
A Soft Constraint-Based Approach
to QoS-Aware Service Selection ?

Mohamed Anis Zemni1, Salima Benbernou1, Manuel Carro2

1 LIPADE, Université Paris Descartes, France
2 Facultad de Informática, Universidad Politécnica de Madrid, Spain

mohamedaniszemni@gmail.com, salima.benbenrou@paridescartes.fr,
mcarro@fi.upm.es

Abstract. Service-based systems should be able to dynamically seek replace-
ments for faulty or underperforming services, thus performing self-healing. It
may however be the case that available services do not match all requirements,
leading the system to grind to a halt. In similar situations it would be better to
choose alternative candidates which, while not fulfilling all the constraints, allow
the system to proceed. Soft constraints, instead of the traditional crisp constraints,
can help naturally model and solve replacement problems of this sort. In this work
we apply soft constraints to model SLAs and to decide how to rebuild composi-
tions which may not satisfy all the requirements, in order not to completely stop
running systems.
Keywords: Service Level Agreement, Soft Constraints.

1 Introduction
A (web) service can be defined as a remotely accessible software implementation of
a resource, identified by a URL. A set of protocols and standards, such as WSDL, fa-
cilitate invocation and information exchange in heterogeneous environments. Software
services expose not only functional characteristics, but also non-functional attributes
describing their Quality of Service (QoS) such as availability, reputation, etc. Due to
the increasing agreement on the implementation and management of the functional as-
pects of services, interest is shifting towards non-functional attributes describing the
QoS. Establishing QoS contracts, described in the Service Level Agreement (SLA),
that can be monitored at runtime, is therefore of paramount importance. Various tech-
niques [1] to select services fulfilling functional and non-functional requirements have
been explored, some of them based on expressing these requirements as a constraint
solving problem [2, 3] (CSP). Traditional CSPs can either be fully solved (when all re-
quirements are satisfied) or not solved at all (some requirements cannot be satisfied).
In real-life cases, however, over-constraining is common (e.g., because available ser-
vices offer a quality below that required by the composition), and problems are likely
not to have a classical, crisp solution. Solving techniques for soft CSPs (SCSP) [4–6]
can generate solutions for overconstrained problems by allowing some constraints to
remain unsatisfied.
? The research leading to these results has received funds from the European Community’s

Seventh Framework Programme FP7/2007-20013 under grant agreement 215483 (S-CUBE).
Manuel Carro was also partially supported by Spanish MEC project 2008-05624/TIN DOVES
and CM project P2009/TIC/1465 (PROMETIDOS).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148658712?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A C-semiring is a tuple 〈A,+,×,0,1〉 s.t.

– A is a set and 0 ∈ A, 1 ∈ A.
–

∑
(the additive operation)a is defined on subsets of A as follows:
• + is commutative (a+ b = b+ a), associative (a+ (b+ c) = (a+ b) + c), with unit

element 0 (a+ 0 = a) and absorbing element 1 (a+ 1 = 1).
•

∑
∅ = 0 and for all a ∈ A,

∑
{a} = a.

• Given any set of indices S,
∑

i∈S(
⋃
Ai) =

∑
({
∑

i∈S Ai}) (flattening).
– × (the multiplicative operation) is associative, commutative, a× 1 = a and a× 0 = 0.
– × distributes over +, i.e., a× (b+ c) = (a× b) + (a× c).

a Written as infix + when applied to a two-element set.

Fig. 1. Definition of a C-Semiring for Soft Constraints.

Our framework takes into consideration the penalties agreed upon on the SLA by
building a new (Soft) Service Level Agreement (SSLA) based on preferences where
strict customer requirements are replaced by soft requirements allowing a suitable com-
position. This agreement has to include penalty terms to be applied while the contract
terms are violated.

2 Soft Constraints in a Nutshell

A CSP defines a set of variables whose ranges we assume a finite domain (FD)3 and a
set of constraints which restrict the values these variables can take. A solution for a CSP
is an assignment of a value to every variable s.t. all the constraints are simultaneously
satisfied. Soft constraints [5, 6] generalize classical CSPs by adding a preference level
to every tuple in the domain of the constraint variables. This level can be used to obtain
a suitable solution which may not fulfill all constraints, which optimizes some metrics,
and which in our case will be naturally applied to the requirements of the users.

The basic operations on soft constraints (building a constraint conjunctions and pro-
jecting on variables) need to handle preferences in a homogeneous way. This requires
the underlying mathematical structure of classical CSPs to change from a cylindrical
algebra to a semiring algebra, enriched with additional properties and termed a C-
semiring (Figure 1). In it, A provides the levels of preference of the solutions and it
can be proved that it is a lattice with partial order a � b iff a+ b = b, minimum 0, and
maximum 1. When solutions are combined or compared, preferences are accordingly
managed using the operations × and +. Note that the theory makes no assumptions as
to what the preferences mean, or how they are actually handled:× and + are placehold-
ers for concrete definitions which can give rise to different constraint systems, such as
fuzzy constraints, traditional constraints, etc.

Figure 2 summarizes some basic definitions regarding soft constraints. A constraint
takes a tuple of variables and assigns it a tuple of concrete values in the domain of the

3 CSPs can be defined on infinite domains, but assume a FD here because it can accommodate
many real-life problems, as witnessed by the relevance of FD in industrial applications, and
because soft constraint theory requires finiteness.

2

Definition 1 (Constraint). Given a c-semiring 〈A,+,×, 0, 1〉, a set of variables V , and a set
of domains D, one for every variable in V , a constraint is the pair 〈def, con〉 where con ⊆ V
and def : D|con| → A.

Definition 2 (Soft Constraint Satisfaction Problem SCSP). A SCSP is a pair 〈C, con〉 where
con ⊆ V and C is a set of constraints. C may contain variables which are not in con, i.e.,
they are not interesting for the final result. In this case the constraints in C have to be projected
onto the variables in con.

Definition 3 (Constraint combination). Two constraints c1〈def1, con1〉 and c2 =
〈def2, con2〉 can be combined in c1 ⊗ c2 = 〈def, con〉 by taking all the variables in the
original constraints (con = con1

⋃
con2) and assigning to every tuple in the new con-

straint a preference value which comes from combining the values in the original constraints:
def(t) = def1(t ↓concon1

)×def2(t ↓concon2
), with t ↓XY denoting the projection of tuple t , which

is defined on the set of variables X , over the set of variables Y ⊆ X .

Definition 4 (Projection). Given a soft constraint c = 〈def, con〉 and a set of variables I ⊆
V , the projection of c over I , denoted by c ⇓I is the constraint 〈def ′, con′〉 where con′ =
con

⋂
I and def ′(t′) =

∑
{t|t↓con

con∩I
=t′} def(t).

Definition 5 (Solution). A solution of a SCSP problem 〈C, con〉 is the constraint (⊗C) ⇓con,
i.e., the combination (conjunction) of all the constraints in C projected over all the variables
con of interest.

Fig. 2. Definitions for Soft Constraints.

variables, plus a preference value (belonging to the set A). Constraints can be com-
bined into other constraints (with ⊗, similar to conjunction) and projected (⇓XY) onto
a tuple of variables. The preference value of every tuple in a constraint conjunction is
worked out by applying × to the preference values of the tuples in the individual con-
straints. Projections eliminate “columns” from tuples and retain only the non-removed
tuple components. Repeated rows may then appear, but only one is retained, and its
preference is calculated applying + to the preferences of the repeated tuples. Since a
solution is a projection on some selected set of variables, the preferences of solutions
are naturally calculated using the projection operation. Usually the tuple with the high-
est preference value is selected as the “optimal” solution.

3 Soft Service Level Agreement and SCSPs
A Service Level Agreement (SLA) [7] is a contract between provider(s) and client(s)
specifying the guarantees of a service, the expected quality level, and the penalties to
be applied in case of unfulfillment of duties, and it is therefore an important quality
management artifact. The SLA can be used to identify the responsible of a malfunction
and to decide which action (if any) has to be taken. An SLA should, therefore, be
realistic, achievable, and maintainable.

An SLA has a rich structure from which we underline the properties of the services,
including those measurable aimed at expressing guarantees. This part provides a set
Υ of variables υi (whose meaning is explained in the service description) and their
domains δi ∈ ∆, which can be established by the metric attribute. A Soft SLA (SSLA)
is similar to a SLA but with the addition of a set of user preferences and of penalties

3

Definition 6 (Preference). The set Pr = {〈δi, υi, ai〉|δi ∈ ∆, υi ∈ Υ, ai ∈ A} where δi is
the sub-domain that the i-th preference belongs to, υi is the variable defining the preferences,
and ai is semiring value, representing the preferences in an SSLA.

Definition 7 (Penalty). The set Pn = {pni | ∃pri s.t. υi /∈ δi} represents the penalties.

Definition 8 (SSLA document). A SSLA document is a tuple ζ = 〈Υ,∆,A, Pr, Pn, T 〉where
Υ is a set of variables vi, ∆ is a set of variable domains δi (one for each variable), Pr is a set
of preferences Pri, Pn is a set of penalties Pni to apply when the preferences are not satisfied
and T is a set of pairs 〈pri, pni〉 which associates preferences with the penalties to apply in
case of violation.

Fig. 3. Definitions related to a soft SLA.

associated to contract breaking (respectively, Pr and Pn). The preferences are used
to make a composition in the presence of unsatisfied requirements and the penalties
are used to refine found solutions and to protect each party from the violation of the
contract terms. These notions are depicted in Figure 3. The i-th penalty pni ∈ Pn is
applied when the i-th preference pri ∈ Pr is not satisfied.

3.1 Extending SCSP Using Penalties
We will adapt the SCSP framework to handle explicitly penalties for service selection
and to build a Soft Service Level Agreement including preferences and penalties. In this
framework, service selection has three phases:

1. Model the characteristics for the selection using soft constraints.
2. Assuming a pre-selection is made using functional requirements, rank candidate

services using non-functional requirements and the constraint preferences.
3. We assign penalties to unmet user preferences, and these penalties are used to rank

solutions having the same constraint preferences.

Figure 4 shows the definitions for this extended SCSP framework. We extend the
application of semiring operations to penalties. Variables are assumed to take values
over subdomains which discretize a continuous domain, and which for brevity we rep-
resent using identifiers in D{}. The constraint preference function def is also adapted
in order to apply it both to preferences and to penalties. The projection operation is kept
as in the SCSP framework.

3.2 An Example
A delivery service has an order-tracking web service. Companies wishing to hire this
service want to have in the contract non-functional criteria such as availability, reputa-
tion, response time and cost.

Phase 1 Let CS = 〈Sp, D{}, V 〉 be a constraint system and P = 〈C, con〉 be the
problem to be solved, where V = con = {Availability, Reputation, response Time, coSt},
D{} = {{a1, a2}, {r1, r2}, {t1, t2, t3}, {s1, s2}}, Sp = 〈[0, 1], Pn,max,min, 0, 1〉,
C = {c1, c2, c3, c4}. For simplicity, variables and their domains have been written
in the same order.

4

Definition 9 (CP-semiring). A CP-semiring is a tuple S = 〈A,Pn,+,×, 0, 1〉, extending a
C-semiring.A and Pn are two sets with lattice structure stating preference values for solutions
and penalties. Operations × and + are applied when constraints are combined or projected.

Definition 10 (Constraint System). A constraint system is a tuple CS = 〈S,D{}, V 〉, where
S is c-semiring, D{} represents the set of identifiers of subdomains, and V is the ordered set
of variables.

Definition 11 (Constraint). Given a constraint system CS = 〈Sp, D{}, V 〉 and a problem
P = 〈C, con〉 , a constraint is the tuple c = 〈defc, type〉, where type represents the type of
constraint and defc is the definition function of the constraint, which returns the tuple

def : D
|con|
{} → 〈pr, pn〉,

Definition 12 (Soft Constraint Satisfaction Problem SCSP). Given a constraint system
CS = 〈S,D{}, V 〉 , an SCSP over CS is a pair P = 〈C, con〉, where con , called set of
variables of interest for C , is a subset of V and C is a finite set of constraints, which may
contain some constraints defined on variables not in con .

Fig. 4. CP-Semiring.

A set of penalties, ranked from the most to then less important one, has been set:
pni � pnj if i ≤ j. The above shown values of the variable domains comes from a dis-
cretization such as availability ∈ {[0, 0.5[, [0.5, 1]}, reputation ∈ {[0, 0.6[, [0.6, 1]},
response time ∈ {[20,∞[, [5, 20[, [0, 5[}, cost ∈ {[1000, 1500[, [1500, 3000]}.

Let us consider the following constraints: c1 = 〈defc1, {availability, reputation}〉,
c2 = 〈defc2, {response time}〉, c3 = 〈defc3, {availability, reputation, cost}〉 , c4 =
〈defc4, {reputation, response time}〉, where the preference values and corresponding
penalties are in Table 1. For example, for the tuple 〈a2, r1〉, attributes “availability” and
“reputation” are respectively assigned subdomains [0.5, 1] and [0, 0.6[. The function
defc1(〈a2, r1〉) = 〈0.5, pn3〉 shows that these attribute values have a preference 0.5
and company is ready to sign away this preference for a penalty pn3.

Phase 2 Given the model, we define constraint combination to keep the minimum value
of preferences (resp. for the penalties). For example defc1(〈a2, r1〉) ⊗ defc2(〈t3〉) =
min(〈0.5, pn3〉, 〈0.25, pn6〉) = 〈0.25, pn3〉 and so on with all the tuples to obtain c1,2.
Next, we would combine c1,2 and c3 to get c1,2,3 = c1,2⊗ c3 and so on, until all con-
straints have been combined. Table 2 shows the results of combining all the constraints.

〈A,R〉 defc1 〈T 〉 defc2 〈A,R, S〉 defc3 〈R, T 〉 defc4
〈a1, r1〉 〈0,−〉 〈t1〉 〈0.25, pn6〉 〈a1, r1, s1〉 〈0.25, pn8〉 〈r1, t1〉 〈0.5, pn6〉
〈a1, r2〉 〈0.25, pn1〉 〈t2〉 〈0.5, pn5〉 〈a1, r1, s2〉 〈0.25, pn1〉 〈r1, t2〉 〈0.5, pn5〉
〈a2, r1〉 〈0.5, pn3〉 〈t3〉 〈1, pn7〉 〈a1, r2, s1〉 〈0.5, pn1〉 〈r1, t3〉 〈0,−〉
〈a2, r2〉 〈0.75, pn3〉 〈a1, r2, s2〉 〈0.25, pn3〉 〈r2, t1〉 〈0.75, pn2〉

〈a2, r1, s1〉 〈0.75, pn9〉 〈r2, t2〉 〈0.75, pn4〉
〈a2, r1, s2〉 〈0.5, pn8〉 〈r2, t3〉 〈1, pn2〉
〈a2, r2, s1〉 〈0.75, pn2〉
〈a2, r2, s2〉 〈0.25, pn1〉

Table 1. Constraint definitions.

5

〈A,R, T, S〉 〈pr, pn〉 〈A,R, T, S〉 〈pr, pn〉 〈A,R, T, S〉 〈pr, pn〉 〈A,R, T, S〉 〈pr, pn〉
〈2, 2, 3, 1〉 〈0.75, pn2〉 〈2, 2, 1, 2〉 〈0.25, pn1〉 〈1, 2, 1, 1〉 〈0.25, pn1〉 〈1, 1, 3, 2〉 〈0.0,−〉
〈2, 2, 2, 1〉 〈0.50, pn2〉 〈1, 2, 3, 2〉 〈0.25, pn1〉 〈2, 2, 1, 1〉 〈0.25, pn2〉 〈1, 1, 3, 1〉 〈0.0,−〉
〈2, 1, 2, 2〉 〈0.50, pn3〉 〈1, 2, 3, 1〉 〈0.25, pn1〉 〈2, 1, 1, 2〉 〈0.25, pn3〉 〈1, 1, 2, 2〉 〈0.0,−〉
〈2, 1, 2, 1〉 〈0.50, pn3〉 〈1, 2, 2, 2〉 〈0.25, pn1〉 〈2, 1, 1, 1〉 〈0.25, pn3〉 〈1, 1, 2, 1〉 〈0.0,−〉
〈2, 2, 2, 2〉 〈0.25, pn1〉 〈1, 2, 2, 1〉 〈0.25, pn1〉 〈2, 1, 3, 2〉 〈0.0,−〉 〈1, 1, 1, 2〉 〈0.0,−〉
〈2, 2, 3, 2〉 〈0.25, pn1〉 〈1, 2, 1, 2〉 〈0.25, pn1〉 〈2, 1, 3, 1〉 〈0.0,−〉 〈1, 1, 1, 1〉 〈0.0,−〉

Table 2. Ordered constraint combinations with preferences and penalties.

Phase 3 The set of solutions is ranked by preferences and then by penalties (already in
Table 2). The solution with highest rank is chosen first. If it turns out not to be feasible,
the associated penalty is applied and the next solution is chosen, and so on.

3.3 Mapping SSLA onto SCSP Solvers
Given the our design of an SSLA, mapping it into a SCSP is very easy: variables vi in
the SSLA are mapped onto the corresponding vi in the SCSP; SSLA domains δi are dis-
cretized and every discrete identifier is a domain for a SCSP variable; and preferences
and penalties (both lattices) are handled together by the def function, so they can be
mapped to the A set in a C-semiring with an adequate definition of the def function.

4 Conclusion
We have presented a soft constraint-based framework to seamlessly express QoS prop-
erties reflecting both customer preferences and penalties applied to unfitting situations.
The application of soft constraints makes it possible to work around overconstrained
problems and offer a feasible solution. Our approach makes easier this activity thanks
to ranked choices. Introducing the concept of penalty in the Classical SCSP can also be
useful during the finding and matching process. We plan to extend this framework to
also deal with behavioral penalties.

References

1. Carlos Müller, Antonio Ruiz-Cortés, and Manuel Resinas. An Initial Approach to Explaining
SLA Inconsistencies. In Athman Bouguettaya, Ingolf Krueger, and Tiziana Margaria, editors,
Service-Oriented Computing (ICSOC 2008), volume 5364 of LNCS, pages 394–406, 2008.

2. Ugo Montanari. Networks of Constraints: Fundamental Properties and Application to Picture
Processing. Information Sciences 7, pages 95 – 132, 1974.

3. Rina Dechter. Constraint Processing. Morgan Kaufman, 2003.
4. S. Bistarelli. Semirings for Soft Constraint Solving and Programming. Springer, 2004.
5. Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-based constraint satisfac-

tion and optimization. J. ACM, 44(2):201–236, 1997.
6. S. Bistarelli, U. Montanari, and F. Rossi. Constraint Solving over Semirings. In Proc. IJCAI95,

1995.
7. Philip Bianco, Grace A.Lewis, and Paulo Merson. Service Level Agreements in Service-

Oriented Architecture Environment. Technical Report CMU/SEI-2008-TN-021, Carnegie
Mellon, September 2008.

6

