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We present a method of modeling the basin of attraction as a three-dimensional function describing 
a two-dimensional manifold on which the dynamics of the system evolves from experimental time 
series data. Our method is based on the density of the data set and uses numerical optimization and 
data modeling tools. We also show how to obtain analytic curves that describe both the contours 
and the boundary of the basin. Our method is applied to the problem of regaining balance after 
perturbation from quiet vertical stance using data of an elite athlete. Our method goes beyond the 
statistical description of the experimental data, providing a function that describes the shape of the 
basin of attraction. To test its robustness, our method has also been applied to two different data sets 
of a second subject and no significant differences were found between the contours of the calculated 
basin of attraction for the different data sets. The proposed method has many uses in a wide variety 
of areas, not just human balance for which there are many applications in medicine, rehabilitation, 
and sport. 

Estimating the geometry of the basin of attraction of a 
nonlinear dynamical system from raw data is a funda­
mental and challenging problem from both a theoretical 
and applied point of view. In the present work we obtain 
a three-dimensional function describing the geometry of 
the basin of attraction from experimental human balance 
data. The basin of attraction corresponds to the set of 
correctable angles that a particular subject can lean to 
and reverse the motion so as to regain vertical upright 
stance. The importance of the present study is due to the 
many diverse experimental applications in which one or 
more basins of attraction are observed. As a result a 
method of obtaining a function describing the shape of 
the basin of attraction and its contours and depth from 
experimental data is of much use. Regarding the applica­
tion, human balance is an area which is fundamental to 
medicine, rehabilitation, and also sport: training, reha­
bilitation, and injury result in changes in the shape and 
size of the basin of attraction. As a result a method that 
allows one to detect and track these changes will have 
many important uses. 

I. INTRODUCTION 

Recently there has been much interest on bipedal loco­
motion from the point of view of dynamical systems (see, for 
example, the focus issue, which includes a number of stud­
ies regarding human balance ' ). Modeling and analyzing the 
balance of the human body is a difficult task as the human 

body is a complex multijoint system that has the possibility 
for a variety of possible dynamics across different joints and 
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body parts. ' For an extended review on dynamics of human 
postural transitions, see Ref. 9. 

The difficult task of understanding such a complex sys­
tem as the human body is greatly facilitated, when possible, 
by reducing the dimensionality of the system under 
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study. ' Given a sufficiently small perturbation the hu­
man body has the ability to regain balance, following a 
highly complicated path back to the position of quiet upright 
stance (see also Refs. 1, 5, and 6). The dynamic response of 
the postural system to a weak mechanical perturbation can be 
predicted from the fluctuations exhibited by the system under 
quasistatic conditions (and thus the human postural control 
system follows the fluctuation-dissipation theorem). It is 
therefore possible that the postural control system utilizes 
the same control mechanisms under quiet-standing and dy­
namic conditions. 

In quiet upright stance, balance, however, does not imply 
motionless stability: the body oscillates spontaneously and 
continuously at low amplitude in both the mediolateral and 
the anteroposterior directions (there is a possibility of mak­
ing predictions regarding an individual's dynamic response 
to a mild perturbation using quiet-stance data, regardless of 
age ). This phenomenon of constant displacement and cor­
rection of the position of the center of gravity is known as 
postural sway. ' ' ' Postural sway is indistinguishable from 

17 

correlated noise and that it can be modeled as a system of 
bounded, correlated random walks. 

In the present work, however, as the perturbation away 
from the vertical position is of orders of magnitude greater 
than the motion due to body sway during quiet stance, we 



model only the large-scale features of the movement pattern, 
see also Refs. 1-3. The process of regaining balance is rep­
resented in our model as movement within a basin of attrac­
tion containing the attractor that corresponds to vertical quiet 
stance. We show how to obtain this basin of attraction, as a 
two-dimensional manifold which exists in three dimensions, 
that corresponds to experimental data of a subject. This func­
tion can be used to show asymmetries and differences in the 
range of movement on different sides of the body. The basin 
of attraction that models the region in our model, in which 
such a subject can maintain balance, is of course in general 
expected to be nonsymmetric. It is worth noticing here that 
static stability regions with respect to ankle and hip joints 
were proposed in Ref. 18, while Ref. 19 used a concept 
based on the mechanical limit of upright stance with respect 
to the angles of the ankle and the hip, which they called 
stability cone. 

The present study (see also Refs. 1 and 3) considers that 
the process of regaining balance can be reduced to move­
ment on a two-dimensional phase space of two angles 0X and 
0y. Given the three components of the ground reaction force 
Fx, Fy, and Fz, the angle 0X is defined as the angle between 
Fx and Fz, while 6y is defined as the angle between Fy and 
Fz. This way 0X gives the angle that the body leans away 
from the vertical in the anteroposterior (x) direction and 0y 

gives the angle that the body leans away from the vertical in 
the mediolateral (y) direction. 

Due to the spiraling back onto the fixed point corre­
sponding to vertical stance (0X=O, 0y=O), this point is mod­
eled as a complex sink. It is also assumed that failure to 
regain balance leads to the body falling to the floor, a condi­
tion the end point of which corresponds to the circle 0X 

+ 0y
2=TT/22}'3 Both the point (0,0) and the circle 0x

2+0y
2 

= 7r/22 are considered to be attracting states in the phase 
space of the angles 0X and 0y. As explained in Refs. 1 and 3 
there exists a set of critical angles 0X and 0 c such that for 
values of Q<0X<0F

X and 0<0y<(F the subject is able to 
regain an upright stance, while for values of flFx<0x<irl2 
and ff <0y<7tl1 the subject loses balance and (in a theo­
retical experiment) ends up lying on the floor. The critical 
angles define a "critical curve," which is repelling and serves 
as the boundary between the two ultimately different body 
positions, the upright stance versus horizontally lying on the 
floor. Viewed from this point of view, the critical curve is the 
boundary between the two basins of attraction that contain 
either vertical stance or horizontal failure solutions. 
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The model ' describes the motion of the body's center 
of gravity using the following set of coupled ordinary differ­
ential equations: 

Ox = -faJyOx,0y) fc(0x,0y) ff(0x,0y), (1) 

Qy = -fay(0x>0y) fc(@x'@y) //(#t>#y)> ( 2) 

where the functions fax(0x, 0y) and fay(0x, 0y) control the at­
tracting fixed point of the vertical state, the function 
fc(0x, 0y) models the repelling critical curve, and the function 
ff(0x,0y) models the horizontal failure state (attracting 
circle). 

(«) (b) 

FIG. 1. Idealized features of the model showing the two attracting solutions 
[point A at (0,0) corresponding to vertical stance and attracting circle of 
fixed points fj( ft,, 8y) that models the horizontal failure state] and the critical 
curve / c( ft,, ft,) that separates their basins of attraction, (a) Three-
dimensional representation of the idealized features showing also the basins 
of attraction, (b) Two-dimensional projection on the phase space of ft,, ft . 
The letters F, B, R, and L correspond to the four principal directions (for­
ward, backward, right, and left, respectively). 

Figure 1 presents the features of the model in a three-
dimensional space (0x,0y,z), where the variable z corre­
sponds to the depth of the two respective potential wells 
(strength of the attractors). The figure represents an idealized 
case where the subject's body is symmetrical and therefore a 
symmetrical critical curve encloses a symmetrical basin of 
attraction for the spiral sink of (0,0). In the idealized ex­
ample illustrated in Fig. 1, the subjects' body can lean further 
toward the positive x-direction and the critical curve is sym­
metrical regarding the 0y axis. In Fig. 1, the two attracting 
features, the point at (0,0) and the circle of radius TT/2, have 
the same strength, as they are located at equal depths in the z 
axis. 

In reality, however, the process of regaining balance de­
pends on the morphology of the body, the subject's muscular 
strength, as well as their neurological condition and other 
factors. When dealing with experimental data, the size and 
shape of the basin of attraction and the critical curve enclos­
ing it, as well as the strength of the attractor at (0,0), will 
therefore depend on the individual subject and their condi­
tion. 

The problem of estimating the basin of attraction of non­
linear dynamical systems is interesting and challenging both 
from a theoretical and applied point of view. Analytical 
methods of estimating the basin of attraction of a dynamical 
system have been developed; however, these methods are 
obviously limited to dynamical systems that are described by 
known and analytically manageable functional forms, see, 
for example, Ref. 20. Basins of attraction are typically stud­
ied using initial condition maps which are derived from 
Poincaré sections, but these are usually limited to two-
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dimensional surfaces of sections. Some analytical methods 
arise from the Lyapunov theory of stability, ~ while other 
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methods, such as the linearization approach or the so-called 
28 29 

tracking function method, ' have been also proposed. Nu­
merical procedures have also been proposed for the calcula-
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tion of the basin boundaries from first principles. ' The 
authors in Ref. 22 suggest the so-called trajectory reversing 
method that is based on suitable topological considerations. 
For an extended review on analytical methods for finding the 
basin of attraction, see Ref. 22. 

From the point of view of applications a number of stud­
ies have been made in the engineering field (magnetic fields, 
electric power systems, chemical reactors, and robotics) as 
well as in other areas such as ecology, biology, and 
economics. In such studies the basin of attraction (which, 
in many of these studies, is called the potential well) is esti­
mated numerically through experimental measurements of 
the potential field (for examples, see Refs. 32-34). In the 
field of robotics, methods for deriving the equations of mo­
tion and impact equations for the analysis of multibody sys-
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terns, such as walking models, have been investigated. In 
such models the basin of attraction of the system is estimated 

35 
by methods such as the so-called cell mapping method. In 
general, in the field of applications, researchers that study 
basins of attractions are concerned with the determination of 
the basin's lower/upper limits or its boundaries (see Ref. 36 
as an example). 

An interesting method for numerically determining the 
basin of attraction from experimental data can be found in 
Ref. 21. In a driven two-well magnetomechanical oscillator, 
the basins of attractions for the system are obtained using an 
ensemble of initial conditions that is generated by switching 
between stochastic and deterministic excitations. Using this 
so-called stochastic interrogation method, the authors in Ref. 
21 demonstrate how to construct transition probability matri­
ces for finite partitions of the phase space. These matrices 
allow the study of the evolution of probability densities and 
the estimation of the basins of attraction. 

In the present work, the basin of attraction of the system 
that is described by the model of Ref. 1 is estimated from 
modeling experimental data (see Sec. II). As will be de­
scribed in detail in Sec. IV, the method starts in a very simi­
lar way to the method described in Ref. 21: the phase space 
of the system under study is partitioned into an NXN grid 
and the number of data points that are contained within each 
one of the JV2 boxes is counted. The density distribution of 
the experimental data set is represented as contours on planes 
parallel to the phase space of the system and is modeled 
using a family of functions that contain sinusoidals and their 
harmonics, so as to provide full control of the shape of these 
contours. The dependence on depth z is modeled using a 
family of Gaussian functions. The modeling process is such 
that the curves which the model consists of always provide 
best fit for the experimental data. The method we propose 
has been tested here for its robustness and sensitivity to dif­
ferent data sets (please refer to Sec. VII). 

For a detailed description of the method, see Sec. IV 
below. 
II. EXPERIMENTAL DATA COLLECTION 

A. Experimental procedure 

A 25-year old healthy male decathlete of international 
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level served as a subject and a Kistler 9286AA force plat-

(a) (b) 
FIG. 2. Initial quiet stance: (a) protocol 1 and (b) protocol 2. 

form was used, together with its corresponding software for 
the recording of the ground reaction forces. For the collec­
tion of experimental data the following procedure was used, 
see also Refs. 1, 3, and 37: 

• Protocol 1: 

(a) The subject initially stood on a force platform with 
both feet on the floor together and aligned to the an­
teroposterior axis with hands on hips, see Fig. 2(a). The 
hands were to remain on the hips throughout the whole 
experiment. 

(b) The subject leaned as far and as fast as he could away 
from the vertical in all eight directions: forward, back­
ward, left, right, and the four diagonals forward-left, 
forward-right, backward-left, and backward-right. 

(c) A successful data set consisted of the subject being able 
to correct the perturbation and regain balance in up­
right stance. 

• Protocol 2: 

(a) The subject initially stood on a force platform on one 
leg (first the left and then the right leg), aligned to the 
anteroposterior axis with hands on hips, with the toes 
of the other leg touching the ankle of the supporting 
leg, see Fig. 2(b). The hands were to remain on the hips 
throughout the whole experiment. 

(b) The subject leaned as far and as fast as he could away 
from the vertical in all eight directions (see protocol 1). 

(c) A successful data set consisted of the subject being able 
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FIG. 3. Example of the time series corresponding to protocol 1 (two-legged 
stance) and initial perturbation forward: (a) 8X and (b) 8y. The letters F, B, R, 
and L correspond to the four principal directions (forward, backward, right, 
and left, respectively). 

to correct the perturbation and regain balance in an 
upright stance. 

B. Experimental time series data 

The time series of the ground reaction force exerted on 
the ground by the athlete's body were recorded for five suc­
cessful data sets for each protocol and each of the eight di­
rections (a total of 40 time series data for each posture). The 
sampling rate was 200 Hz and the total time of each record­
ing was 5 s. Figure 3 shows a characteristic example of the 
time series of the two angles 6X and 0y (these time series 
correspond to the two-legged stance of protocol 1 and the 
subject was asked to first lean as far as he could forward). 
The switch from perturbed stance control to quiet stance con­
trol is evident, especially in the time series of Fig. 3(a) that 
correspond to 0X, the angle between the vertical and the force 
exerted by the subject in the anteroposterior direction. The 
low-scale oscillations present at the end of the recording are 
quiet stance oscillations. 

Figures 4(a)—4(d) show examples of the phase space of 
the time series of the two angles. These figures correspond to 
protocol 1, while the subject was asked to lean, on two-
legged stance, forward, backward, to the left, and to the right 
[Figs. 4(a)-4(d), respectively]. 

Finally, Figs. 5(a)-5(c) present the full set of the 40 ex­
perimentally recorded time series for the left-legged, right-
legged, and two-legged stance, respectively, plotted in the 
phase space of the angles (8X, 6y). In these plots the presence 
of oscillations, as the body is trying to regain balance, is 
obvious: the more unstable the body the larger the oscilla­
tion. During a successful restoration of balance, these oscil­
lations die out as the body regains balance and is back onto 
the attractor (0,0) that corresponds to the vertical position. 

III. NUMERICAL CALCULATION OF THE MODEL'S 
FEATURES 

A. Fitting the model curves to the experimental data 

In Sees. IIA and IV-VI we will describe how the basin 
of attraction of our model can be estimated step by step. First 
we obtain the critical curve that corresponds to a particular 
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FIG. 4. Examples of the phase space corresponding to protocol 1 (two-
legged stance). The subject was asked to lean (a) forward, (b) backward, (c) 
to the left, and (d) to the right. The letters F, B, R, and L correspond to the 
four principal directions (forward, backward, right, and left, respectively). 
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FIG. 5. Experimental data: (a) left-legged stance, (b) right-legged stance, 
and (c) two-legged stance. 



set of experimental data (see Sec. II) and the contours of the 
basin of attraction that correspond to different depth z inside 
the basin (Sec. V B). From these curves a three-dimensional 
function is formed (see Sec. VI B) that models the basin of 
attraction of the particular experimental data set. 

The desired curves are derived from the experimental 
data as follows. Let us assume that for modeling purposes, a 
curve is to be fit to the set of M experimental data points {xj-, 
i=l,... ,M. Let us also assume that this curve is given by a 
function f(x) that depends on K parameters a¡, i=l,... ,K, 

i .e . , /=/(x,«! , . . . , (%). 
For the purposes of curve fitting, the squared distance x2 

between the curve / and the data points {xj, 

M 

X2(x,«!, ...,aK) = 2 [x¡ -f(x¡,ah ...,aK)f, 
¡=i 

was considered as the cost function to be minimized. 
The aim of the optimization was to calculate the (opti­

mal) values of the control variables « j , . . . , aK that provide 
the curves of the desired form that best fit the data set (see 
Sees. V B and VI A below). For this reason, during each 
optimization process, the cost function of x2 was numerically 
minimized and the method used was the stochastic optimiza­
tion method ALOPEX IV (see Sec. Ill B). Section III B gives 
a brief introduction to the numerical stochastic optimization 
method of ALOPEX. 

B. Brief introduction to ALOPEX stochastic 
optimization 

The method of ALOPEX is a simple, yet very fast and 
efficient method of stochastic optimization. It is an iterative 
procedure the main advantage of which being that no knowl­
edge of the dynamics of the system or of the functional de­
pendence of the cost function on the control variables is re­
quired. 

In the present study we use the version ALOPEX IV of 
the method which calculates the value of the ¿th control vari­
able in the (£+l)th iteration as follows: 

(k+i) 
= ft); ' + CAft); '• 

A / k-r • + 8) 
(k) i=l,...,N, (3) 

Find square region 33 on the {0x.By) plane containing the critical curve 

Divide 03 into N2 boxes of an TV x Ar grid 

Count the number of data points that are contained in the (/". j)-th box 
/ = ! . • • • .N. j = " ! . • • • . i V 

Construct the basin matrix T> 
"Dif. number of data points contained in the (/.j)-th box 

Density of data points of the (/. j)-th box: depth along the vertical axis z 

FIG. 6. Schematic representation of the calculation of the basin of attraction 
from experimental data. 

IV. THE BASIN MATRIX S3 

A. Calculation of the basin matrix 

For the calculation of the basin of attraction that is en­
closed by the critical curve, the following procedure is fol­
lowed (see Fig. 6): 

(1) 

(2) 

Consider 0Tmx to be the maximum recorded value of the 
angles that the subject can lean to and still regain bal­
ance, as obtained from the experimental data (in abso­
lute terms) and a square region 58 on the (0X, 0y) plane 
containing the critical curve such as 

® = {(0„0J J}-

where 

Choose a scaling number y and divide the region 58 into 
N2 boxes of an N X N grid, where N is the integer part of 
2y|#max |+l. The number y determines the resolution of 
the grid of the basin of attraction and is chosen interac­
tively: if y is too small, fine details regarding the shape 
of the basin of attraction will be lost. On the other hand, 
large values of y are limited by the number of experi­
mental data points. It is assumed that the (¿,j)th box of 
the grid corresponds to the point (0¡,0j) of the (0x,0y) 
plane, in such a way that 

• N is the number of the control variables, 
• &),. is the value of the ¿th control variable after the £th 

iteration, 
• f-k\(o^k), ft>2

W,..., wN
(k)) is the value of the control func- (3) 

tion after the £th iteration, 
• c is a constant with a value fixed at c = 0.4 for the present 

study, 
• g is the stochastic element (random noise step), 

A (k)_ (k) (jfc-1) 
• Aft); = f t ) ¡ " ( O . , 

. A/W^/W-/*-1^, and 

. Ajik-Vi=ji.k-\)_j{k-2)_ 

For more information regarding ALOPEX stochastic op- (4) 
timization as well as applications of the method, see Refs. 3 
and 38-42. 

' TV-1 J N-l J 

For each one of the three experiments (one for the two-
legged and two for the one-legged stance) collect all five 
sets of recorded experimental data that correspond to 
successful attempts to regain balance and count the 
number of data points that are contained in the (¿,j)th 
box of the grid, where i=l,... ,N and j=l,... ,N. This 
number gives the density of data points that are con­
tained in the (¿,j)th box of the grid, or in other words 
defines the depth of the (i ,/)th box. 
Construct the NXN matrix 33, the value of the element 
33 ¡j of which gives the number of recorded data points 
that are contained in the (i ,/)th box, as described above. 
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FIG. 7. Three-dimensional representation of the basin of attraction as calculated from data density, -|(?max| — Sx, $ys |#max|. (a) Detail (-0.01 S^SCO) 
showing how the NXN grid is overlaid on the data points, (b) Drawing of the basin obtained from the data set (- l .000SzS-0.003). The numerical values 
are #max=0.1214, dimension of the basin matrix is 3} :N=65, and the letters F, B, R, and L correspond to the four principal directions (forward, backward, 
right, and left, respectively). 

The matrix 33 gives a representation of the basin of at­
traction in terms of data density (number of recorded 
points). 

B. Three-dimensional representation of the basin 
matrix 

Let us now consider that the density of the recorded data 
points of the (¿j)th box of the grid corresponds to the depth 
of this box along the vertical axis z, as mentioned before. 
Then the basin of attraction that corresponds to the vertical 
stance and is enclosed by the critical curve can be visualized 
in three dimensions. In such a plot, the vertical (z) axis cor­
responds to data density as follows. 

• The plane z=0 corresponds to the boundary of the basin of 
attraction (i.e., the critical curve). 

• As the data density increases toward the attracting fixed 
point at vertical position, the values of z become more 
negative, the most negative z value corresponding to the 
attractor inside the basin. 

• The values of the elements 33,j take values from 0 to very 
large numbers; for this reason, these values have been di­
vided, for the purposes of the present study, by 1000. This 
way the relation between depth z(0x, 6y) and data density 
D¡j is V i=i,...,N and V j = i,...,N, 

zU ) = — — y 1000' 

• All points that lie on the region z<-1 .0 of the basin of 
attraction (that corresponds to experimental data density of 
33 ¡j > 1000) are considered to belong to the attracting fixed 
point at (0,0) due to 

(1) experimental error and 
(2) effects of body sway (see Sec. I). 

Figure 7 shows, as an example, the three-dimensional 
representation of the basin matrix 33 as calculated from the 

experimental data of the two-legged stance that are shown in 
Fig. 5(c) using the procedure described above. For the cal­
culation of the basin matrix 33 shown in this figure, the best 
value of y was found, by trial and error, to be equal to 
7=270. From the experimental data of Fig. 5(c) there is 
6>max=0.1214 (rads) and therefore JV=65. 

V. CALCULATION OF THE CONTOURS 
OF THE BASIN OF ATTRACTION 

A. Graphical representation 

For the purpose of calculating a number of m contours of 
the basin of attraction, based on the experimental data, m 
characteristic values of "depth" z are selected. Then, using an 
appropriate algorithm, the boundary of the region of the 
phase space of (0x,0y) for which the depth of the basin of 
attraction is more negative than the selected value z was 
numerically calculated. As an example, we present below 
m = 6 contours that correspond to the depths z=0 (critical 
curve), z=-0.003, z=-0.013, z=-0.100, z=-0.400, and 
z=-1.000. 

Figures 8(a)-8(c) present the calculated contours of the 
basin of attraction for the left-legged, the right-legged, and 
the two-legged stances, respectively, as were numerically 
calculated. As can be seen there are asymmetries and differ­
ences in the shape of the contours, as the depth z of the basin 
of attraction increases and also regarding different sides of 
the body (differences between left-legged and right-legged 
stances, or the two-legged stance). 

B. Contour modeling 

In Sees. V B and VI we consider the phase space of the 
two angles on a polar coordinate system (p, 0) instead of the 
Cartesian (0x,0y), such that p=^0x

2+0y
2, p > 0 and 0 

= mctan(0y/0x), 0=0,...,2TT. 
To model the contours of the basin of attraction that cut 

the basin of attraction at different depths z, we consider that 
each contour is represented by a closed curve on the (0X, 0y) 
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FIG. 8. Contours of the basin matrix X) corresponding to different depths z: 
(a) left-legged stance, (b) right-legged stance, and (c) two-legged stance. 

Sec. I). For a detailed description of the computational pro­
cedure of curve fitting using ALOPEX optimization, see 
Ref. 3. 

VI. MODELING THE THREE-DIMENSIONAL 
BASIN OF ATTRACTION 

A. The functional dependence of the parameters 
on depth z 

As can be observed in Tables 1 and 2, for a given depth 
z and a given number of harmonics nz, the parameters a, ak, 
and bk (k= 1,... ,n) that control the shape of the contours for 
the particular z, as described by Eq. (4), are dependent on z. 
In other words they can be considered to be functions of z 
and therefore Eq. (4) can be rewritten in the form 

p(e,z) = a(z) 1 + 2 ak(z)cos(k0) + 2 bk(z)sm(k0) 

(5) 

To model the functional dependence of the parameters a, 
ak, and bk (k= 1,...,«) on z, we have concluded, by numeri­
cal observation, that a sum of Gaussian functions of the form 
described in Eq. (6) that follows models the numerically cal­
culated values in a highly satisfactory way, 

plane. During the present study a number of functions that 
can possibly represent such curves have been considered. 
The aim was to find a function that provides closed curves in 
polar coordinates that will allow full control of the observed 
oscillations of the contours. The curve that models each con­
tour of the basin of attraction should enclose all data points 
that have been calculated to lie deeper within the basin than 
the depth z that characterizes the particular contour. 

After an extensive study of families of functions with the 
above properties we concluded that the best choice is a func­
tion which includes an expansion of sines and cosines of the 
following form: 

fl(z) = 2 c i ^ f e " , i ) : 

p(0) = a I +ZJ ak cos(k0) + Zjbk sm{k9) 
k=\ k=\ 

(4) 

where for each constant depth z the parameters a, ak, and bk 

take real values and the number nz e N* depends on z and 
gives the number of harmonics that best fit the experimental 
data. The values of nz were chosen for each contour by trial 
and error. 

For the curves representing the contours given by Eq. (4) 
to be closed curves, the values of the parameters ak and bk 

have to be chosen appropriately. This is not a problem, how­
ever, as the values of these parameters are chosen in the 
present study so as to provide the curves that best fit the 
experimental data, and are forced by the optimization algo­
rithm to create closed curves. 

Tables 1 and 2 (Ref. 43) present, as an example, the 
parameters that give the closed curves that best describe the 
contours of the two-legged experiment and that are shown in 
Fig. 8(c). For the calculation of the contours, the ALOPEX 
IV optimization algorithm was used to optimize a x2 fit (see 

ak 
M^cfe-Pfb-^, (6) 

^ ) = 2cfV^-^2 . 

In Eq. (6) above, m,mak,mbk efi* denote the number of 
Gaussian functions used to best fit the dependence of the 
calculated values of the parameters a, ak, and bk 

(k=l,... ,nz) on z, respectively (found by trial and error). 
The real parameters c¡, p¡, q¡, i=l,...,m, cf, pf, qf, 
i = 1,...,mak and cbk, pbk, qbk, i= 1,...,mbk are parameters of 
the fit. 

As mentioned in Sec. V, for the numerical best fit of 
functions of the type (6) to the data of Tables 1 and 2, the 
ALOPEX IV optimization algorithm was implemented for a 
X2 fitting of the curves. In Tables 3-6 (Ref. 43) we present, 
as an example, the parameters that best fit the values of a, ak, 
and bk that are shown in Tables 1 and 2. 

B. A model of the basin of attraction 
as a three-dimensional function 

By summarizing and combining the conclusions and best 
fits presented in Sees. IV, V, and VI A, we conclude that the 
basin of attraction that is bound by the critical curve (as 
described in Sec. I) and includes the spiral sink that models 
the vertical "quiet" stance (within the limits of body sway, 
see Sec. I) can be given in a three-dimensional system of 
cylindrical coordinates (p,8,z) by a function of the form 
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FIG. 11. Experimental data, two-legged stance, for the second subject 
(a) data set 1 and (b) data set 2. 

FIG. 9. Schematic representation of the process of modeling the basin of 
attraction as a three-dimensional function. 

traction that corresponds to the two-legged stance experi­
ment. The values of the parameters are given in Tables 1-6. 

p(0,z)-

cos(k8) 

sm(k9) (7) 

= 0 , . . . , 2 T T , and where nz,m,mak,mbk EN* , 
ak ak ak bk bk bk _ TO 

The variable z that represents the depth of the basin is 
considered due to experimental error as well as the effects of 
body sway (see also Sees. I, IV, and VI) to take values 
z = - l , . . . , 0 , where z=0 corresponds to the critical curve, 
which is the boundary of the basin of attraction, and z = - l 
corresponds to the attractor of vertical stance. 

In Fig. 9 a schematic representation of the modeling pro­
cess is shown. Figure 10 presents, as an example, a plot of 
the calculated three-dimensional function of the basin of at-

oo 
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FIG. 10. The basin of attraction, as given by Eq. (7), and the parameter 
values of Tables 1-6 (Ref. 43). The function of the basin of attraction is 

VII. A TEST OF THE SENSITIVITY OF THE METHOD 
TO DIFFERENT DATA SETS 

To further examine the robustness of our method, addi­
tional data from a different subject (a 30-year-old healthy 
male who was not an athlete) have been collected. Protocol 1 
(two-legged stance) has been followed, as described in 
Sec. II, this time twice. Care was taken to minimize the time 
between the two successive data collection sessions so as to 
avoid any possible effect of training and/or change in physi­
cal condition on the movement patterns of the subject. The 
set of the recorded data of the five successful attempts, plot­
ted on the phase space of (8X, 0y), is shown in Fig. 11. 

For the data shown in Fig. 11 we comment the 
following: 

• Small changes can be observed in the shape of the region 
that defines the boundary of the basin of attraction and thus 
the critical curve (i.e., the curve enclosing all data points: 
all possible angles the subject can lean to and still regain 
balance). 

• The overall shape and, more importantly, the size of the 
critical curve is the same for both data sets of the two 
different data collection sessions. 

• For both data sets the same value of (9max was calculated: 
flmax=0.1401. 

• The region of highest density of trajectories (i.e., the 
blackest region) appears to remain the same for both data 
sets. 

Figure 12 shows a detail of the data sets plotted in three 
dimensions. In these graphs the similarity of the two differ­
ent data sets becomes more obvious: apart from the small 
changes in the shape of the boundary at z=0, the overall 
shape and details of the plotted basin of attraction can be 
observed to be the same for both plots. 

To examine the similarity of the data sets in more detail, 
the contours of the basin of attraction were calculated, fol­
lowing the exact procedure described in Sec. V Figure 13 
shows the results. As can be observed in Fig. 13, apart from 
the exception of the critical curve (contour for z=0), there is 
no significant difference between the calculated contours of 
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FIG. 12. Showing a detail (-0.015SzS0) of the three-dimensional representation of the basin of attraction as calculated from data density, -|(?max| 
£ 8X, dys |#max|. The data correspond to the second subject (a) data set 1 and (b) data set 2. The numerical values are #max=0.1401, dimension of the basin 
matrix is X) :N=65. 

the basin of attraction of the second subject for the two dif­
ferent data sets. The overall shape and size of the contours 
are the same for both data sets, and the small differences 
observed were expected as a result of the unavoidable ex­
perimental error. 

Figure 13 proves the robustness of our method: the cal­
culated basin of attraction has been shown (through its con­
tours) to have the same (or very similar within the limitations 
of experimental error) size and shape, even for two data sets 
that were collected during different experimental sessions. 
The same results would of course be obtained if these two 
data sets were combined, the only difference would have 
been in the details of the shape of the boundary of the basin 
(critical curve). 

VIM. DISCUSSION AND CONCLUSIONS 

We have presented a method of estimating the basin of 
attraction as a function in three dimensions on a cylindrical 
coordinate system, the coordinates of which are those of the 
phase space of our model and the axis z that corresponds to 
depth inside the basin. Our method has been applied to the 
problem of estimating the basin of attraction that includes the 
attractor of vertical quiet stance in a model of the process of 
regaining balance. For this reason, the experimentally re-

9X 6r 
-D.15 -0.1 -0.05 0.0 0.05 0 1 D 15 -0.15 -0.1 -0.05 0.0 0.05 0.1 0.15 

(a) (b) 

FIG. 13. Contours of the basin matrix X) of the second subject that corre­
spond to different depths z: (a) data set 1 and (b) data set 2. The color index 
is the same as that of Fig. 8. 

corded movement patterns of an elite decathlete, while trying 
to regain balance after perturbation from quiet stance, have 
been modeled and a three-dimensional function of the corre­
sponding basin of attraction has been calculated. The robust­
ness and sensitivity of the method to repeated analysis have 
been successfully tested by its application to two different 
data sets of a second subject. 

We have also shown how to obtain the contours of the 
basin of attraction. This has many uses in human balance, for 
understanding the difference between extreme and normal 
movements, as well as the subject's preferred movement pat­
terns. 

There are a number of assumptions underlying our 
method. 

(1) The basin of attraction is static for the duration of an 
experimental trial (and possibly beyond). 

(2) The amount of data collected (see Sec. II) is sufficient to 
compute the basin's shape. 

(3) The local depth of the basin, and thus its shape, is re­
flected by the number of sample points found at a given 
location, i.e., the longer the system resides in a neigh­
borhood, the deeper the basin there; and, consequently, 
the greater the difference between adjacent rectangles in 
terms of data points counted, the greater the slope of the 
basin wall at that location. This, in turn, has implications 
concerning the assumed strength of the attractor given 
by x=-dV/dx, where V is the potential energy of the 
system. 

(4) The change in basin heights is sufficiently smooth to fit 
an exponential function to it. 

The novelty of the method presented here is that it goes 
beyond the statistical description of the experimental data, 
providing a function the describes the shape of the basin of 
attraction. This makes our model very powerful: based on the 
numerically estimated geometry and given appropriate initial 
conditions, one can generate synthetic dynamics and provide 
artificial data that simulate the experimentally obtained data 
from that particular subject. 



Our method is not restricted to the study of human bal­
ance, but it has also many uses in a wide variety of applica­
tions, in which the basin of attraction is desired to be ob­
tained from experimental data. 
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