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ABSTRACT

We consider an infinite Hermitian positive definite matrix M which is the moment matrix
associated with a measure p¢ with infinite and compact support on the complex plane.
We prove that if the polynomials are dense in 12{z¢) then the smallest eigenvalue A, of
the truncated matrix M, of M of size (n + 1) = {n 4+ 1) tends to zero when n tends to

Keywords: infinity. [n the case of measures in the closed unit disk we obtain some related results.
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1. Introduction

Let M= (c,-.j)ff’j:(, be an infinite Hermitian matrix, ie., ¢; ;=& for all i, j non-negative integers. We say that the ma-
trix M is positive definite (in short, an HPD matrix) if |My| = O for each n = 0, where My, is the truncated matrix of size
(n+ 1) < i+ 1) of M. An HPD matrix M defines an inner product in the vector space P[z] of all pelynomials with complex
coefficients in the following way: if p(2) =3 ;_g ayZ* and g(z) = Y brz* then
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Given an HPD matrix M = (Ci,j)?j:o» the complex moment problem (see e.g. [3.18,19]) entails finding a positive measure
on T such that forall i, j =0

Gij= f 27 dp (). (2)

The measure j¢ is called a representing measure and M{ju) = (Ci.j)szo is the associated moment matrix. This problem has
been considered by Atzmon [1] and others [17,12]. Atzmon [1] characterized the moment matrices associated with measures

* Corresponding authot, Fax: +34 913367426,

E-mail addresses: cesceibano@fi,upmees (C. Eseribano), rngonzalo@fiupm.es (R. Gonzale), emilic@fi upm.es (E, Torranol
! The authors have been supported by UPM-CAM.


mailto:cescribano@fl.upm.es
mailto:rngonzalo@fl.upm.es
mailto:emilio@fl.upm.es

in the closed unit disk I ={ze C: |z] = 1} in terms of a property for a bi-sequence {cij}ij—0 10 be positive definite.
The complex moment problem when a representing measure with compact support exists is completely characterized in
[17] and in a general theorem of Berg and Maserick [4]. See also the treatment in [3].

We here always consider positive Borel measures p, compactly supported with an infinite number of points in its
support. The moment matrix associated with ¢, denoted by M), is in this case an HPD matrix and the inner product (1)
induced by M) in [P[z] coincides with the inner product in L2{e}:

f p(2)a(2) dp = {p(2).9(2)},

Note that M(;¢) is the Gram matrix of the above inner product with respect to {z'}53%,, ie, M{u) = {2, zfy Eﬁ_:w Let

{Priz)}i2, denote the sequence of orthonormal polynomials with respect to pt, uniquely determined by the requirements
that Pz} =3} vk.,,z". with positive leading coefficient vq p, and the orthonormality condition:

(P"(Z). P",(Z)):U ifn —_/ém a]‘ld (Pn(z). P"(Z)): 1

Let {®n{z)};2,, where Pqiz) = ﬁPn(z), denote the sequence of monic orthogonal polynomials . Recall that, for each n e [,

the n-reproducing kernel at z, w € © is defined as Kp(z, w) = 3 5_g Pi(2) Py(w).

We denote by A, the smallest eigenvalue of M, It is easy to check that the sequence {A,}57, is a non-increasing positive
sequence and therefore limy— oo Ap eXists.

In the case of Hankel positive definite matrices, which are moment matrices associated with positive measures on [E,
the large n asymptotics of the smallest eigenvalue Ay has been studied in the classical papers by Szegd [15] and Widom
and Wilf [20]. More recently, Berg, Chen and Ismail [2] have proved that a measure p on K is detenninate, meaning that
j¢ is the only measure with real support having the same moments as ¢, if and only if A — 0 when n tends to infinity.
This new criterion for the determinacy of a measure was our motivation to study the situation in the case of measures
supported on €. [n this context the situation is completely different. Indeed, every measure with compact support on T is
always determinate since, by Weierstrass theorem, polynomials in z and Z are dense in the space L%¢zt). On the other hand,
for the normalized Lebesgue measure on the unit circle T, denoted by m, the associated moment matrix is the identity
matrix { and obviously i, =1 for every n € [, The purpose of the present paper is to relate the asymptotic behaviour of
the smallest eigenvalue %, with the problem of approximation by polynomials, ie., the problem of when P?ip) = L%(t),
where P2(t) denotes the closure of P{z] in LZtze).

The paper is organized as follows; Section 2 is devoted to the proof of our main result, Theorem 9, which states that if j
is a pasitive measure on ©C with infinite and compact support such that £2(s) = P24}, then limp_ o 2n = 0. The converse
is not true, as we show in Example 1,

[n Section 3, we obtain several related results in the case of measures with support an the closed unit disk I We
found that for such measures, the large n asymptotics of the norm of the monic orthogonal polynomials and the smallest
eigenvalue depend only on the corresponding large n asymptotics of the restriction to the unit circle T of the measure.
This is not true for the large i asymptotics of the n-reproducing kernels at 0. We finish with some necessary conditions for
polynomial approximation in the space L2¢u) in terms of these asymptotics.

First, we introduce some notation and terminology. Let My be an HPD matrix of order n + 1 and denote by {eg,....en}
the canonical basis in C"F!. Denote by {vq. ..., vy} the unique orthonormal basis in ©*t1 with respect to the inner product
induced by My in such a way that v; = (vg;,...,vii. 0.....0) with v;; > 0. Denote by |lv|| the norm induced by this
inner product, ie., ||v||2 = vMpv*. The vector space [%3[z] of all polynomials of degree = n can be obviously identified
with £%1, In the case of M, being the (n+ 1} section of the moment matrix M) associated with the measure e, if
pa=ap+ - +an?, qiy=bo+ - + by a= (@)l b= (b}, € C*F, we have

aMgb* =fp(z)¢ﬁd,u‘

[n particular, if g{2) =14+ w1z + - - + wg2", we denote by {1, w) = (1, wq, ..., wp). With this notation:

(1 wiMy, (vla.)zflq(z)lzdu.

Given an HPD matrix M, of order n+ 1 we denote by |M,| the norm of M, as a linear mapping from £*t1 to £F1 with
the euclidean norm ||v]ls. In this case:

IMall = sup{IMavll2: IVl =1, v € C"1} = sup{yMav*: v e CFL, lvll2 = 1} = o,
where B, is the largest eigenvalue of Mg. On the other hand,
Ap=inflvMavt: v e € vl =1},

Let M, M5 be HPD matrices of size i1 x n, We say that M, L My if vMyv* < vMyv*, for every v € C". For infinite HPD
matrices the ordering is defined in an analogous way replacing T by the space con of all complex sequences with only
finitely many non-zero entries.



2. Polynemial approximation in 12 {j¢} and asymptotic behaviour of the smallest eigenvalue A,

[n order to prove the main result we need some lemmas, The following lemma states a certain minimization problem
for infinite Hermitian matrices that can be of independent interest,

Lemma 1. Let M be arnt HPD matrix and let M,, be the section of arder (n + 1. Let {vq, .. ., vy} be the orthenormal basis in T with

respect the inster product induced by My with vi = (voi, ..., vii, 0,..., 0 fori=0,...,nand v;; = 0. Then,
1 . 1 " 1
= =if{(1 w)Ma| . ) welli= 1+ ¥
izo Iva.il w eoMy "¢
and
L inf{(l W)M( ! )'WE': ] @
S " N g«
Yo Ivoal? w'

where the left side is zero if 3 5oq |vo.i|? = o0

Proof. Each vectar (1, w) € i1 can be expressed as (1, w) = ¥r oa;v, with the additional condition ¥ _,a;vg; = 1.
Hence,

and since v,-an;=3,-.j for i, j = n:

mfiZla,l Za,vo,_I} E |v |2
=0 01

This shows the left side of equality (3). In order to prove the right side of equality (3), consider «; = v—‘:': =

(g, 14, -.-, 1,0,...,0) hence v ;= vi = |leti||va,i. Let €, be the matrix given by
1 &1 ... Oop
0o 1 oin
Cn =
o o .. 1
It is clear that |Cy| =1 and (_'n‘l exists, On the other hand, if we denote by D{|lag|?, .. .. lepll?) the diagonal matrix of
order (n+ 1) x (n + 1} with entries |lo;)|12, i=0....,n, then

C;Mncn = D(“&n”z- Cey ||05n||2)-

Therefore My = (CH7 D[ )2, ... . leml1*3C; ! and thus M ! can be expressed as
1 1
M= D(——)C
T el Nlewl2 )"
Therefore
B 1 lorg |2
1.+ B
eoM, el =¢eC ’D(—, ) .
"o "N\ el el Z llerg |2
thus
1 1

n = — :
Yio [vo.il? eaMy 185

The infinite-dimensional version {4) is now an easy consequence, O

If M is a moment matrix, Lemma 1 can be applied to obtain the extremal property of the n-reproducing kernels at 0
(see e.g. [19]).
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Corollary 2. Let M{j4) be an infinite HPD moment matrix associated with a positive measure p¢ with support on C and let { Pr(2)};2
be the sequence of orthonormal polynomials with respect to pt. Then, for every i € [4:

1
ko | PO

1

mi“! fl%(z)lzdﬂ': qn(z) € Pylzl, gni0) = 1] =—
eaMy e

Proof. Note that, by using the matricial notation introduced above, we have
min | [ |0a(@)|” dp2: a(2) € Palz], ga(0)y =1 } = infl(l w) My ( “1” ): w (—:(C"] :
The result is a consequence of Lemma 1, and the fact that vp x = Pr(0), for every k. O
The following result is analogous to a result for Hankel matrices in [5].

Lemma 3. Let M(j0) be an infinite HPD moment matrix associated with a positive measure (& with support on i, let iy be the smallest
eigenvalue of My, and consider zg with |zg| < 1. Then b =5 (3 7_o |20 |2 W3 p_g | Prlzod$) ™1, foreach nt € H. As a consequence,

. -1
nl—i»mx.kﬂ = ((1 - IZ”|2) ,§|Pk(zn)|2) :

1
A
analogous results in [7, p. 52] and [14, p. 377], we have

Proof. Since M, is Hermitian, we have that i, = On the other hand, if |zg| < 1 and v = {1.20....,23), by some

i

IS B A
> 1Petzo)|” = Katzo. 20) = vM; v < a(glznﬁ")

=

Therefore Jp 5 (Y kg IZO|2k)(ZE:0 [Py(20)]?y~ 1. Taking limits when n tends to infinity the result is proved. ©

Remark 4. If M is a moment matrix, in general it is not true that limp_.co by = ((1 — |20/%} 3524 | Pr(20)|%) 7", [ndeed,
let 7 be the Lebesgue measure (uniform measure) on the disk I¥; it is well known that the moment matrix associated

with 7 is the diagonal matrix with entries cpp = n% and Pp{z) =,/ “%‘z“‘ Consequently limy—cc An = liMp_cc Cnn = 05
(1= 201"y 2o [ Prizo)) .

The following result is essentially contained in [2,6] in the case of positive measures on [E. The same result is true when
positive measures on . are considered. We include it for the sake of completeness:

Lemma 5. let M(j¢) be an infinite HPD matrix associated with a positive measure . on  and let m be the normalized Lebesgue
neasure on T. Then the following are eqtiivalent:

(1) limp_ ook = 0.
(2) There exists ¢ = 0 such that, for every polynomial p(z),

f P du > c[ |p@)|” dm.
T

Proof. Note that, if p(z)=ag+ - -+ a3x2" and a = (ag, ..., ), then
n
2 _ 2
f|p(2)| dut = aMya* zanmkIZ:kn[Ip(zﬂ dm.

and from this the conclusion follows, O

Lemma 6. Let 1 € (0, 1) and let M) be an infinite moment matrix associated with a positive measure (¢ ont INO; r). Then, for every
n< b

I Mpll < ﬂ(]ﬁ(ﬁ; i"))] 5



Proof. Note that if 3, is the largest eigenvalue of M, = (fi.j)"{jza then

n

— 1
IMall = B < Tmce(Mn)—Zcu—Z[ 27 du < p(BO;n) Y < pBO ). O

=}
i=0 ]lI(O " i

Following the ideas in [16] we have:

Lemma 7. Let p be a positive measure with compact support on . Assume zg ¢ Supp{p.), then

1 _2( 1 ) 1
=0 sdis’| —. Pz S
D2 Y0 |Pr{zo)? z— (<) d2 3020 | Pe(zo) R

where d = min{|z — zg|: z € Supp(pt)}, D =max{|z — zp|: z € Supp{p}}.

Proof. We have that

|
dis? [ ——. p? =1 inf /
s (Z_Zn (M)) nl’n;j‘?n(zg]‘;lpn[z]

lim  inf /|1 —(z— Zn)Q‘n(Z)|

=23 gu{D1eMalz]

lim inf f |Q‘n+1( )|

=20 a1 {2} efnsa (2] Gryr{zoi=1

2

1
T—2g — quiz)

zl2

zl2

By the extremal property of the n-reproducing kernel at zy (see [19]) we have that

1
f |gns1(2)|*die

Z"+1|Pk(20)|2 RS z] Tns1(70)=1

and from this the result follows. O
As a consequence of Lemma 7 we have:

Corollary 8. Let pi be a positive meastre with infinite and compact stpport on . Assume that zq ¢ Supp{ ), then the following are
equivalent:

(1) The function -1 € Pz(ﬂ),
(2) Tomp | Pulz))? =

We now prove the main result:

Theorem 9. Let M) be the moment matrix associated with a positive measure (& with infinite and compact support on C. If the
polynomials are dense in L2 (), Le., P2ip) = L?(j), then

lim i, =0,

=20

where A, is the smallest eigenvalue of the section of order (n 4+ 1} of M(je).

Proof. Consider R = 0 such that £2 = Supp(jt) C{z <C: |z| % R}. In order to prove the result we consider several cases;

First case; 0 ¢ Supp(u). Since 1/z € P2(), it follows, by Corollary 8, that 3 iy |Pr(®]? = oo and then, by lemma 3,
limn_»og ln == 0‘

Second case: 0 € Suppiz) and #({0}) = 0. In this case limy_o p{D0; 1} = 0. Assume that P2(uy = L%(u) and there is
% = 0 such that &, ;2 A, for all n < M. Consider r small enough to ensure that p(I¢0: r))— <, ‘* . We denote by uf the

restriction to the set §2 %\ I(0; r) of the measure 1, and y, the restriction to I0; 1) of y. Let n e N be fixed and consider
v=1(vo,...,ve} € "1 with 30 |vkl? = 1. Since Mn(pt) = Ma(itr) + Ma(uf) and [Ma(uo )l 5 4 by Lemma 6 it follows
that

A
VMn(ﬂ-ﬁ)V* = vMy (vt — vMu(p vt 2 vMy(p)vt — 7
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By taking the infimum in both sides of the inequality we obtain

A

S
(M (p25)) = An{M (1)) — 523 -

On the other hand, since L?(z1) = P%(11) we have that L2(u8) = P?(1f), Now, by applying the first case to the measure p&
we obtain that

Jim An(M{p5)) =0
This contradicts {5).

Third case: 0 € Supp(ze) and ({0}} = 0. Assume again that PZiz) = L?(g) and there is A = 0 such that > 3 ) = 0 for all
n < [, By Lemma 5, for every polynomial p{z}, we have

flp(Z)I dut > [Ip(Z)I dm.

Let £2g = $2\ {0} and let pto be the restriction to this set of the measure y. Consider a polynomial g(z) then

R2f|q(z)|2d,unéf|zq(z)|2d;;.2Af|zq(z)|2dm=kf|q(z)|2dm.
T T

o0 12
Therefore
/Iq(Z)I dpo > /|q(z)| dm.
20 T

This means that for every n < Il we have

Ap (M(Hn)] = %

Since jeg is a measure satisfying that 1£g¢}{0}) = 0, applying the second case we obtain that L2(z14) # P2t p10). Again, this is
not possible because L2{zt) = P2(u}. This ends the proof of the theorem. O

Remark 10. The converse of Theorem 9 is not true. We provide two examples, the second one involving a Toeplitz matrix.

Example 1. Consider the Pascal matrix

111 1

12 3 4
mM=|13 86 10
14

e, ¢ j= (i+j) It is known (see e.g. [9]) that M is the moment matrix associated with the normalized lebesgue measure
j¢ in the circle with center 1 and radius 1. The sequence of orthonormal polynomials is given by P,(z} = (z — 1)" for
every n € Mp. Thus Z UIP,,{CI)l2 = oo and, by lemma 3, it follows that limy_co iy =0, On the other hand, P2(u) =

L?(pe) since ﬁ € L%(4) and cannot be approximated by pelynomials since, by Lemma 7, it follows that dis? (Z T Pliun=

! =1
w7 — .
Yoty [Pl

Example 2. The Toeplitz matrix;

2100
1210
M=o 1 21
0012



M is the moment matrix associated with the measure x on the unit circle given by dgie'} = (w(#)/27) d6 with
wid) = Z e ™ = e® 4 200 + 7 = 2+ 2cosé.
k=—n0

Using the results in [11], it is easy to deduce that Ap =2 4+ 2cos ‘";:2‘” and hence limg_.cc An = 0. On the other hand, we

show that Pz(,u,) is not dense in L2{zt). To prove it, we first show that for every n we have

|M"| =n+2‘

We use induction on n. If n =1, then |M,]| = 3. Assume that the result is true for n < k., Then, expanding the determinant
we obtain

M| =2IMy| = IMy_q| =k +3.

Since lim,,__»megMgleg = limy—co |[Mp—1l/IMg| = 1, then, by Corollary 2 and Corollary 8, we have that % € P2 and
consequently P2(s) is not dense in L2(z). This result can also be proved using Szegd's theorem (see eg. [8])

Remark 11. Theorem 9 is true for measures with compact support on the real line. Moreover, measures compactly supported
on the real line are always determinate (or equivalently limy_, .. ;= 0 by [2]} and P2 () = L2¢p0).

Remark 12. [n Theorem 9 we cannot remove the assumption of boundedness of the support since there are measures with
non-bounded support on the real line such that P2(j¢} = L2(z¢) and nevertheless limy—.co Ap = 0: they are the N-extremal
measures (see e.g. [13]).

Proposition 13. Let 1+ be a positive measure with compact support ont (C such that 0 € Suppi ). The following are equivalent:

(1) TiZo|Pa(@) =oc.
(2) Pgu=[1.z1.22, 4. 1

72

Proof. Let «v = 0 and R = 0 be such that Supp{zt) < {z € ©: o < |z| = R}. We prove (1) implies {2}. Note that by Corollary 8
we have that {1} is equivalent to the fact that % € P2y} and, consequently, P2(p) = [%, 1,2z,22,...]. Then

2 1|1
f du=/—lzl2;—vo—vlz—---—vnf‘
1 ..5/1
% ? disz(g. ]P"[Z])‘
By taking the infimum over vp, ..., v, and it <[4 we have that
1 ' 1 1 '
. 2 2 il 2
dis (2—2, P (,U-)) = o?dls (E’ P (;u-))-

Proceeding in the same way we can prove that EIF e P2(p) for all k e B,
(2) implies {1} is a consequence of Corollary 8. O

1 1 2

= —Vo— — V| —VaZ— - — V2!
z

72 dpt

Remark 14. Note that the condition of 0 ¢ Supp{y) cannot be removed in Proposition 13. Indeed, consider any measure
with 0 € Supp(yt} being a point mass with @i{0}} =d = 0, and such that Supp{y) is a compact set with empty interior and
with K¢ a connected set. By Mergelyan theorem (see e.g. [10]), the polynomials are dense in the space of the continuous
functions on K with the uniform norm. Consequently, the polynomials are dense in L£2(j¢), that is, P2(p) = L%(e) and
therefore (2) holds. However, since M{u) = M(d3g) by Lemma 1

1

=
k=0 | PO}

and therefore

[l
Y|P < ox.
k=0

min (1 v) My(dso) (1}) =d=0,



We finish this section with a result which relates the behaviour of the smallest eigenvalue >, with the norm of the
monic polynomials, based in the results in [5]:

Lemma 15. Let p be a positive meastire with infinite compact support on C. Foreachn € I, let Py(z) = Z‘;:o v _,-.nzj be the orthonor-
mal polynomial of degree n. If k + n, then
1
S e S—
zj=0 |'\"j,k|2

in particular, Ay < | Pai2)]2.

lH

Proof. From the proof of Lemma 5,

fp@Pdu
S 15T (e |2 do

n =

for any polynomial not identically zero p{z) of degree = n. [n particular, if we apply the above inequality to Py(z) with
k<
1 1

€ —— g
= k 2 T2
2o lVikl® Vi

Then, since Pyiz) = vy p®p(2), Jp 5 | Epi]?. O

lll

Remark 16. [f we define the (4 1) x (n4 1}-matrix Bz = (v;) with v, as in Lemma 15 if j <k and v;, =0if j =k and

define Ay = 1,58} then the entries a“',i of Ay are the coefficients in the kernel function

i
n n
Ku(z.w)= Z Pe(2)Priw) = Z aj','!f,zjwk,
k=0 Fk=1
and like in [5] Ay ' = M.
Remark 17. [n general, even for moment matrices, it is not true that limp—.., iy = limp—~; |2} |%. To show this it is
enough to consider Example 2 in Remark 10, For such a Toeplitz matrix M we have that limy_ o, 4y = 0 and nevertheless,
|Mll|

| . 1 .
lim | @n (@] = lim ——— = | =1#0
A @l = i =

Remark 18. Note that in the case of a Toeplitz positive definite matrix M, since eoM;, e}, = eaM, le;;, we always have

2 1
Pu(2)| = =m————,
U ST
and consequently:

¥ 2 i 1
lim €, =n&ﬂgom'

3. Related results for positive measures with support on D

We now consider measures j¢ with infinite support on I, Note that in this case ||@,p1(2)|| < |®p(2)| for every n g B
[ndeed, by the extremal property of the monic polynomials we have

|#n11@]| < 282 < | 82|

and therefore limy— ., [[$x(2}]| exists.

We may decompose such measures i on I as =11+ v where n = /I and v = /T, Since we are going to use two
measures ¢ and v, we denote the corresponding monic polynomials as @,{z; ¢t} and &n{z; 1) respectively. We prove that
the n large asymptotic of the norm of monic polynomials has a harmonic behaviour in the following sense:



Proposition 19. Let ¢ be a positive measure with infinite support on I and suppose that v = pe/T has infinite support on T. Then

Jim [ @z )| = Jim | @niz v
Proof. Since My(v) < My(p0), we have vMutv)v* < vMy(v*. Then

2_ . v* ) o 5
[ ®atz:v3|* = inf (v 1)My(v) < inf (v 1) Ma(p) =||®atz )"
vellm 1 ) veilh _ 1

As a consequence,

”l_i{rcl\j ” Py(z: v)" £ HIHQO ” Dplz ) ”
Therefare, if limpy_ ., |@y{z; $£}]| =0, then limp_, |[#piz; ¥} = 0. On the other hand, assume that limy— o || Ppiz: il =
¢ = 0. Since {|Pniz; Y2, s a non-increasing sequence, then [[Pniz; il 2 ¢ for every n € 1. Let n be fixed and let

p2) ="+ 42"V + .- + a, be any monic polynomial of degree n. If Qy(z) = z*p(z}, which is a monic polynomial of
degree  + k, by the extremal property of monic polynomials we have

fIz"p(z)lzdn+[|p(z)|2dv=[|z|2"|p(z)|2dn-> |@aseiz )] = .
) T o

Taking limits when k — oo, note that since z¥piz} is pointwise convergent to 0 in I, by Lebesgue dominated convergence
thearem:

f |p(z)|2dv =2
T

Consequently |[&,(z; v}| ;= c. When n— oo it follows that limy_. . | @riz: v3|| = c. Therefore,
lim [[@n(z, v} = lim [ @n(z 1)
as required. O

[n the following result we prove an analogous result for the smallest eigenvalue of the finite truncated moment matrices:

Proposition 20. Let 1« be a measure with infinite support on I and let v = j/T. If Mtt) and M{v) are the moment matrices
associated with j¢ and v, respectively then

lim aq(M(2}) = lim Az(M(v}}.
N—2d N—2d
Proof. As in Proposition 19 we have that Mg (1) < Mg (i) for every n €[4, Consequently:

"l_if% An (M(l))) = "Er“go ln(M(H-))-

Moreover, if limy— oo dp{M{j0)) = 0 then limp_.co 2p(M (1)) = 0, Suppose now that limy_ .. Ap{M(£}) = C = 0 for some
C = 0. Then, if 5 = /I, by Lemma 5, we have

f |p(z)|2d,u. :f |p(:z)|2 dy + f |p(z)|2dv = Cf |p(z)|2dm.
i I T T
whenever p(z) is a polynomial. Let p(z) be fixed, and consider the polynomial z"p{z) then
/|z"p(z)|2d,u :f|z"p(z)|2dr,i+f|p(z)|2dv = Cf |p(z)|2dm.
g b T T

Again, proceeding as in Proposition 19, by taking limits when n — oc we have that

v n 2 _
"11{90_[|2 p)| dn =0,
]



hence,

/|p(z)|2dv2C/|p(z)|2dm‘

T T

Then limp— -, Ap{M(1)) = C, and therefore

i (M) = fim 20 (M) 0

Remark 21. There is no analogue of the above propositions for the case of the asymptotic behaviour of the n-reproducing
kernels at 0. To see this, consider a positive measure v on T which satisfies that L2(v} = PZ(v), for instance a positive
measure with an infinite amount of atomic points {z,}5°, with weights p, > 0 for n > 0 such that Z"?U Pp = 00 and
limp— oo Zn = zo. By Mergelvan's theorem (see e.g. [10]) the polynemials are dense in the space of continuous functions in
Suppivi = {za: n € M}U{zg} with supremum norm, and consequently P2(v) = LZ{v). Therefore % € P2(v) and by Corollary 8,
it follows that 3 p7|Pa{0; w)|2 = 00, Consider now the measure pu = v + ddg where dsg is the measure with mass d
concentrated at the singleton set {0}. Consider the sequences {Pn(z; V)2, and {Pniz; u3}52,. For every n € N we have
Ma{p) = Mpiddg), and then, by Lemma 1 we have

] _ x ].‘ " > 'I (])‘ Fl]_
—LO'PH(O;”')'z_mmI(] v)Mn(u)(v*).veC ]/mm {1 v)Mg{dsg) vt cve(Ch Y =d.
Hence
= 1
3P0 )] < 3=
n={

We finish the paper with several results relating density of polynomials with the asymptotic behaviour of monic poly-
nomials and of n-reproducing kernels;

Proposition 22, Let ;¢ be a positive measure with support on I and with Supp{it/T) infinite, such that P2(p) = L2i1). Then

lim @iz, )] =0.

Proof. Assume that L2{j} = PZ(u). Then, if v = z¢/T we have that L2(v} = P?(v}, Consequently, combining Lemma 7 and
Remark 18, it follows that

1
B z;f;o | Pr{0; U)|2

Finally, using Proposition 19, we have

0 = lim_|[#uz ],

lim | @n(z ]’ = lim [#.@Gw]°=0. o

Remark 23. The converse of this result is not true, [t is enough to consider the Lebesgue measure 3 in the closed unit disk.
Then,

T
n+1

||«:I)n(2:)||2 = min I(w 1) Ma(n) (‘T ): w e({jnl =

and limp_.. | @a(2)|1> = 0. Nevertheless L?(5) # P?(#), since P?(x) consists of all analytic functions ¥ ,a,2" such that
. 2

Tl nir < 0o,
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