
Automatic Fragment Identification in Workflows
Based on Sharing Analysis?

Dragan Ivanović,1 Manuel Carro,1 and Manuel Hermenegildo1,2

1 School of Computer Science, T. University of Madrid (UPM)
(idragan@clip.dia.fi.upm.es, {mcarro, herme}@fi.upm.es)

2 IMDEA Software Institute, Spain

Abstract. In Service-Oriented Computing (SOC), fragmentation and merging of
workflows are motivated by a number of concerns, among which we can cite de-
sign issues, performance, and privacy. Fragmentation emphasizes the application
of design and runtime methods for clustering workflow activities into fragments
and for checking the correctness of such fragment identification w.r.t. to some
predefined policy. We present a fragment identification approach based on shar-
ing analysis and we show how it can be applied to abstract workflow representa-
tions that may include descriptions of data operations, logical link dependencies
based on logical formulas, and complex control flow constructs, such as loops and
branches. Activities are assigned to fragments (to infer how these fragments are
made up or to check their well-formedness) by interpreting the sharing informa-
tion obtained from the analysis according to a set of predefined policy constraints.

1 Introduction

Service-Oriented Computing (SOC) enables interoperability of components with low
coupling which expose themselves using standardized interface definitions. In that con-
text, service compositions are mechanisms for expressing in an executable form busi-
ness processes (i.e., wokflows) that include other services, and are exposed as services
themselves. Compositions can be described using one of the several available notations
and languages [Obj09,Jea07,Wor08,ZBDtH06,vdAP06,vdAtH05] which allow process
modelers and designers to view a composition from the standpoint of business logic and
processing requirements.

These service compositions are coarse-grained components that normally imple-
ment higher-level business logic, and allow streamlining and control over mission-
critical business processes inside an organization and across organization boundaries.
However, the centralized manner in which these processes are designed and engineered
does not necessarily build in some properties which may be required in their run-time
environment. In many cases defining subsets of activities (i.e., fragments inside the

? The research leading to these results has received funding from the European Community’s
Seventh Framework Programme under the Network of Excellence S-Cube - Grant Agreement
n◦ 215483. Manuel Carro and Manuel Hermenegildo were also partially supported by Spanish
MEC project 2008-05624/TIN DOVES and CM project P2009/TIC/1465 (PROMETIDOS).
Manuel Hermegildo was also partially supported by FET IST-231620 HATS.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148658721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

workflow) according to some policy can be beneficial in order to increase reusability
(by locating meaningful sets of activities), make it possible to farm, delegate, or sub-
contract part of the activities (if, e.g., resources and privacy of necessary data make it
possible or even advisable), optimize network traffic (by finding out bottlenecks and ad-
equately allocating activities to hosts), ensure privacy (by making sure that computing
agents are not granted access to data whose privacy level is higher than their secu-
rity clearance level), and others. To this end, various fragmentation approaches have
been proposed [WRRM08,BMM06,TF07]. In the same line, mechanisms have been
defined for refactoring existing monolithic processes into process fragments according
to a given fragment definition while respecting the behavior and correctness aspects of
the original process [Kha07,KL06].

This paper addresses the automatic identification of fragments given an input work-
flow, expressed in a rich notation. The kind of fragment identification policies we tackle
is based on data accessibility / sharing, rather than, for example, mere structural prop-
erties. The latter simply try to deduce fragments or properties by matching parts of
workflows with predefined patterns, as [AP08] does for deadlocks. In contrast, the
design-time analysis we propose takes into account implicitly and automatically dif-
ferent workflow structures.

At the technical level, our proposal is based on the notion of sharing between activ-
ities. This is done by considering how these activities handle resources (such as data)
that represent the state of an executing composition (i.e., process variables), external
participants (such as partner services and external participants), resource identifiers, and
mutual dependencies. In order to do so, we need to ensure that the workflow is dead-
lock free in order to infer a partial order between activities. This is used to construct
a Horn clause program [Llo87] which captures the relevant information and which is
then subject to sharing and groundness analysis [MH92,JL92,MS93,MH91] to detect
the sharing patterns among its variables. The way in which this program is engineered
makes it possible to infer, after analysis, which activities must be in the same fragment
and which activities need / should not be in the same fragment. Even more interestingly,
it can automatically uncover a lattice relating fragments of increasing size and complex-
ity to each other and to simpler fragments, while respecting the fragment policy initially
set.

2 Structuring Fragments with Lattices

We assume that any fragment definition is ultimately driven by a set of policies which
determine whether two activities should / could belong to the same fragment. Frag-
ment identification determines how to group activities so that the fragment policies are
respected, while fragment checking ensures that predefined fragments abide by the poli-
cies. For example, data with some security level cannot be fed to activities with a lower
security clearance level. This can be used to classify activities at different clearance
levels according to the data they receive, and also to check that a previous classification
is in accordance to the security level of the data received. This may have changed due,
for example, to updates in an upstream part of the workflow.

Some approaches to process partitioning [FYG09,YG07] assume that the activities
inside an abstractly described process can be a priori assigned to different organiza-
tional domains depending on the external service that is invoked from the workflow.
These are concerned with ensuring that each fragment, corresponding to a projection
of the workflow onto organizational domains, is correctly wired with other fragments
to preserve both the correct behavior of the original workflow, and to satisfy externally
specified constraints that describe legal conversations and data flows between services
in the different domains. Rules for correctly separating fragments have also been de-
vised for some concrete executable workflow languages, such as BPEL [Kha07]. In our
approach we want to derive the fragmentation constraints from the workflow and the
characterization of its inputs, without relying on other external policy sources. Also,
we take a more flexible view of workflow activities, including different “local” data
processing and structured constructs such as loops and nested sub-workflows, which, in
principle, are not a priori organization domain specific.

Many fragmentation approaches assume flat, non-structured fragments: activities
are just split into non-overlapping sets. However, for the sake of generality (which will
be useful later), we assume that fragments can have a richer structure: a lattice, which
means that in principle it is possible3 to join activities belonging to two different frag-
ments in a super-fragment which still respects the basic policies. For example, two
activities with separate security clearance levels (because one deals with business profit
data and the other one with medical problems in a company) can be put together in
a new fragment whose clearance level has to be, at least, equal or higher than any of
these two. It turns out that it may be possible that in order to have a consistent work-
flow, an “artificial” security level needs to be created if some activity is discovered to
need both types of data. Of course, a lattice can also represent simpler fragmentation
schemes, such as “flat” schemes (no order is induced by the properties of the fragments)
or “linear” schemes (the properties induce a complete order).

Therefore we will assume that the fragmentation policies can be described using
a complete lattice 〈L,v,>,⊥,t,u〉, where v is a partial order relation over the non-
empty set L of elements which tag the fragments, > and ⊥ are the top and bottom
elements in the lattice, and t and u are the least upper bound (LUB) and the greatest
lower bound (GLB) operations, respectively. In the examples we will deal with in this
paper we will only use the LUB operation.

〈hi,hi〉

〈hi, lo〉 〈lo,hi〉

〈lo, lo〉

Fig. 1. Data confidentiality:
two levels × two domains.

As an example in the domain of data confidentiality,
the simplest non-trivial case can be modeled using two
levels L1 = {lo,hi} such that lo @ hi, and activities be-
long to these two classes depending on the level of data
they operate on. In a more complex setting, we can have
more degrees of confidentiality L2 = {lo,med,hi}, which
are still completely ordered (lo@med@ hi) or, more in-
terestingly, data belonging to different domains / depart-
ments in a company which each have different security

levels, e.g., L3 = {lo,hi}n, where n > 1 is the number of domains. In this case v is to
be defined to represent the company policy: maybe some department “dominates” the

3 But not necessarily permissible: it depends on the particular definition of the lattice.

security in the company and therefore fragments marked with 〈hi, 〉 (where stands for
“any value”) can access any data, or maybe there is no such a dominance and an activity
marked with clearance 〈hi, lo〉 cannot read data marked with security level 〈lo,hi〉, and
only activities with clearance level 〈hi,hi〉 can access all data in the organization. The
corresponding lattice appears in Fig. 1.

The lattice formalism provides us with the necessary tools for identification of frag-
ments. When a fragment is marked by some element c ∈ L, we can decide whether
some activity a can be included in the fragment depending on whether its policy level
â respects âv c or not. Note that the direction of the partial order in the generic lattice
is arbitrary and may need to be adjusted to match the needs of a real situation.

As anticipated earlier, in our approach policies which apply to data are reflected
on the results of operations on data and on the activities that perform those operations.
Thus, we assign policy levels to activities based on the policy levels of their input data
flow. We on purpose abstract from the notion of program variables / storage locations
and focus instead on pieces of the information flow, which are more important in dis-
tributed workflow enactment scenarios.

3 Derivation of Control and Data Dependencies

As a first step for the automatic fragmentation analysis proper, we need to find out a
feasible order of activities which is coherent with their dependencies and which allows
the workflow to finish successfully. How to do this obviously depends on the palette
of allowed relationships between activities, with respect to which we opted for a no-
table freedom (Section 3.1). To find such an order we first establish a partial order
between workflow activities which respects their dependencies; in doing this we also
detect whether there are dependency loops that may result in deadlocks. While there is
ample work in deadlock detection [BlZ04,AP08], we think that the technique we pro-
pose is clean, can be used for arbitrarily complex dependencies between activities, and
uses well-proven, existing technology, which simplifies its implementation.

3.1 Workflow Representation

We first state which components we highlight in a workflow.

Definition 1 (Workflow). A workflow W is a tuple 〈A,C,D〉, where A is a finite set
of activities {a1,a2, . . . ,an}, n ≥ 0, C is a set of control dependencies given as pre-
and post-conditions for individual activities (see later), and D is a finite set of data
dependencies expressed as pairs 〈ai,A(d)〉 ∈D where ai ∈ A is an activity that produces
(writes) data item d, and A(d) ⊆ A (ai 6∈ A(d)) is a set of activities that consume (read)
data item d.

This abstract workflow definition corresponds in general with the most frequently
used models for distributed workflow enactment. However, the flexibility of the en-
coding we will use for the fragmentation analysis allows for two significant extensions
compared to other workflow models.

a1
x1
y1

a2
x2
y2

a3
y1,y2

z1
a4

x2,y2
z2

A = {a1,a2,a3,a4}
C = {pre–a3 ≡ done–a1∧done–a2 ,

pre–a4 ≡ done–a2}
D ={y1,y2}

y1 = 〈a1,{a3}〉, y2 = 〈a2,{a3,a4}〉

Fig. 2. An example workflow. Arrows indicate control dependencies.

– In our approach, the activities inside a workflow can be simple or structured. The
latter include branching (if-then-else) and looping (while and repeat-until) con-
structs, arbitrarily nested. The body of a branch or a loop is a sub-workflow, and
activities in the main workflow cannot directly depend on activities inside that sub-
workflow. Of course, any activity in such a sub-workflow is subject to the same
treatment as activities in the parent workflow.

– Second, we allow an expressive repertoire of control dependencies between activ-
ities besides structured sequencing: AND split-join, OR split-join and XOR split-
join. We express dependencies similarly to the link dependencies in BPEL but with
fewer restrictions, thereby supporting OR- and XOR-join.

Definition 2 (Activity preconditions). A precondition of an activity ai ∈ A is a propo-
sitional formula which can use the full set of logical connectives (∧, ∨, ¬,→, and↔),
the values 1 (for true) and 0 (for false), and the propositional symbols done–a j and
succ–a j, a j ∈ A, where done–a j holds if a j has completed and succ–a j stands for a
successful outcome of a j when done–a j holds (i.e., succ–a j is only meaningful when
done–a j is true).

Definition 3 (Dependencies). A set of control dependencies C that associates each
ai ∈ A with its precondition, which we will term pre–ai. We write C as a set of identities
of the form pre–ai ≡ 〈formula〉. Trivial cases of the form pre–ai ≡ 1 are omitted.

Commonly, the preconditions use “done” symbols, whereas “succ” symbols can be
added to reflect the business logic in the structure of the workflow, and to distinguish
mutually exclusive execution paths. We do not specify here how the “succ” indicators
are exactly computed. Note that each activity in the workflow is executed at most once;
repetitions are represented with the structured looping constructs (yet, within each iter-
ation, an activity in the loop body sub-workflow can also be executed at most once).

Figure 2 shows an example. The activities are drawn as nodes, and control depen-
dencies indicated by arrows. Data dependencies are textually shown in a “fraction” or
“production rule” format next to the activities: items above the bar are used (read) by
the activity, and the items below are produced. Note that only items y1 and y2 are data
dependencies; others either come from the input message (x1, x2), or are the result of
the workflow (z1, z2). Item y1 is produced by a1 and used by a3, and y2 is produced by
a2 and used by a3 and a4.

Many workflow patterns can be expressed in terms of such logical link dependen-
cies. For instance, a sequence “a j after ai” boils down to pre–a j ≡ done–ai. An AND-
join after ai and a j into ak becomes pre–ak ≡ done–ai∧done–a j. An (X)OR-join of ai
and a j into ak is encoded as pre–ak ≡ done–ai∨done–a j. And an XOR split of ai into

a j and ak (based on the business outcome of ai) becomes pre–a j ≡ done–ai∧ succ–ai,
pre–ak ≡ done–ai∧¬succ–ai. In terms of execution scheduling, we take the assumption
that a workflow activity ai may start executing as soon as its precondition is met.

3.2 Validity of Control Dependencies

The relative freedom given for specifying logic formulae for control dependencies
comes at the cost of possible anomalies that may lead to deadlocks and other undesir-
able effects. These need to be detected beforehand, i.e., at design / compile time using
some sort of static analysis. Here, we are primarily concerned with deadlock-freeness,
i.e., elimination of the cases when activities can never start because they wait on events
that cannot happen.

a1

a2
pre–a2 ≡
done–a1

a3

pre–a3 ≡ done–a2 •done–a4

a4

pre–a4 ≡
done–a1∧
done–a3

Fig. 3. An example of deadlock dependency
on logic formula: • can be either ∧ or ∨.

Whether a deadlock can happen or
not depends on both topology and the
logic of control dependencies. Figure 3
shows a simple example where the de-
pendency arrows are drawn from ai and
a j whenever pre–a j depends on ai fin-
ishing. That topological information is
not sufficient for inferring deadlock free-
ness, unless there are no loops in the
graph. If the connective marked with • in
pre–a3 is ∨, there is no deadlock: indeed,
there is a possible execution sequence,
a1−a2−a3−a4. If, however, • denotes ∧, there is a deadlock between a3 and a4.

Therefore, in general, checking for deadlock-freeness needs looking at the formulas.
We present one such approach that relies on simple proofs of propositional formulas.
We start by forming a logical theory Γ from the workflow by including all precondi-
tions from C and adding axioms of the form done–ai→ pre–ai for each ai ∈ A. These
additional axioms simply state that an activity ai cannot finish if its preconditions were
not met. On that basis, we introduce the following definition to help us detect deadlocks
and infer a task order which respects the data and control dependencies:

Definition 4. The dependency matrix ∆ is a square Boolean matrix such that its ele-
ment δi j, corresponding to ai,a j ∈ A, is defined as:

δi j =

{
1, if Γ ` pre–ai→ done–a j

0, otherwise

For every data dependency 〈a j,A(d)〉 ∈D, and for each ai ∈ A(d), we wish to ensure
that ai cannot start unless a j has completed, since otherwise the data item d would not
be ready. Expressed with a logic formula, that condition is pre–ai→ done–a j, as in the
definition of ∆ , above. Therefore, we require δi j = 1.

The computation of ∆ involves proving propositional formulas, which is best achieved
using some form of SAT solvers, which are nowadays very mature and widely available
either as libraries or standalone programs. It follows from the definition that δi j = 1 if

and only if the end of a j is a necessary condition for the start of ai. It can be easily
shown that ∆ is a transitive closure of C, and that is important for the ordering of ac-
tivities in a logic program representation. However, the most important property can be
summarized as follows.

Proposition 1 (Freedom from deadlocks). The given workflow is deadlock-free if and
only if ∀ai ∈ A, δii = 0.

Proposition 2 (Partial ordering). In a deadlock-free workflow, the dependency matrix
∆ induces a strict partial ordering ≺ such that for any two distinct ai,a j ∈ A, a j ≺ ai
iff δi j = 1.

4 Translation and Analysis

To apply sharing analysis, we first transform the workflow into an appropriate logic
program. The purpose of such program is not to operationally mimic the scheduling
of workflow activities, but to express and convey relevant data and control dependency
information to the sharing analysis stage.

4.1 Workflows as Horn Clauses

Based on the strict partial ordering ≺ induced by the dependency matrix ∆ , in the
deadlock-free case it is always possible to totally order the activities so that ≺ is re-
spected. The choice of particular order does not impact our analysis, because we assume
that the control dependencies, from which the partial ordering derives, include the data
dependencies. From this point on we will assume that activities are renumbered to fol-
low the chosen total order. The workflow can then be translated into a Horn clause of
the form:

w(V)← T (a1),T (a2), . . . ,T (aN)

where V is the set of all logic variables used in the clause, and T (ai) stands for the
translation of the activity ai.

As mentioned before, the logic program aims at representing data flow and depen-
dencies in a sharing analysis-amenable way, which we will detail later. Logic variables
are used to represent input data, data dependencies, output data, and the data sets read
by individual activities. For each activity ai ∈ A, we designate a set Ri of logic variables
that represent data items read by ai, and a set Wi of logic variables that stand for data
items produced by ai. We also designate a special variable âi that represents the total
inflow of data into ai. The task of the translation is to connect Ri and Wi∪{âi} correctly.

A primer on logic programs. Data items in logic programs are called terms. A term
t can be either a variable, an atom (i.e., a simple non-variable data item, such as the
name of a object or a number), or a compound term of the form f (t1, t2, . . . , tn), (n ≥
0), where f is the functor, and t1, t2, . . . , tn are the argument terms. f (a,b) is not a
function call, — it can be seen instead as a record named f with two fields containing
items a and b. Terms that are not variables and do not contain variables are said to be

ground. Procedure calls in a logic program are called goals and have the syntactic form
p(t1, t2, . . . , tn) (n≥ 0), where p is a predicate name of arity n (usually denoted as p/n),
and the terms t1, t2, . . . , tn are its arguments. In goals, the infix predicate = /2 is used to
denote unification of terms (described later), as in t1 = t2.

In the execution of a logic program, variables serve as placeholders for terms that
satisfy the logical conditions encoded in the program. Each successful execution step
may map a previously free variable to a term. The set of such mappings at a program
point is called a substitution. Thus, a substitution θ is a finite set of mappings of the
form x 7→ t where x is a variable and t is a term. Each variable can appear only on one
side of the mappings in a substitution. At any point during execution, the actual value
of the variables in the program text is obtained by applying the current substitution to
these (syntactical) variables. These applications may produce terms that are possibly
more concrete (have fewer variables) than the ones wich appear in the program text. If
θ = {x 7→ 1,y 7→ g(z)}, and t = f (x,y), then the application tθ gives f (1,g(z)).

Substitutions at a subsequent program points are composed together to produce an
aggregated substitution for the next program point (or the final substitution on exit).
E.g., for the previous θ and θ ′ = {z 7→ a+ 1} (with a being an atom, not a variable),
we have θθ ′ = {x 7→ 1,y 7→ g(a+1)}.

Substitutions are generated by unifications. Unifying t1 and t2 gives a substitution
θ which ensures that t1θ and t2θ are identical terms by introducing the least amount
of new information. Unifying x and f (y) gives θ = {x 7→ f (y)}; unifying f (x,a+ 1)
and f (1,z+y) gives θ = {x 7→ 1,z 7→ a,y 7→ 1}; and the attempt to unify f (x) and g(y)
fails, because the functors are different. When a goal calls a predicate, the actual and
the formal arguments are unified, which may generate further mappings to be added to
the accumulated ones.

Take, for instance, the Horn clause translation of the example workflow on Fig. 4.
Variables in the listing are written in uppercase, and comments that start with “%”
indicate workflow activity. The comma-separated goals in the body (after “:-”) are
executed one after another. If the initial substitution is θ0 = {x1 7→ u1,x2 7→ u2}, then
the first unification produces θ1 = {â1 7→ f1(x1)}, so the aggregate substitution before
the next goal is θ0θ1 = {x1 7→ u1,x2 7→ u2, â1 7→ f1(u1)}. The second unification in the
body adds θ2 = {y1 7→ f2(x1)}, and the result is θ0θ1θ2 = {x1 7→ u1,x2 7→ u2, â1 7→
f1(u1),y1 7→ f1y1(u1)}.

The process continues until the final substitution is reached: θ0θ1 · · ·θ8 =
{x1 7→ u1, x2 7→ u2, â1 7→ f1(u1), y1 7→ f2(u1), â2 7→ f3(u2), y2 7→ f4(u2), â3 7→
f5(f2(u1), f4(u2)), z1 7→ f6(f2(u1), f4(u2)), â4 7→ f7(u2, f4(u2)), z2 7→ f8(u2, f4(u2))}.

Note that the program point substitutions are expressed based on u1 and u2, the
terms to which x1 and x2 were initialy bound to. In this case it is interesting that some
variables (for example, y1 and z1) are bound to terms that contain a common term (vari-
able u1, in this case), and so we say that y1 and z1 share.

Definition 5 (Sharing). Given a runtime substitution θ , two syntactical variables x
and y are said to share if the terms xθ and yθ contain some common variable z.

In the preceding example â1 shares with x1 via u1; y2 shares with x2 via u2; â3 shares
both with x1 via u1, and with x2 via u2; etc. The basis for all sharing are u1 and u2, yet

they do not appear in the program, but in the initial substitution. The key to the use of
sharing analysis for the definition of fragments is, precisely, the introduction of such
“hidden” variables, which act as “links” between workflow variables that represent data
flows and activities.

Assignments, expression evaluations, and service invocations are translated into
unifications that enforce sharing between the input and the output data items of the
activity. Complex activities are translated into separate predicates, and an example of
such translation (for a repeat-until loop construct) is given in the example in Section 5.

w(X1,X2,A1,Y1,A2,Y2,A3,Z1,A4,Z2):-
A1=f1(X1), % a1
Y1=f1Y1(X1),
A2=f2(X2), % a2
Y2=f2Y2(X2),
A3=f3(Y1,Y2), % a3
Z1=f3Z1(Y1,Y2),
A4=f4(X2,Y2), % a4
Z2=f4Z2(X2,Y2).

Fig. 4. Logic program encoding of the
workflow from Fig. 2

For each output data item x ∈Wi of the
translated activity ai, we introduce a unifica-
tion between x and a compound term that in-
volves the variables that are used in produc-
ing it, and which form a subset of Ri. If we
do not know exactly which variables from Ri
are necessary to produce x, we can safely use
them all, at the cost of over-approximating
sharing. The choice of functor name in the
compound term is not significant. The same
applies to the activity-level variable âi, which
is unified with a compound term containing
all variables from Ri, to model the dependency of ai on all information that it uses as
input.

4.2 Sharing Analysis

The sharing analysis we use here is an instance of abstract interpretation [CC77], a
static analysis technique that interprets a program by mapping concrete, possibly in-
finite sets of variable values onto (usually finite) abstract domains, together with data
operations, in a way that is correct with respect to the original semantics of the program-
ming language. In the abstract domain, computations usually become finite and easier to
analyze, at the cost of lack of precision, because abstract values typically cover (some-
times infinite) subsets of the concrete values. However, the abstract approximations of
the concrete behavior are safe, in the sense that properties proven in the abstract domain
necessarily hold in the concrete case. Whether abstract interpretation is precise enough
for proving a given property depends on the problem and on the choice of the abstract
domain. Yet, abstract interpretation provides a convenient and finite method for calcu-
lating approximations of otherwise, and in general, infinite fixpoint program semantics,
as is typically the case in the presence of loops and/or recursion.

We use abstract interpretation-based sharing, freeness, and groundness analysis for
logic programs. Instead of analyzing the infinite universe of possible substitutions dur-
ing execution of a logic program, sharing analysis is concerned just with the question
of which variables may possibly share in a given substitution. This analysis is helped
by freeness and groundness analysis, because the former tells which variables are not
substituted with a compound term, and the latter helps exclude ground variables from
sharing. Some logic program analysis tools, like CiaoPP [HBC+10], have been devel-

function RECOVERSUBSTVARS(V,Θ)
n← |Θ |; U ←{u1,u2, ...,un} . n = |Θ | fresh variables in U
S : V →℘(U); S← const(/0) . the initial value for the result
for x ∈V , i ∈ {1..n} do . for each variable and subst. setting

if x ∈Θ [i] then . if the variable appears in the setting
S← S[x 7→ S(x)∪{ui}] . add ui to its resulting set

end if
end for

return U , S
end function

Fig. 5. The minimal substitution variable set recovery algorithm.

1 init1(f(W1,W2),f(W2)).
init2(f(W1),f(W2)).

3 init3(f(W2),f).

5 caseN(X1,X2,A1,Y1,A2,Y2,A3,Z1,A4,Z2):-
6 initN(X1,X2),
7 w(X1,X2,A1,Y1,A2,Y2,A3,Z1,A4,Z2).

Case Sharing results
1 [[X1,A1,Y1,A3,Z1],

[X1,X2,A1,Y1,A2,Y2,A3,Z1,A4,Z2]]
2 [[X1,A1,Y1,A3,Z1],

[X2,A2,Y2,A3,Z1,A4,Z2]]
3 [[X1,A1,Y1,A3,Z1]]

{w1,w2}1 : x1

{w1}
1 : x2
2 : x1

{w2}
2 : x2
3 : x1

{} 3 : x2

{u1,u2}
1 : x1, â1,y1, â3,z1
2 : â3,z1

{u1}
1 :x2, â2,y2,a4,z2
2 :x1, â1,y1

{u2}
2 :x2, â2,y2,

a4,z2
3 :x1, â1,y1,

â3,z1
{} 3 : x2, â2,y2, â4,z2

Fig. 6. The initial settings and the sharing results.

oped which give users the possibility of running different analysis algorithms on input
programs. We build on one of the sharing analyses available in CiaoPP.

In the sharing and freeness domain, an abstract substitution Θ is a set of all possible
sharing sets. Each sharing set is a subset of the variables in the program. The meaning
of this set is that those variables may be bound at run-time to terms which share some
common variable. E.g., if θ = {x 7→ f (u),y 7→ g(u,v),z 7→ w}, then the corresponding
abstract substitution (projected over x, y, and z) is Θ = {{x,y},{y},{z}}. Note that if u
is further substituted (with some term t), x and y will be jointly affected; if v is further
substituted, only y will be affected, and if w is further substituted only z will be affected.

Although an abstract substitution represents an infinite family of concrete substitu-
tions (e.g., θ ′ = {x 7→ v,y 7→ h(w,v),z 7→ k(u)} in the previous example), it is always
possible to construct a minimal concrete substitution exhibiting that sharing, by taking
as many auxiliary variables as there are sharing sets, and constructing terms over them.
Furthermore, if one is only interested in the sets of shared auxiliary variables, not the
exact shape of the substituted terms, the simple algorithm from Figure 5 suffices. Note
that only a ground variable x ∈V can have S(x) = /0.

4.3 Deriving Fragment Identification Information from Sharing

To derive fragment identification information from the sharing analysis results, the logic
program workflow representation has to be analyzed in conjunction with some initial

conditions that specify the policy levels of the input data. In our example from Figures 2
and 4, this applies to the input data items x1 and x2. We will assume that the policy
lattice is isomorphic to or a sublattice of some lattice L induced by the powerset of a
non-empty set W = {w1, ...,wn} with the set inclusion relation.

The initial conditions are then represented by means of sharing between the input
data variables and the corresponding subsets of W . Several initial conditions (labeled
with 1, 2, and 3) are shown in Figure 6 (left). Each caseN (where N is in this case 1, 2,
or 3) predicate starts with all variables independent (i.e., no sharing), and calls initN
to set up the initial sharing pattern for x1 and x2 in terms of the hidden variables w1
and w2. How these different patterns place variables x1 and x2 in the policy lattice is
shown in the figure at the right, top, by displaying the case number just before each
variable. Below this lattice are the sharing results (as Prolog lists) obtained from the
shfr analysis.4 Right on the same figure are the projections of the initial sharing settings
for x1 and x2 on the original policy lattice L =℘(W), W = {w1,w2}, and projections of
the sharing results on the lattice L′ =℘(U), U = {u1,u2} derived using the algorithm
in Figure 5.

Let us, for instance, interpret case 2. If we use variable names to mean their policy
levels (with primes in L′), we see that initially x1 = {w1} and x2 = {w2} are disjoint,
i.e., incomparable w.r.t. v. Activity a1 uses x1 as the input, and produces y1 from x1;
hence, â′1 = y′1 = x′1 = {u1}. Analogously, â′2 = y′2 = x′2 = {u2}. For a3, both y1 and y2
are used to produce z1. Hence, â′3 = z′1 = y′1t y′2 = {u1,u2}. Finally, a4 uses x2 and y2
to produce z2, and thus â′4 = z′2 = x′2t y′2 = {u2}. Therefore, a2 and a4 are at the same
clearance level, and a3 is at a different (but non-comparable) level.

The most important feature of the derived lattice L′ is that if for x,y∈ L we have xv
y, then for their respective images x′,y′ derived in L′, we also have x′ v y′. This feature
follows from the structure of the translation for simple activities (linear unifications), the
fact that variables in W are hidden inside the initialization predicate (and thus remain
mutually independent and free), and the semantics of unification in the shfr domain.
Therefore, the two typical fragmentation inference tasks are:

– The policy level tB of a subset of activities B⊆ A in L′ is t{â′i |ai ∈ B}.
– To check constraint compliance for B⊆ A in L, one needs to represent c as an input

data item in the workflow, and then check tBv c′ in L′.
Note that we have not defined at any moment the exact shape of the finally inferred

lattice: we merely stated the relationship between two input flow streams (for three
different possibilities, in this case) and the analysis algorithm built, for each of these
cases, the abstract substitution which places every relevant program variable in its point.

The next section will present in more detail an example involving privacy and two
types of data.

5 An Example of Application to Data Privacy
Figure 7 shows a simplified workflow for drug prescription in a health care organization.
The input data are the identity of the patient (x), authorization to access the patient’s
medical history (d) and the authorization to access the patient’s medication record (e).

4 These results were obtained in 3.712ms (total) on a Intel Core Duo 2GHz machine with 2GB
of RAM running CiaoPP 1.12 and Mac OS X 10.6.3.

a1
x,d
y

a2
x,e
z

a4
y,z
−

a3
y,z
−

a5

x
−

AND

AND

OR

a4 : repeat-until loop

exit depends on p

body : subworkflow W ′

a41

y,z
c

a42

c
p

W ′ ={A′,C′,D′}

A′ ={a41,a42}

C′ ={pre–a42 ≡ done–a41}

D′ ={c}, c = 〈a41,{a42}〉

W =〈A,C,D〉
A ={a1,a2,a3,a4,a5}
C ={pre–a4 ≡ done–a1 ∧¬succ–a1 ∧done–a2,

pre–a3 ≡ done–a1 ∧ succ–a1 ∧done–a2,

pre–a5 ≡ done–a3 ∨done–a4}
D ={y,z}, y = 〈a1,{a3,a4}〉, z = 〈a2,{a3,a4}〉}

Fig. 7. A simplified drug prescription workflow.

Based on the patient id and the corresponding authorization, activity a1 retrieves the
patient’s medical history (y), and signals success (succ–a1) iff the patient’s health has
been stable. Simultaneously, activity a2 uses the patient’s id and the corresponding au-
thorization to retrieve the patient’s medication record (z). Depending on the outcome of
a1, either a3 or a4 is executed. Activity a3 continues the last medical prescription, based
on the medical history and the medication record. Activity a4, on the other hand, tries
to select a new medication. Activity a41 runs some additional tests based on the medical
history and the medication record to produce criteria c for the new medicine. Medica-
tion record z is used just for cross-checking, and does not affect the result c. Activity
a42 searches the medication databases for a medicine matching c, which is prescribed
if found; the search may fail if the criterion c is too vague. The search result p is used
as the exit condition from the loop. Finally, activity a5 records that the patient has been
processed.

The fragmentation policies used in this example are based on the assumption that
we want to distribute execution of this centralized workflow so that the fragments can
be executed inside domains that need not have access to all patient’s information. For
instance, the health care organization may delegate some of the activities to an outside
(or partner) service that keeps and integrates medical histories and runs medical checks,
but should not (unless expressly authorized) be able to look into the patient’s medication
record, to minimize influence that the types and costs of earlier prescribed may have on
the choice of medical checks. Other activities can be delegated to partners that handle
only medication records. Finally, the organization owning the workflow wants to reserve
to itself the right to access both the medical history and the medication record at the
same time.

To formalize the policies, we introduce a set of two data privacy tags W = {w1,w2},
and the lattice of policies L =℘(W). The presence of tag w1 indicates authorization to
access to medical history related data and the presence of tag w2 indicates authorization
to access to medication record related data. Using variable names to indicate policy
levels, we start with d = {w1}, e = {w2}, and x = {}; the latter implies that consulting
the identity of a patient does not require specific clearances.

It can be easily demonstrated that this workflow does not have deadlocks, and that
one compatible ordering of activities is 〈a1,a2,a3,a4,a5〉. The translation of the work-
flow into a logic program is shown in Figure 8. Note the initial sharing setting in the

1 analysis(X,D,E,T,A1,Y,A2,Z,A3,A4,A41,C,A42,P,A5):-
init(X,D,E,T),

3 w(X,D,E,T,A1,Y,A2,Z,A3,A4,A41,C,A42,P,A5).

5 init(f,f(W1),f(W2),f(W1,W2)).

7 w(X,D,E,T,A1,Y,A2,Z,A3,A4,A41,C,A42,P,A5):-
A1=f1(X,D), % a_1

9 Y=f1_Y(X,D),
A2=f2(X,E), % a_2

11 Z=f2_Z(X,E),
A3=f3(Y,Z), % a_3

13 a_4(Y,Z,A4,A41,C,A42,P), % a_4
A5=f5(X). % a_5

15 a_4(Y,Z,A4,A41,C,A42,P):-
16 w2(Y,Z,A41,C2,A42,P2),

A4=f(P2),
18 a_4x(Y,Z,C2,P2,C,P,A4,A41,A42).

20 a_4x(_,_,C,P,C,P,_,_,_).
a_4x(X,Z,_,_,C,P,A4,A41,A42):-

22 a_4(X,Z,A4,A41,C,A42,P).

24 w2(Y,Z,A41,C,A42,P):-
A41=f41(Y,Z), % a_41

26 C=f41_C(Y),
A42=f42(C), % a_42

28 P=f42_P(C).

Fig. 8. Logic program encoding for the medication prescription workflow.

predicate init before calling the workflow translation in predicate w. It corresponds to
the lattice L from Figure 9. We have introduced the element> (variable T in the listing)
that corresponds to the top element of the original lattice.

Also, note how the repeat-until has been translated into two predicates, a 4 and
a 4x. Predicate a 4 invokes the sub-workflow w2, to produce data items c and p from
the single iteration (logic variables C2 and P2). It then enforces sharing between â4 and
the latest p on which the exit condition depends, and invokes a 4x. The latter predicate
treats two cases: the first clause models exit from the loop, by passing the values of
c and p from the last iteration as the final ones. The second clause of a 4x models
repetition of the loop. The sub-workflow comprising the body of the loop is translated
to w2 using the same rules as the main workflow.

The abstract substitution that is the result of the sharing analysis, as returned by
the CiaoPP analyzer, is shown on Figure 11.5 By interpreting these results using the
algorithm for recovery of the minimal sets of variable substitutions from Figure 5, we
obtain the resulting lattice L′, shown on Figure 10. Variables X and A5 are ground and
do not appear in the result. Note that the relative ordering of the input data items (x, d,
e, and >) has been preserved in L′. Also, the assignment of policy levels to activities
shows that the activities a3 and a41 are critical because they need to have both the d and
e clearance levels—i.e., the level dte. Activities a1, a4 and a42 can be safely delegated
to a partner that is authorized to look at the medical history of a patient, but not at

5 These results were obtained in 2.130ms on 2GHz Intel Core Duo machine with 2GB of RAM,
running Mac OS X 10.6.3 and CiaoPP 1.12.

{w1,w2}(>)

{w1}(d) {w2} (e)

{} (x)

Fig. 9. The base sharing
setting for the code from
Fig. 11.

{u1,u2,u3}(>, a3 , a41)

{u1,u2}
(d, a1 ,y, a4 ,

c, a42 , p)
{u2,u3} {u1,u3} (e, a2 ,z)

{u2} {u1} {u3}

{} (x, a5)

Fig. 10. Interpretation of the sharing results from Fig. 11.

[[D,E,T,A1,Y,A2,Z,A3,A4,A41,C,A42,P], (Corresponding to u1)
[D,T,A1,Y,A3,A4,A41,C,A42,P], (Corresponding to u2)
[E,T,A2,Z,A3,A41]] (Corresponding to u3)

Fig. 11. Sharing analysis result for the code from Fig. 8.

the medication record. Activity a2, by contrast, can be delegated to a partner that is
authorized to look at the medication record, but not the medical history of a patient;
and finally, a5 can be entrusted to any partner, since it does not handle any private
information.

Going in the other direction, we can look at the resulting lattice L′ to deduce the
policy level that corresponds to any subset of workflow activities. For B1 = {a1,a2},
tB1 =>; for B2 = {a2,a5}, tB2 = e, etc.

6 Conclusions
We have shown how sharing analysis, a powerful program analysis technique, can be
effectively used to identify fragments in service workflows. These are in our case rep-
resented using a rich notation featuring control and data dependencies between work-
flow activities, as well as nested structured constructs (such as branches and loops) that
include sub-workflows. The policies that are the basis for the fragmentation are repre-
sented as points in a complete lattice, and the fragments to which input data / activities
belong are stated with initial sharing patterns. The key to this use of sharing analysis
is how workflows are represented: in our case we have used Horn clauses designed to
adequately enforce sharing between inputs and outputs of the workflow activities. The
results of the sharing analysis lead to the construction of a lattice that preserves the or-
dering of items from the original policy lattice and which contains inferred information
which can be used for both deciding the compliance of individual activities with given
fragmentation constraints, and to infer characteristics of potential fragments.

As future work, we want to attain a closer correspondence between the abstract
workflow descriptions and well-known workflow patterns, as well as to provide better
support to languages used for workflow specification. Another line of the future work
concerns aspects of data sharing in stateful service conversations (such as accesses to
databases, updates of persistent objects, etc.), as well as on composability of the results
of sharing analysis across services involved in cross-domain business processes.

References

[AP08] Ahmed Awad and Frank Puhlmann. Structural Detection of Deadlocks in Business
Process Models. In Witold Abramowicz and Dieter Fensel, editors, International
Conference on Business Information Systems, volume 7 of LNBIP, pages 239–250.
Springer, May 2008.

[BlZ04] Henry H. Bi and J. leon Zhao. Applying Propositional Logic to Workflow Verifica-
tion. Information Technology and Management, 5:293–318, 2004.

[BMM06] Luciano Baresi, Andrea Maurino, and Stefano Modafferi. Towards Distributed BPEL
Orchestrations. ECEASST, 3, 2006.

[CC77] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In ACM Sym-
posium on Principles of Programming Languages (POPL’77), pages 238–252. ACM
Press, 1977.

[FYG09] Walid Fdhila, Ustun Yildiz, and Claude Godart. A Flexible Approach for Automatic
Process Decentralization Using Dependency Tables. In ICWS, pages 847–855, 2009.

[HBC+10] M. V. Hermenegildo, F. Bueno, M. Carro, P. López, E. Mera, J.F. Morales, and
G. Puebla. An Overview of Ciao and its Design Philosophy. Technical Report
CLIP2/2010.0, Technical University of Madrid (UPM), School of Computer Sci-
ence, March 2010. Under consideration for publication in Theory and Practice of
Logic Programming (TPLP).

[Jea07] D. Jordan and et. al. Web Services Business Process Execution Language Version
2.0. Technical report, IBM, Microsoft, et. al, 2007.

[JL92] D. Jacobs and A. Langen. Static Analysis of Logic Programs for Independent And-
Parallelism. Journal of Logic Programming, 13(2 and 3):291–314, July 1992.

[Kha07] Rania Khalaf. Note on Syntactic Details of Split BPEL-D Business Processes. Tech-
nical Report 2007/2, Institut für Architektur von Anwendungssystemen, Universität
Stuttgart, Universitätsstrasse 38, 70569 Stuttgart,Germany, July 2007.

[KL06] R. Khalaf and F. Leymann. E Role-based Decomposition of Business Processes
using BPEL. In IEEE International Conference on Web Services (ICWS’06), 2006.

[Llo87] J.W. Lloyd. Foundations of Logic Programming. Springer, 2nd Ext. Ed., 1987.
[MH91] K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing and

Freeness of Program Variables Through Abstract Interpretation. In International
Conference on Logic Programming (ICLP 1991), pages 49–63. MIT Press, June
1991.

[MH92] K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable Depen-
dency Using Abstract Interpretation. Journal of Logic Programming, 13(2/3):315–
347, July 1992.

[MS93] K. Marriott and H. Søndergaard. Precise and efficient groundness analysis for logic
programs. Technical report 93/7, Univ. of Melbourne, 1993.

[Obj09] Object Management Group. Business Process Modeling Notation (BPMN), Version
1.2, January 2009.

[TF07] Wei Tan and Yushun Fan. Dynamic Workflow Model Fragmentation for Distributed
Execution. Comput. Ind., 58(5):381–391, 2007.

[vdAP06] Wil van der Aalst and Maja Pesic. DecSerFlow: Towards a Truly Declarative Service
Flow Language. In The Role of Business Processes in Service Oriented Architectures,
number 06291 in Dagstuhl Seminar Proceedings, 2006.

[vdAtH05] W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL: Yet Another Workflow
Language. Information Systems, 30(4):245–275, June 2005.

[Wor08] The Workflow Management Coalition. XML Process Definition Language (XPDL)
Version 2.1, 2008.

[WRRM08] Barbara Weber, Manfred Reichert, and Stefanie Rinderle-Ma. Change Patterns and
Change Support Features - Enhancing Flexibility in Process-Aware Information Sys-
tems. Data Knowl. Eng., 66(3):438–466, 2008.

[YG07] Ustun Yildiz and Claude Godart. Information Flow Control with Decentralized Ser-
vice Compositions. In ICWS, pages 9–17, 2007.

[ZBDtH06] Johannes Maria Zaha, Alistair P. Barros, Marlon Dumas, and Arthur H. M. ter Hofst-
ede. Let’s Dance: A Language for Service Behavior Modeling. In OTM Conferences
(1), pages 145–162, 2006.

