
660

SET-MM – A Software Evaluation Technology

Maturity Model

Raúl Garcı́a-Castro

Ontology Engineering Group

Departamento de Lenguajes y Sistemas Informáticos e Ingenierı́a de Software

Facultad de Informática, Universidad Politécnica de Madrid, Spain

rgarcia@fi.upm.es

Abstract—The application of software evaluation technologies
in different research fields to verify and validate research is a
key factor in the progressive evolution of those fields. Nowadays,
however, to have a clear picture of the maturity of the tech-
nologies used in evaluations or to know which steps to follow in
order to improve the maturity of such technologies is not easy.
This paper describes a Software Evaluation Technology Maturity
Model that can be used to assess software evaluation technologies
in a research field. To illustrate the use of this model, we have
employed it for assessing the maturity of software evaluation
technologies in some evaluation initiatives within the semantic
research field.

I. INTRODUCTION

For research to reach maturity it is necessary to improve the

quality of the research processes and their results over time.

However, to apply the vague concept of maturity to a research

field, which is itself difficult to define, may seem an arduous

task.

It is well known that any research field has to periodically

assess its status by measuring different aspects of it (e.g.,

outreach to other fields, quality of publications, technology

maturity) and that the results obtained from these assessments

are the ones that initiate the actions needed towards improve-

ment and maturity in the field.

Nevertheless, to perform successful assessments for choos-

ing the most appropriate actions, it is necessary to have clear

goals and be aware of what is needed to achieve those goals.

Maturity models have been used for decades to guide

improvement by providing both a framework of incremental

maturity levels to be compared against and different measur-

able goals that must be satisfied to achieve each maturity level.

The most relevant maturity models are probably the Capa-

bility Maturity Model (CMM or SW-CMM) [1] and its suc-

cessor, the Capability Maturity Model Integration1 (CMMI).

Both maturity models have been defined by the Software Engi-

neering Institute with the goal of improving an organization’s

software development processes.

Other maturity models have also been defined, most of them

inspired by CMM or CMMI, mainly in the software engi-

neering domain but also in domains such as the organization

management one (e.g., the Portfolio, Programme and Project

1http://www.sei.cmu.edu/cmmi/

Management Maturity Model [2]) or the e-learning one (the

e-learning Maturity Model [3]).

One of the measurable aspects of a research field is what

technologies support the evaluation of the research outcomes.

In fact, the application of software evaluation technologies in

any research field to verify and validate research is a key

factor for research evolution by means of experimentation-

driven research [4].

The goal of this paper is to describe a Software Evaluation

Technology Maturity Model (SET-MM) that can be used to

assess software evaluation technologies in any research field.

Similarly to other maturity models, the goal of the SET-MM

is not to derive a figure for a specific level but to provide some

guiding to improve the current activities in the research field.

To illustrate how the SET-MM maturity model functions,

we have used it to assess the maturity of software evaluation

technologies in some evaluation initiatives within a concrete

research field, that of semantic research.

This paper is structured as follows. Section II introduces

other maturity models that are related to the one here presented

as they cover similar domains. Then, Section III presents the

scope of this work and the process followed to define the

maturity model, whereas Section IV enumerates the assump-

tions taken into account when defining this maturity model.

Section V describes the five maturity levels of SET-MM and

the main notions behind the model. Section VI presents how

we have used the maturity model here presented to assess the

maturity of software evaluation technologies in the semantic

research field. Finally, Section VII draws the conclusions from

this work and proposes future lines of research.

II. RELATED WORK

This section presents other maturity models that cover

similar domains and that have served us as input for defining

the maturity model presented in this paper.

The Capability Maturity Model for Software was defined by

the Software Engineering Institute in the early 1990s [1]. Since

then different maturity models have appeared, each collecting

the best practices to be used when comparing an organization’s

practices and guiding process improvement.

The proliferation of such models has led to their com-

bination into a single improvement framework, namely, the

Capability Maturity Model Integration that, in its current

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148658584?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


661

version, contains three different models: CMMI for Acqui-

sition (CMMI-ACQ) [5], which is used for acquiring products

and services; CMMI for Development (CMMI-DEV) [6], for

developing products and services; and CMMI for Services

(CMMI-SVC) [7], for providing superior services.

The CMMI models focus on the following dimensions that

affect organizational improvement: people, procedures and

methods, tools and equipment, and processes.

From the number of maturity models that have been defined

we present here six, all related to SET-MM and largely

inspired by CMM or designed to work in conjunction with

it. While the first three models (namely, the Testing Maturity

Model, the Measurement Capability Maturity Model and the

Software Measurement Process Capability Maturity Model)

focus on process maturity, the other three focus on technology

maturity (as our model does).

The Testing Maturity Model (TMM) [8] was designed to

assist software development organizations in evaluating and

improving their testing processes.

It covers nine different attributes of a mature testing process:

testing policies, test life cycle, test planning process, test

group, test process improvement group, test-related metrics,

tools and equipment, controlling and tracking mechanism, and

product quality control.

The Measurement Capability Maturity Model (M-CMM) [9]

enables organizations to assess their software and software

process measurement capabilities and provides organizations

with directions for improving their measurement capability.

It covers the following main areas: measurement focus, mea-

surement design, measure collection, measure analysis, tech-

nology support, measurement feedback, measurement training,

and measurement management.

The Software Measurement Process Capability Maturity

Model (SMP-CMM) [10] helps organizations to assess their

measurement processes and provides guidelines for improving

them.

It supports improvement in five areas: metrics plan, data

collection, data gathering, data analysis, and feedback activity.

Daskalantonakis et al. [11] defined a measurement technol-

ogy maturity model for assessing the software measurement

technology of an organization.

Their maturity model covers ten different themes: formaliza-

tion of the development process, formalization of the measure-

ment process, scope of measurement, implementation support,

measurement evolution, measurement support for management

control, project improvement, product improvement, process

improvement, and predictability.

Wettstein and Kueng [12] defined a maturity model for

performance measurement systems, that is, systems that track

and manage the performance of an organization (or part of it).

Their maturity model covers six different dimensions: qual-

ity of measurement process, scope of measurement, data

collection, data storage, use of measures, and communication

of results.

Gao et al. [13] define five levels to evaluate the maturity

level of software test automation in the test processes of an

organization.

In their work, maturity is evaluated through two different

perspectives regarding the existence of systematic solutions

and tools that support a) the different tasks to be performed

during software testing; and b) the measurement of the testing

process.

If we classify the main areas covered in these maturity mod-

els according to the four improvement dimensions (people,

procedures and methods, tools and equipment, and processes)

taken into account in CMMI, it can be observed how all these

approaches cover the four dimensions and emphasize the areas

related to processes while understate those related to people.

While the model presented in this paper is quite similar to

the maturity models described above, the main difference is

that these maturity models focus on an organization, whereas

in our case the focus is on a research field.

This entails two major distinctions between SET-MM and

the other models. First, and contrarily to the maturity models

presented, we do not cover processes in our model. This is

so mainly because at a research field level it is not possible

to define, measure, or control any process since the field is

composed of highly distributed and heterogeneous members.

The second distinction is that data themselves are main topics

in SET-MM since the ability to improve largely relies on

the capacity of reusing the different evaluation data (e.g.,

workflows, test data, results). By contrast, in the other maturity

models data are secondary issues.

III. RESEARCH METHODOLOGY

This section presents the scope of the work presented in this

paper and the process followed to define the maturity model.

As mentioned above, the maturity model here presented

is solely focused on software products and does not cover

software processes.

Besides, this maturity model is grounded in the notion

of evaluation as defined by the ISO/IEC 14598 standard

on software product evaluation [14] and in the following

evaluation entities: in any evaluation a given set of tools are

exercised, following a given evaluation workflow and using

determined test data. As an outcome of this process, a set of

evaluation results is produced.

These entities are depicted in Figure 1. A detailed descrip-

tion of them and of their life cycles can be found in [15].

Tools

Test data 

Results

Evaluation

workflow

Evaluation

Fig. 1. Main entities in a software evaluation scenario

Furthermore, any evaluation activity is always expected to

be the input of some decision-making process. Niessik and



662

van Vliet [16] exemplify this by proposing a generic process

model for measurement-based improvement in organizations;

such a model is composed of a measurement cycle followed

by an improvement one in which changes in the organization

are implemented based on the measurement results.

In our case, the scope is limited to the measurement (i.e.,

evaluation) cycle; thus, it does not cover improvement, since

the analysis and change processes of a research field cannot

be controlled nor monitored.

The process followed to define the maturity model contains

the same steps than those defined by [11]:

1) First, we identified the set of assumptions upon which

the different software evaluation technology maturity

levels are defined. Each of these assumptions defines one

or more themes (i.e., aspects) that influence maturity.

2) From these themes, five evolutionary stages were de-

fined; these stages have to be followed by any research

field in order to reach the highest level of maturity for

that particular theme.

3) Then, level i of the maturity model corresponds with the

i-th stage of the themes used to characterize and evaluate

the software evaluation technology maturity.

IV. WORK ASSUMPTIONS

This section enumerates the assumptions taken into account

while defining the maturity model.

These assumptions (and their corresponding themes) were

derived by analysing a) existing maturity models and ab-

stracting their main concepts; and b) evaluations performed

in the semantic research field, focusing on the technologies

that support these evaluations.

Assumption 1. Software evaluation is facilitated by a well-

defined software evaluation workflow and such well-defined

workflow will very likely yield quality evaluation results.

Furthermore, having both a common framework for defining

software evaluations and the means for easily defining evalua-

tion workflows and also automating them is a significant factor

that contributes greatly to the improvement of such workflows.

Therefore, the following theme is important: Formalization of

the evaluation workflow.

Assumption 2. Automation of software evaluation tasks

enables to perform cost-efficient software evaluations and

to diminish manual errors in them. Furthermore, the only

way of managing and processing large quantities of software

evaluation data is through the use of dedicated evaluation

infrastructures. Therefore, the following theme is important:

Software support to the evaluation.

Assumption 3. The quality of a software evaluation work-

flow depends on whether such workflow can be applied to

different and heterogeneous types of software products. Only

by applying the same evaluation workflow across different

types of software and under different settings we can validate

our hypotheses and conclusions. Therefore, the following

theme is important: Applicability to multiple software types.

Assumption 4. The automated generation and manipulation

of test data for software evaluations helps to focus on how to

define test data instead of on how to manage them. Moreover,

test data that can be used in different software evaluations are

easier to understand, and the results obtained from them are

easier to interpret. Therefore, the following theme is important:

Usability of test data.

Assumption 5. Software evaluation results that are described

in some machine-processable format enable the automated

integration and exploitation of such results. This integration

of results allows the compilation of a significant body of

evaluation results, which leads to the exploitation of such

results in unexpected ways. Therefore, the following theme

is important: Exploitability of results.

Assumption 6. The quality of a software evaluation increases

when different teams with different viewpoints define and sup-

port such evaluation. A software evaluation is more respected

when it is supported not by a single team or organization (e.g.,

the software developers) but by multiple teams (e.g., software

providers, users) or by the whole research field. Therefore,

the following theme is important: Representativeness of par-

ticipants.

V. MATURITY LEVELS OF SOFTWARE EVALUATION

TECHNOLOGY

This section describes the five maturity levels of the Soft-

ware Evaluation Technology Maturity Model. These levels and

the goals to be achieved in each of them for a defined theme

are presented in Table I.

What follows next is a general description of each level.

A. Level 1. Initial

At this level, a single team defines and carries out the

evaluation workflow, which is specific to certain evaluation

settings, is informally defined, and is manually performed with

no software support. Evaluation is applied to a small number

of software products of the same type, using test data not

formally defined. The results obtained in the evaluation are

also informally described, which makes them impossible to

verify.

B. Level 2. Repeatable

At this level, the evaluation workflow is completely defined

by one or a few teams and, although it is repeatable, it is still

specific of certain evaluation settings. Evaluation software has

been developed to partially support the evaluation of a small

number of software products of the same type; these software

products require to implement evaluation-specific mechanisms

so they can be integrated with the evaluation software. The test

data used in the evaluation are thoroughly described, and the

evaluation results are defined in a machine-processable format,

which allows combining the results of the evaluated software

products.

C. Level 3. Reusable

At this level, several teams define an evaluation workflow

that completely covers one type of software products and that

can be reused to evaluate with different test data different



663

TABLE I
LEVELS AND THEMES OF SOFTWARE EVALUATION TECHNOLOGY MATURITY

Level Formalization of the

evaluation workflow

Software support to

the evaluation

Applicability to multiple

software types

Usability of test data Exploitability of

results

Representativeness

of participants

Initial Ad-hoc workflow informally

defined.

Manual evaluation.

No software support.

Small number of software

products of the same type.

Informally defined. Informally defined.

Not verifiable.

One team.

Repeatable Ad-hoc workflow defined. Ad-hoc evaluation soft-

ware.

Small number of software

products of the same type.

Ad-hoc access to software

products.

Defined. Machine-processable.

Combined for some

software products of

the same type.

One or few teams.

Reusable Technology-specific

workflow defined.

Reusable evaluation

software:

- multiple software

products.

- multiple test data.

Multiple software prod-

ucts of the same type.

Generic access to soft-

ware products.

Machine-processable. Machine-processable.

Combined for many

software products of

the same type.

Several teams.

Integrated Generic workflow defined.

Machine-processable and

built reusing common parts.

Evaluation resources built

upon shared principles.

Evaluation

infrastructure:

- multiple types of

software products.

- multiple test data.

Multiple software prod-

ucts of different types.

Generic access to soft-

ware products.

Machine-processable.

Reused across evalua-

tions.

Machine-processable.

Combined for many

software products of

different types.

Several teams.

Stakeholders.

Optimized Generic workflow defined.

Machine-processable and

built reusing common parts.

Evaluation resources built

upon shared principles.

Measured and optimized.

Federation of evaluation

infrastructures:

- autonomous infras-

tructures.

- interchange of evalua-

tion resources.

- data access and use

policies.

Multiple software

products of different

types.

Generic access to

software products.

Support any software

product requirement.

Machine-processable.

Reused across

evaluations.

Customizable,

optimized and

curated.

Machine-processable.

Combined for many

software products of

different types.

High availability and

quality.

Community.

characteristics of such software products. This workflow is

supported by evaluation software that can be used to assess

any software product of the type covered by the evaluation;

the software product must have previously implemented the

required mechanisms to be integrated with the evaluation soft-

ware. Test data and evaluation results are machine-processable;

therefore, they can be reused. Furthermore, the results can be

combined for all the software products of the same type.

D. Level 4. Integrated

At this level, several teams in collaboration with relevant

stakeholders (e.g., users or providers) define a generic evalu-

ation framework that can be used with any type of software

product. This generic framework for software evaluation al-

lows building evaluation resources (i.e., evaluation workflow,

tools, test data, and results) upon shared principles and reusing

common parts. Here, evaluation workflows are defined in a

machine-interpretable format so they can be automated. An

evaluation infrastructure gives support both to the evaluation

of multiple types of software products, taking into account

their different characteristics, and to the management of the

different evaluation resources. Test data can be reused across

different evaluations, and the evaluation results can be com-

bined for software products of different types.

E. Level 5. Optimized

At this level the whole community has adopted a generic

framework for software evaluation in which evaluation work-

flows are measured and optimized. The centralized scenario

of the previous levels has now evolved into a federation

of autonomous evaluation infrastructures. These evaluation

infrastructures must support not only the evaluation workflow

but also new requirements, such as the interchange of eval-

uation resources or the implementation of policies for data

access, interchange, and use. This federation of infrastructures

permits satisfying any software or hardware requirements of

the different software products; customizing, optimizing, and

curating test data; and improving the availability and quality

of the evaluation results.

One of the notions behind the maturity model, as Figure 2

shows, is that a higher maturity level implies higher integra-

tion of evaluation efforts in one field, ranging from isolated

evaluations in the lower maturity level to fully-integrated

evaluations in the higher level. In this scenario, maturity

evolves from a starting point of decentralized efforts into

centralized infrastructures and ends with networks of federated

infrastructures.

Another notion to consider in this model is that of cost.

While the cost of defining new evaluations decreases when the

maturity level increases, mainly due to the reuse of existing

resources, the cost associated to the evaluation infrastructure

(hardware and infrastructure development and maintenance)

significantly increases.

VI. ASSESSMENTS IN THE SEMANTIC RESEARCH FIELD

This section presents how we have used SET-MM to assess

the maturity of software evaluation technologies in a specific

research field.

Other maturity models provide appraisal methods for com-

paring with the maturity model. However, we do not propose

any appraisal method because our scope is a whole research

field and, therefore, it would be difficult to obtain objective

metrics since any judgment would be subjective.

Therefore, our approach has been, first, to identify some

evaluation efforts that stand out because of their impact in the

field and, second, to try to assess the maturity of the software

evaluation technologies used in them.



664

1. Initial 

2. Repeatable 

3. Reusable 

4. Integrated 

 !"#$%&'&()*"

Fig. 2. The SET-MM maturity levels.

A. The Semantic Research Field

The notion of Semantic Web appeared at the beginning of

the 21st century [17] and, since then, it has become a research

field on its own.

The idea behind the Semantic Web is to have mechanisms

to express knowledge and data in the Web so that it can be

properly exploited by computers in an automated way.

The way of expressing such knowledge is through on-

tologies (explicit, structured models of the terminology and

conceptual structures used in an application domain), which

provide the basis for interpreting and relating data from differ-

ent sources and that can be used to derive implicit knowledge

about data.

One key requirement to make the Semantic Web real is the

availability of technologies capable of managing and process-

ing these data at web scale. Because of this, a huge number

of research efforts have been devoted to the development and

evaluation of semantic technologies.

B. Maturity of Evaluation Efforts

Evaluations in the semantic research field, as in any other

field of research, are highly frequent and their main goal is to

validate research.

However, if we analyse the technologies used to support

those evaluations, we can see that in most of the cases the

maturity of such evaluation technologies is at the Initial level,

which makes almost impossible to reproduce any evaluation.

Nevertheless, there are still some efforts we should highlight

because of their maturity in terms of software evaluation

technologies.

1) The Lehigh University Benchmark: The Lehigh Univer-

sity Benchmark (LUBM) [18] is the benchmark most used in

the semantic field. This benchmark can be used to evaluate

the efficiency of ontology storage and reasoning systems and

it is composed of a synthetic generator of test data, a set of

test queries to be issued to the system, and a test module to

automate execution.

LUBM’s evaluation technology is at the Repeatable level in

most of the themes, except in the next two aspects, in which

it improves.

The usability of test data is between the Reusable and the

Integrated levels, since the clear definition of test data and

their automated generation largely facilitates their reuse across

evaluations.

Additionally, the representativeness of participants is at the

Integrated level because, even if the benchmark was defined

by a research group, it is nowadays largely used by researchers

and companies.

This high test data maturity can also be observed in the use

of LUBM in the field: most of the people that reuse the bench-

mark only reuse the test data and define their own evaluation

settings; furthermore, posterior benchmark improvements have

mainly been made on test data [19], [20].

2) The Ontology Alignment Evaluation Initiative: The On-

tology Alignment Evaluation Initiative2 (OAEI) is an interna-

tional initiative that, since 2004, has been organizing different

ontology alignment contests with the goal of establishing a

consensus for evaluating ontology alignment methods and their

associated tools.

In these contests, ontology alignment systems are compared

using a common set of synthetic and real-world tests using a

common evaluation framework.

OAEI’s evaluation technology is at the Reusable level in

all themes except one, in which it improves. The representa-

tiveness of the participants is at the Optimized level; since the

OAEI gathers the main stakeholders in the ontology alignment

2http://oaei.ontologymatching.org/



665

topic, its evaluations have become the de facto standard for

ontology alignment evaluation.

3) The SEALS Platform: The SEALS Platform [21] is an

infrastructure for the evaluation of semantic technologies that

offers independent computational and data resources for the

evaluation of these technologies.

The SEALS Platform is currently under development in a

European project3 and its goal is to provide the semantic field

with an evaluation infrastructure at the Integrated level by the

end of the project.

To this end, the SEALS Platform provides a common

evaluation framework, based on the reusability of evaluation

resources, in which different types of semantic technologies

can be evaluated. Once the cumulative evaluation results reach

a critical mass, the research community will be able to exploit

them in novel ways.

VII. CONCLUSIONS AND FUTURE WORK

This paper has presented the SET-MM maturity model that

defines the maturity of software evaluation technologies in six

different themes.

This maturity model can be used by anyone in a research

field willing to assess the maturity of software evaluation

technologies, either in the whole field or in specific evaluation

initiatives.

SET-MM permits not only to make this assessment but

also to guide improvement processes on software evaluation

technologies by identifying the different goals to be achieved

in each level and for each theme.

This way, the maturity model can be a useful mechanism to

increase awareness on the role and on the benefits of software

evaluation technologies in research fields.

To illustrate the use of the maturity model, we have assessed

the maturity of the software evaluation technologies used in

different initiatives within the semantic research field.

Clearly, this assessment is neither exhaustive nor represen-

tative of the whole research field. However, it is useful to

analyse how software evaluation technologies have been used

in different efforts in order to extract those lessons that are

worth learning.

CMMI classifies maturity model components into three dif-

ferent categories, namely, required (specific and generic goals),

expected (those practices relevant for achieving a goal) and

informative (informative material that helps understanding the

model). SET-MM currently covers the required components.

Future work will deal with the definition of the expected and

informative components in order to enrich the model.

ACKNOWLEDGMENT

This work is supported by the SEALS European project

(FP7-238975) and by the EspOnt project (CCG10-UPM/TIC-

5794) co-funded by the Universidad Politécnica de Madrid

and the Comunidad de Madrid. Thanks to Rosario Plaza for

reviewing the grammar of this paper.

3http://www.seals-project.eu/

REFERENCES

[1] M. C. Paulk, B. Curtis, M. B. Chrissis, and C. V. Weber, “Capabil-
ity Maturity Model for Software, Version 1.1,” Software Engineering
Institute, Tech. Rep. CMU/SEI-93-TR-024, February 1993.

[2] R. Sowden, D. Hinley, and S. Clarke, “Portfolio, Programme and Project
Management Maturity Model (P3M3) Version 2.1. Introduction and
Guide to P3M3,” Office of Government Commerce, United Kingdom,
Tech. Rep., 2010.

[3] S. Marshall, “E-Learning Maturity Model Version Two: New Zealand
Tertiary Institution E-Learning Capability: Informing and Guiding E-
Learning Architectural Change and Development,” New Zealand Min-
istry of Education, Tech. Rep., 26th July 2006.

[4] V. R. Basili, “The role of experimentation in software engineering:
past, current, and future,” in Proceedings of the 18th International

Conference on Software Engineering (ICSE 1996). Berlin, Germany:
IEEE Computer Society, 1996, pp. 442–449.

[5] CMMI Product Development Team, “CMMI for Acquisition, Version
1.3,” Software Engineering Institute, Tech. Rep. CMU/SEI-2010-TR-
032, November 2010.

[6] ——, “CMMI for Development, Version 1.3,” Software Engineering
Institute, Tech. Rep. CMU/SEI-2010-TR-033, November 2010.

[7] ——, “CMMI for Services, Version 1.3,” Software Engineering Institute,
Tech. Rep. CMU/SEI-2010-TR-034, November 2010.

[8] I. Burnstein, T. Suwanassart, and R. Carlson, “Developing a testing
maturity model for software test process evaluation and improvement,”
in Proceedings of the IEEE International Test Conference on Test and

Design Validity (ITC 1996). Washington, DC, USA: IEEE Computer
Society, 1996, pp. 581–589.

[9] F. Niessink and H. van Vliet, “Towards mature measurement programs,”
in Proceedings of the 2nd Euromicro Working Conference on Software

Maintenance and Reengineering (CSMR 1998). Florence, Italy: IEEE
Computer Society, March 8–11 1998, pp. 82–88.

[10] M. YongGang and D. JianJie, “Software measurement process capability
maturity model,” in Proceedings of the Second International Conference

on Computer Modeling and Simulation (ICCMS 2010). Sanya, China:
IEEE Computer Society, 2010, pp. 400–402.

[11] M. K. Daskalantonakis, R. H. Yacobellis, and V. R. Basili, “A method
for assessing software measurement technology,” Quality Engineering,
vol. 3, no. 1, pp. 27–40, 1990-91.

[12] T. Wettstein and P. Kueng, Management Information Systems 2002 – GIS

and Remote Sensing. Southampton: WIT Press, 2002, ch. A Maturity
Model for Performance Measurement Systems, pp. 113–122.

[13] J. Z. Gao, H.-S. J. Tsao, and Y. Wu, Testing and Quality Assurance for

Component-Based Software. Norwood, MA, USA: Artech House, Inc.,
2003.

[14] ISO/IEC 14598-6: Software product evaluation - Part 6: Documentation

of evaluation modules. ISO/IEC, 2001.
[15] R. Garcı́a-Castro, M. Esteban-Gutiérrez, M. Kerrigan, and S. Grimm,

“An ontology model to support the automatic evaluation of software,”
in Proceedings of the 22nd International Conference on Software

Engineering and Knowledge Engineering (SEKE 2010). Redwood City,
CA, USA: Knowledge Systems Institute, July 1–3 2010, pp. 129–134.

[16] F. Niessink and H. van Vliet, A Pastry Cook’s View on Software

Measurement. Wiesbaden, Germany: Deutscher Universitaetsverlag,
1998, pp. 109–126.

[17] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,”
Scientific American, vol. 284, no. 5, pp. 34–43, 2001.

[18] Y. Guo, Z. Pan, and J. Heflin, “LUBM: A Benchmark for OWL
Knowledge Base Systems,” Journal of Web Semantics, vol. 3, no. 2,
pp. 158–182, 2005.

[19] L. Ma, Y. Yang, Z. Qiu, G. Xie, Y. Pan, and S. Liu, “Towards
a complete OWL ontology benchmark,” in Proceedings of the 3rd

European Semantic Web Conference (ESWC 2006), ser. LNCS, vol.
4011. Budva, Montenegro: Springer, June 11-14 2006, pp. 125–139.

[20] T. Weithöner, T. Liebig, M. Luther, S. Böhm, F. von Henke, and
O. Noppens, “Real-world reasoning with OWL,” in Proceedings of the

4th European Semantic Web Conference (ESWC2007), ser. LNCS, vol.
4519. Springer, 2007, pp. 296–310.

[21] R. Garcı́a-Castro, M. Esteban-Gutiérrez, and A. Gómez-Pérez, “To-
wards an infrastructure for the evaluation of semantic technologies,” in
Proceedings of the eChallenges 2010 Conference, P. Cunningham and
M. Cunningham, Eds., Warsaw, Poland, October 27-29 2010.


