
An Initial Proposal for Data-Aware Resource Analysis
of Orchestrations with Applications

to Predictive Monitoring ?

Dragan Ivanović1, Manuel Carro1, and Manuel Hermenegildo1,2

1 School of Computer Science, T. University of Madrid (UPM)
2 IMDEA Software, Spain

idragan@clip.dia.fi.upm.es, {mcarro, herme}@fi.upm.es

Abstract. Several activities in service oriented computing can benefit from
knowing ahead of time future properties of a given service composition. In this
paper we focus on how statically inferred computational cost functions on in-
put data, which represent safe upper and lower bounds, can be used to pre-
dict some QoS-related values at runtime. In our approach, BPEL processes are
translated into an intermediate language which is in turn converted into a logic
program. Cost and resource analysis tools are applied to infer functions which,
depending on the contents of some initial incoming message, return safe up-
per and lower bounds of some resource usage measure. Actual and predicted
time characteristics are used to perform predictive monitoring. A validation is
performed through simulation.
Keywords: Service Orchestrations, Resource Analysis, Data-Awareness, Moni-
toring

1 Introduction

Service Oriented Computing (SOC) is a well-established paradigm which aims at
expressing and exploiting the computational possibilities of remotely interacting
loosely coupled systems that expose themselves using service interfaces, while the
implementation is completely hidden. Several services can be put together to accom-
plish more complex tasks through service compositions, written using some general-
purpose programming language or a specifically designed language [1–3], and are
usually exposed as full-fledged services.

SOC systems are expected to be active during long periods of time and operate
across geographical and administrative boundaries. This requires monitoring and
adaptation capabilities: monitoring compares the actual and expected behavior of
the system (e.g., its QoS), and may trigger an adaptation if needed. Comparing the
actual and the expected QoS of a composition —even assuming the composition is
static— is far from trivial. Predictive monitoring aims at detecting deviations ahead

? The research leading to these results has received funding from the European Commu-
nity’s Seventh Framework Programme under the Network of Excellence S-Cube - Grant
Agreement n◦ 215483. Manuel Carro and Manuel Hermenegildo have also been suported
by projects FET IST-231620 HATS, Spanish FIT-340005-2007-14 ES_PASS (within EU ITEA2
06042-ESPASS) and 2008-05624/TIN DOVES projects, and CAM project S-2009/TIC/1465
PROMETIDOS.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148658722?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of time by e.g. forecasting the future behavior. This is more complex but also more in-
teresting and useful, as it can perform prevention instead of healing. Clearly, greater
accuracy in calculating the expected QoS leads to better predictions.

Two factors, at least, have to be considered when estimating QoS behavior: the
structure of the composition itself, i.e., what it does with incoming requests and
which other services it invokes and how, and the variations on the environment, such
as network links going down or external services not meeting the expected deadlines.

Of these two sources of information, the latter has been extensively studied [4–7],
while the former has been less deeply explored. The actual data a service manages
have been recognized as relevant [8, 9], and actual message contents can greatly in-
fluence the runtime behavior of a composition (Section 2), but it has not been ade-
quately addressed so far: prediction techniques which do not take run-time param-
eters into account are potentially inaccurate.

In this paper we will focus on applying a methodology, based on previous experi-
ence on automatic complexity analysis [10–12], which can generate correct approx-
imations of complexity functions via translation to an intermediate language (Sec-
tions 3). These functions use (abstractions of) incoming messages in order to derive
safe upper and lower bounds which depend on the input data and which are poten-
tially more accurate than data-unaware approximations. In Section 4 we show how
these functions can be used by monitoring to make better decisions and in Section 5
we make an experimental evaluation.

Correct data-aware cost functions can be useful for any situation where a more
informed QoS estimation is an advantage. In particular, QoS-driven service compo-
sition [13–15] can use them to select better service providers for an expected kind of
request, and adaptation mechanisms can also benefit from that knowledge [16].3

2 A Motivating Example

We illustrate with a simple example how actual data can be taken into account when
generating QoS expressions for service compositions.

Example 1 In a hotel reservation system (Fig. 1) a Client contacts a Booking Agency to
request N hotel rooms. The Booking Agency uses a composed service that either books
N rooms from a pool of K hotels, one at a time, or replies that no rooms are available. If
not enough rooms are available after scanning all the hotels, it cancels any previously
made reservation. A hotel without available rooms is excluded from further search.
One message is used to for each room query, confirmation / rejection, and cancellation.

The whole process cannot be done in a single transaction, because the reserva-
tion systems of different hotels are disconnected; therefore it has to be instrumented
at the level of composition. We will assume that we are interested in the number of
messages sent / received. There are several reasons for this: message exchanges can
carry a sizable overhead, thus affecting actual execution time, or it is possible that
the hotel reservation / booking service take a toll on every message they answer.

3 The adaptation technique presented in [16] uses the same technique presented in this pa-
per to derive cost bound functions. However, here we focus on the different problem of its
application to predictive monitoring.

2

Client Provider

Maker 1

Maker K

Request
Cancel

part req.

OK / not OK

Part req.
Cancel

OK / not OK

Fig. 1. Simplified hotel reservation system.

 20

 40

 60

 80

 100

 120

 140

 4 5 6 7 8 9 10

Q
oS

 /
C

om
pu

ta
tio

na
l C

os
t

Input data size (for a given metric)

Upper bound QoS / Comp Cost for Service A
Lower bound QoS / Comp Cost for Service A
Upper bound QoS / Comp Cost for Service B
Lower bound QoS / Comp Cost for Service B

Fig. 2. Upper, lower bounds for two services.

BPEL

WSDL

Intermediate
language

Logic
program

Analysis
results

Translation
Translation Analysis

Feedback

Feedback

Fig. 3. The overall process.

Assuming K ≥ N , the smallest number of exchanged messages for a successful
reservation 2N (N requests and replies to the same hotel) while the greatest num-
ber of messages is 2K + 3(N − 1) for the worst case of an unsuccessful reservation
(N −1 successful reservations, plus one last unsuccessful reservation which triggers
their cancellation). Between these extremes, the maximum for a successful reserva-
tion would be 2K +2(N −1) messages. The complexity analysis depends both on the
structure of the composition and on the values of N and K , which are composition
parameters, since it is more likely that the hotels are listed in a separate registry, than
hardwired into the composition code.

Compared with probabilistic approaches, the following differences can be
pointed out:

– If data is not taken into account, the impact of loops and conditionals can be
only statistically estimated. Guarantees cannot easily be provided, as the value
for any QoS attribute will be constant regardless of the actual values for K and
N .

– Safe (upper and lower) bounds cannot usually be obtained, as probabilistic for-
mulations usually rely on some kind of average.

– In QoS-aware matchmaking / rebinding, comparing different service composi-
tions ignores the functional dependencies of QoS on the data.

Figure 2 portrays upper and lower bounds of two compositions for some QoS as a
function of a single input parameter. For some ranges of data input one composition
is preferable over the other, while in the central zone we cannot decide.

3 Resource Analysis for Orchestrations

Due to space constraints, we present here an abridged version of the resource anal-
ysis technique in [16]. Our approach is based on translating process definitions into

3

Declarations and definitions
Complex type definition :-struct(QName, Members).
Port type definition :-port(QName,Operations).
External service :-service(PortName,Operation, {TrustedProperties}).
Service definition service(Port, Operation, InMsg, OutMsg):-Activity.

Activities
Variable assignment Var <- Expr Service invocation invoke(Port, Op, OutMsg, InMsg).
Reply and exit reply(OutMsg) Sequence Activity1,Activity2
Conditional execution if(Cond, ActThen, ActElse) While loop while(Cond, Activity)
Scope scope(VarDecl, ActivityList) Scope fault handler handler(FaultName, Activity)
Parallel flow flow(LinkDecl, Activities) Activity in a flow float(Attributes, Activity)

Table 1. Abstract orchestration elements.

a language for which automatic computational cost analysis tools are available (see
Fig. 3).

3.1 Overview of the Translation
Our orchestration language is a subset of BPEL 2.0 with WSDL meta-information.
These are translated into an intermediate language which is then translated into the
Ciao logic programming language [17]. The resulting logic program is then analyzed
by the CiaoPP tool [18], which is able to infer upper and lower bounds for computa-
tional costs [11], among other analyses.

A BPEL process definition is translated into a service definition which asso-
ciates a port/operation with the orchestration body. Processes forming a service
network are translated into predicates that call each other to mimic service invoca-
tions. The intermediate language can describe XML schema-derived data types for
messages, service ports, as well as relevant properties of external services of inter-
est for the analysis when such services cannot be analyzed. Supported operations
include generic constructs (assignment, sequence, loop. . .), and specific workflow
constructs, such as flows, scopes, and invocations.

The translation does not follow strictly the operational semantics of the orches-
tration language: it just captures enough of it to ensure that the analyzers will infer
correct information while minimizing precision loss.

Our analysis is currently restricted to orchestrations that start after receiving an
initial message and finish by returning a reply or a fault notification. Stateful service
callbacks using correlations are not supported. We support however a variant of the
scope construct, which introduces local variables and fault / compensation han-
dlers. We do not fully support compensation handlers, which in BPEL “undo” the
effects of a scope using snapshots of variables recorded at successful completion of
the scope. Except for recording snapshots, compensation handlers can be treated as
pseudo-subroutines on a scope level, and inlined at their invocation place.

3.2 A Sketch of the Translation
The simple types in XML schemata are abstracted as three disjoint types: numbers,
strings (translated into atoms), and booleans. Complex XML types are translated

A Translation of T ([A|R],η,V) A Translation of T ([A|R],η,V)

reply(v) V = reply(η(v)) (End orchestration) A j , Ak T ([A j , Ak |R],η,V) (Sequence)
throw(f) V = fault(f) (No fault handler) v <-e a(η,Y) ← E(e,η, X), T (R,η[X /v],Y)

T ([H],η,V) (Insert fault handler) (E evaluates e in env. η)
if(c, A′ , A′′) a(η,Y) ←C (c,η), !, T ([A′|R],η,Y) while(c, A′) a(η,Y) ←C (c,η), !, T ([A′ , A],η,Y)

a(η,Y) ← T ([A′′|R],η,Y) a(η,Y) ← T (R,η,Y)

Table 2. Translation of different activities.

4

<sequence>
<while name=’a_13’>
<condition>$i>0</condition>
<scope>
<assign name=’a_14’>
<copy><from>$i - 1</from>
<to variable=’i’/></copy></assign>

<assign name=’a_15’><copy>
<from>$resp.body/factory:part[$i]
</from><to variable=’p’/></copy>

</assign>
<invoke name=’a_16’
portType=’factory:sales’
operation=’cancelReservation’
inputVariable=’p’
outputVariable=’r’/>

</scope>
</while>
<throw
faultName=’factory:unableToComplete’/>

</sequence>
(a) A BPEL code fragment

while(’$i>0’, (% a_13
’$i’ <- ’$i␣-␣1’, % a_14
’$p’ <- ’$resp.body/factory:part[$i]’, % a_15
invoke(factory:sales, % a_16

cancelReservation,’$p’,’$r’))),
throw(factory:unableToCompleteRequest)

(b) The intermediate representation.

% ($i,$p,$resp.body/factory:part,$r,Y)
a_13(A,B,C,D,E):- A > 0, !, a_14(A,B,C,D,E).
a_13(A,B,C,D,E):- E =
fault(’factory->unableToComplete’).

a_14(A,B,C,D,E):- F is A-1, a_15(F,B,C,D,E).
a_15(A,B,C,D,E):- nth(A,C,F), a_16(A,F,C,D,E).
a_16(A,B,C,D,E):-
’factory->sales->cancelReservation’(B,F),
(F=fault(G) -> E=fault(G)
;F=reply(H) -> a_13(A,B,C,H,E)).

(c) Translation into logic program.

Fig. 4. Translation example.

Resource With fault handling Without fault handling
(n ≥ 0: input arg. value) lower bound upper bound lower bound upper bound

Basic activities 2 7×n 5×n +2 5×n +2
Single reservations 0 n n n

Cancellations 0 n −1 0 0

Table 3. Resource analysis results for the group reservation service.

into predicates specifying how the type is built. The accepted expression language is
a subset of XPath, so that navigation is statically decidable and components of XML
structures can be passed as separate arguments when necessary to improve analyzer
accuracy.

A process that implements operation o on port p is translated into a clause:

sp:o(X ,Y) ← T ([A],η,Y)

where X and Y correspond to the initial message and the final reply, and η is an en-
vironment that maps orchestration variables to logical variables. T is the translation
operator, and [A] is the process body. T is defined for both simple and structured ac-
tivities, and may generate auxiliary predicates if needed. Table 2 sketches the trans-
lation of some activities.

A translation example is presented in Fig. 4. Subfigure (a) is a BPEL fragment of
an orchestration that cancels the list of reservations and reports a fault, (b) is the
corresponding intermediate form, and (c) is the translation into a logic program.

The resource analysis finds out how many times external service invocations will
be performed during process execution, from which deducing the number of mes-
sages exchanged is easy. The upper and lower bounds estimates (as functions of in-
put data) for the complete orchestration are displayed in Table 3. Results are given
for both the fault-free execution case, and the more general case with possibility of
faults.

5

4 Cost Functions for Monitoring

In this section we will describe how the expected value of some QoS characteristics
can be derived from the value of resource consumption functions and the (expected)
value of some environment characteristics, and we will also show how the availability
of cost functions can be used to perform predictive monitoring.

4.1 QoS Metrics and Cost Functions

The precise cost function which is needed to express some QoS characteristic de-
pends on the QoS metric itself. For example, if bandwidth consumption is involved
in the measure of some QoS, then the number of messages and size of each message
is relevant, but the number of executed activities is not directly relevant (although
possibly related). However, a cost function cannot in general convey by itself all the
information necessary to represent a QoS function: some data which come from the
environment is needed. Therefore, and for some QoS metrics, an interval of lower
and upper bounds depending on the input data can be expressed as

QoS〈L,U 〉(n) = 〈costL(n)⊕envL , costU (n)⊕envU 〉 (1)

where the tuple components are the expected lower and upper bounds for the qual-
ity of service, costX (n) is a function representing a lower / upper bound on resource
consumption, envX represents the minimum and maximum influence of the envi-
ronment on the QoS attribute at hand, and ⊕ is an operation which combines to-
gether cost functions and environment conditions.

For example, in the case of the execution time of a single process, costX (n) can be
the number of activities executed, 〈envL ,envU 〉 the minimum / maximum time a sin-
gle activity can take and ⊕ would be just multiplication. Since 〈costL(n),costU (n)〉 are
lower and upper bounds, if 〈envL ,envU 〉 are also safe lower and upper bounds, the
calculated QoS bounds will be safe lower and upper bounds of the actual (runtime)
QoS values.

This generic scheme can admit variations: for example, a more accurate approxi-
mation can be constructed by assigning different weights to activities so that envX is
an array with a component for the execution time for every type of activity, costX (n)
is an array counting how many times every type of activity is executed, and ⊕ is the
vector dot product.

4.2 QoS and Cost Functions During Composition Execution

In the general case, the cost function of a composition is made up of several parts
related to different blocks of the composition structure. As an example, the upper
bound of an if-then-else activity is the upper bound of the condition plus the
maximum of the upper bounds of the then and else branches.

We can associate to every point in the composition a measure of how much re-
sources “remain to be spent”. In the if-then-else example, once the if part is over,
what remains is the maximum of the upper bounds of the then and the else parts.
This value depends on the point in the service composition it is measured and also
on the values of the data at that moment. In a loop, where the same activity is ex-
ecuted several times, less “mileage” is left until the end of the execution after every

6

History

Quality

Max

A B C D

Initial prediction (lower bound)

Actual profile

Prediction after
observation B

Prediction after
observation C

Fig. 5. Actual and predicted QoS throughout history.

iteration, even in the same point of the composition. The difference comes from the
different state of the variables, and this is one of the reasons why taking data into
account is beneficial.

There is, therefore, a notion of “remaining” QoS: for example, from the activities
still to be executed and the expected time of every activity, the time remaining for
the completion of the composition can be derived. Measuring this remaining time is
relevant from a monitoring point of view. Assuming that we have a faithful predictor
of the QoS remaining until the end of the execution (such as that given by resource
consumption functions and environment conditions), then deviations of the envi-
ronmental characteristics can be used to predict more accurately what will be the
QoS at some future point by dynamically combining the cost / resource consump-
tion functions with the actual environment conditions.

Figure 5 exemplifies such a situation. Let us assume we are interested in some
QoS metric of a composition, whose value must not exceed Max. The cost functions
and environment characteristics representing safe upper and lower bounds can be
used here: if the upper bound is smaller than Max, then we have the guarantee that
we do not violate the QoS boundary. If the lower bound is larger than Max, then we
have the guarantee that we will violate the expected QoS. If none of these hold, then
we cannot say anything for sure.

We designate four points (A , B, C , and D) in the execution of some composi-
tion and we will focus on how monitoring at these points can be predictively done
with the use of cost functions. In Figure 5 the solid line represents the QoS initially
predicted with the statically inferred cost functions and the expected environment
conditions, while the dashed line represents the observed QoS.

At point B, the actual quality has deviated with respect to the predicted one.
Since the composition has not changed, and thus neither have the cost functions,
we can conclude that the deviation can only be due to a change in the environment
behavior (e.g., additional load on a server or a faulty network). An updated predic-
tion for the future can be done by using the environment influence observed so far
and the existing cost function. This new prediction curve (densely dotted) still ends,
at point D, within the limits of the acceptable range Max. However, at point C a new
observation gives yet higher values for the QoS attribute. Yet another function and

7

associated plot curve (sparsely dotted) can be constructed which predicts that the
execution will violate the expected QoS. Therefore, at point C we have detected a
problem before it appears and we can raise an alarm and maybe trigger an adapta-
tion procedure. In order for this technique to work in complex service compositions
with loops, different response times depending on invocations, etc. it is necessary to
take data into account from the beginning.

5 Experimental Evaluation
To validate the applicability of the proposed approach to predictive monitoring, we
conducted a series of experiments which simulate the behavior of a service compo-
sition which may violate some QoS attribute (time, in this case) and we try to detect
this situation ahead of time using analytically derived complexity bounds and the
observed environment conditions. In our scenario, service composition A is initiated
with an input message, whose size (using some appropriate metric) is represented as
an integer n (ranging, in this case, between 1 and 50). Upon message reception, ser-
vice A iteratively invokes a partner service B and waits for a reply. The number of
iterations is bounded by upper and lower bounds 〈E AU (n),E AL(n)〉 which grow lin-
early and which range between 100 and 500 and between 50 and 250, respectively, as
n goes from 1 to 50.

Each invocation of B uses some time to transmit the invocation and its re-
ply. Time is modeled as an environmental factor with bounds 〈uAL ,uAU 〉 that may
change over time. Executing B involves a number of operations (or steps) indepen-
dent from n with bounds 〈EBL ,EBU 〉 = 〈8,16〉. Each step takes some time between
the time-varying bounds 〈uBL ,uBT 〉. The initial values for the environmental factors
(measured in milliseconds) are uAL = 7.5, uAH = 20, uBL = 3.75, and uB H = 10. The
experiment is run under several regimes that differ on how environmental factors
evolve.

The experiment assumes that the service composition A has to finish in at most
Tmax = 25,000 ms. Violations to this requirement are detected by monitoring with
the help of the complexity functions and the environment bounds, as previously de-
scribed. The monitor periodically builds a running upper / lower bound estimate of
the remaining execution time based on the elapsed time and the complexity / envi-
ronmental factor bounds, respectively. The monitor issues a warning (Warn) when
the upper bound of the estimate for the end-time of the task exceeds Tmax, to flag
the risk of the time constraint violation, and an alarm (Alarm) if the lower bound es-
timate exceeds Tmax to indicate that a violation of the time constraint is imminent
under the current conditions. Alarm prevails over Warn.

We performed one hundred simulations for every value of n by randomly choos-
ing, for each n, a concrete complexity value between the bounds for A and B . We
measure the effectiveness of the approach by empirically assessing the frequency of
violation given a warning/alarm status. Figure 6 shows alarm / warning / violation
profiles for two environmental regimes. The one on the left simulates a system re-
configuration where environmental characteristics remain at their initial values until
time Tmax /3, when their bounds suddenly double (i.e., delays increase). The second
regime (right) simulates a gradual degradation of the system, where environmental
bounds linearly increase over the period Tmax by a factor of four.

8

!"##$%

&'(#)*

*
+
,
%
-
.
/
0
1
*2
**
*+
*,
*%
*-
*.
*/
*0
*1
+2
+*
++
+,
+%
+-
+.
+/
+0
+1
,2
,*
,+
,,
,%
,-
,.
,/
,0
,1
%2
%*
%+
%,
%%
%-
%.
%/
%0
%1
-2

23

*23

+23

,23

%23

-23

.23

/23

023

123

*223

45'6789: 45'678;9: <'6=89: <'6=8;9: ;<'6=89: ;<'6=8;9:

Alarm/¬OK

Warn/¬OK

Warn/OKOK

!"##$%

&'(#)*

*
%
+
,
-
.
/
0
1
*2
**
*%
*+
*,
*-
*.
*/
*0
*1
%2
%*
%%
%+
%,
%-
%.
%/
%0
%1
+2
+*
+%
++
+,
+-
+.
+/
+0
+1
,2
,*
,%
,+
,,
,-
,.
,/
,0
,1
-2

23

*23

%23

+23

,23

-23

.23

/23

023

123

*223

45'6789: 45'678;9: <'6=89: <'6=8;9: ;<'6=89: ;<'6=8;9:

Alarm/¬OKOK
Warn
/OK

Warn/¬OK

!"##$%

&'(#)*

*
%
+
,
-
.
/
0
1
*2
**
*%
*+
*,
*-
*.
*/
*0
*1
%2
%*
%%
%+
%,
%-
%.
%/
%0
%1
+2
+*
+%
++
+,
+-
+.
+/
+0
+1
,2
,*
,%
,+
,,
,-
,.
,/
,0
,1
-2

23

*23

%23

+23

,23

-23

.23

/23

023

123

*223

45'6789: 45'678;9: <'6=89: <'6=8;9: ;<'6=89: ;<'6=8;9:

!"##$%

&'(#)*

*
+
,
%
-
.
/
0
1
*2
**
*+
*,
*%
*-
*.
*/
*0
*1
+2
+*
++
+,
+%
+-
+.
+/
+0
+1
,2
,*
,+
,,
,%
,-
,.
,/
,0
,1
%2
%*
%+
%,
%%
%-
%.
%/
%0
%1
-2

23

*23

+23

,23

%23

-23

.23

/23

023

123

*223

45'6789: 45'678;9: <'6=89: <'6=8;9: ;<'6=89: ;<'6=8;9:

Alarm/¬OK

Warn/¬OK

Warn/OKOK

Alarm/¬OKOK
Warn
/OK

Warn/¬OK

Fig. 6. Ratio of true and false positives for two environmental regimes.

Under the first regime, composition executions for small values of n take little
time to complete, so they comply with the time limit (marked by OK) and no alerts
are raised. For slightly larger input sizes (e.g. n = 9), executions still comply with the
time limit, but warnings are raised (Warn/OK), since the monitor’s estimate of the
upper bound running time exceeds Tmax. As n increases, the number of false warning
positives decreases in favor of the true warning positives (Warn/¬OK), because the
average running time increases and thus the possibility of execution being affected
by sudden deterioration of the environment factors. In the same region (around n =
20) some warnings start to be promoted to alarms, as the lower bound time estimates
increasingly start to overshoot Tmax. These cases are marked with Alarm/¬OK, and
they are all true positives, since the system degrades monotonically (things never
get better). Further increases in n (to around 30) lead to rapid disappearance of the
false warning positives. After n = 38, all executions fall into Alarm/¬OK, because the
monitor is always able to detect ahead of time that the lower execution time bound
overshoots the time limit.

In the second regime in Figure 6, featuring a gradual degradation, the upper exe-
cution time bound overshoots Tmax in some cases even for very small input sizes (e.g.
n = 3). A warning is then raised although no actual violations happen (executions are
OK). As n increases, a pattern similar to that in the first regime is followed. For large
values of n (but before the point in which it happened in the previous regime) all
alarms rightly correspond to the ¬OK case.

6 Concluding Remarks

We have sketched a resource analysis for service orchestrations based on a transla-
tion to an intermediate programming language for which complexity analyzers are
available. The translation process approximates the behavior of the original process
network in such a way that the analysis results (the cost functions) are valid for the
original network. We have presented a mechanism to use these functions, together
with environmental characteristics, to predict the future behavior of the system even
when the environment deviates from its expected behavior. We have applied them
to perform predictive monitoring and the approach has been validated with a sim-
ulation which detects when the complexity bounds and the actual (simulated) exe-
cution cross the deadline and extracts statistical data regarding the accuracy of the
predictions.

9

References

1. Jordan, D., et. al.: Web Services Business Process Execution Language Version 2.0. Tech-
nical report, IBM, Microsoft, et. al (2007)

2. Zaha, J.M., Barros, A.P., Dumas, M., ter Hofstede, A.H.M.: Let’s Dance: A Language for
Service Behavior Modeling. In: OTM Conferences (1). pp. 145–162. (2006)

3. van der Aalst, W., Pesic, M.: DecSerFlow: Towards a Truly Declarative Service Flow Lan-
guage. In: The Role of Business Processes in Service Oriented Architectures. Number
06291 in Dagstuhl Seminar Proceedings. (2006)

4. Mukherjee, D., Jalote, P., Nanda, M.G.: Determining QoS of WS-BPEL Compositions. In:
ICSOC. pp. 378–393. (2008)

5. Wu, J., Yang, F.: A Model-Driven Approach for QoS Prediction of BPEL Processes. In: ICSOC
Workshops. pp. 131–140. (2006)

6. Buccafurri, F., Meo, P.D., Fugini, M.G., Furnari, R., Goy, A., Lax, G., Lops, P., Modafferi, S.,
Pernici, B., Redavid, D., Semeraro, G., Ursino, D.: Analysis of QoS in Cooperative Services
for Real Time Applications. Data Knowledge Engineering 67(3), pp. 463–484 (2008)

7. Fugini, M.G., Pernici, B., Ramoni, F.: Quality Analysis of Composed Services through Fault
Injection. In: Business Process Management Workshops. pp. 245–256. (2007)

8. Cardoso, J.: About the Data-Flow Complexity of Web Processes. In: 6th International
Workshop on Business Process Modeling, Development, and Support: Business Processes
and Support Systems: Design for Flexibility. pp. 67–74. (2005)

9. Cardoso, J.: Complexity analysis of BPEL web processes. Software Process: Improvement
and Practice 12(1), pp. 35–49 (2007)

10. Debray, S.K., Lin, N.W.: Cost Analysis of Logic Programs. ACM Transactions on Program-
ming Languages and Systems 15(5), pp. 826–875 (November 1993)

11. Navas, J., Mera, E., López-García, P., Hermenegildo, M.: User-Definable Resource Bounds
Analysis for Logic Programs. In: Int’l. Conf. on Logic Programming. Number 4670 in LNCS,
pp. 348–363. Springer (2007)

12. Méndez-Lojo, M., Navas, J., Hermenegildo, M.: A Flexible (C)LP-Based Approach to the
Analysis of Object-Oriented Programs. In: 17th International Symposium on Logic-based
Program Synthesis and Transformation (LOPSTR 2007). Number 4915 in LNCS, pp. 154–
168. Springer-Verlag (August 2007)

13. Canfora, G., Penta, M.D., Esposito, R., Villani, M.: An Approach for QoS-Aware Service
Composition Based on Genetic Algorithms. In: Proceedings of the 2005 conference on
Genetic and Evolutionary Computation, New York, NY, USA, pp. 1069–1075. ACM (2005)

14. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: QoS-Aware Mid-
dleware for Web Services Composition. Software Engineering, IEEE Transactions on 30(5),
pp. 311–327 (May 2004)

15. Chen, Y.P., Li, Z.Z., Jin, Q.X., Wang, C.: Study on QoS Driven Web Services Composition.
In: Frontiers of WWW Research and Development - APWeb 2006. Volume 3841 of Lecture
Notes on Computer Science., pp. 702–707. Springer Verlag (2006)

16. Ivanović, D., Carro, M., Hermenegildo, M., López, P., Mera, E.: Towards Data-Aware Cost-
Driven Adaptation for Service Orchestrations. Technical Report CLIP5/2009.1, Technical
University of Madrid (UPM) (March 2010)

17. Hermenegildo, M.V., Bueno, F., Carro, M., López, P., Morales, J., Puebla, G.: An Overview
of The Ciao Multiparadigm Language and Program Development Environment and its
Design Philosophy. In: Festschrift for Ugo Montanari. Number 5065 in LNCS. Springer-
Verlag (June 2008) pp. 209–237

18. Hermenegildo, M., Puebla, G., Bueno, F., López-García, P.: Integrated Program Debug-
ging, Verification, and Optimization Using Abstract Interpretation (and The Ciao System
Preprocessor). Science of Computer Programming 58(1–2), pp. 115–140 (October 2005)

10

