003. 

[8] J. C. King. Symbolic execution and program testing. Commun. ACM, 
19(7):385–394, 1976. 

[9] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. 
Addison-Wesley, 1996. 

[10] Kim Marriot and Peter Stuckey. Programming with Constraints: An 
Introduction. The MIT Press, 1998. 

[11] C. Meudec. Atgen: Automatic test data generation using constraint 
logic programming and symbolic execution. Softw. Test., Verif. 
Reliab., 11(2):81–96, 2001. 

[12] R. A. Mu¨ller, C. Lembeck, and H. Kuchen. A symbolic java virtual 
machine for test case generation. In IASTED Conf. on Software 
Engineering, pages 365–371, 2004. 

[13] T. Schrijvers, F. Degrave, and W. Vanhoof. Towards a framework for 
constraint-based test case generation. In LOPSTR’09, 2009. 

[14] Nikolai Tillmann and Jonathan de Halleux. Pex-white box test 
generation for .NET. In TAP, pages 134–153, 2008. 

[15] W. Visser, C.S. Paˇsa řeanu, and S. Khurshid. Test input generation 
with java pathfinder. In ISSTA’04. ACM, 2004. 

[16] Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software unit test 
coverage and adequacy. ACM Comput. Surv., 29(4):366–427, 1997. 


