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Abstract—This paper presents a Fuzzy Control application
for a landing task of an Unmanned Aerial Vehicle, using the 3D-
position estimation based on visual tracking of piecewise planar
objects. This application allows the UAV to land on scenarios
in which it is only possible to use visual information to obtain
the position of the vehicle. The use of the homography allows a
realtime estimation of the UAV’s pose with respect to an helipad
using a monocular camera. Fuzzy Logic allows the definition of
a model-free control system of the UAV. The Fuzzy controller
analyzes the visual information to generate altitude commands
for the UAV in a landing task.

I. INTRODUCTION

The unmanned aerial vehicle (UAV) has made its way
quickly and decisively to the forefront of current aviation
technology. Opportunities exist in a broadening number of
fields for the application of UAV systems as the components
of these systems become increasingly lighter and more
powerful. Of particular interest are those occupations that
require the execution of missions which depend heavily on
dull, dirty, or dangerous work, UAVs provide a cheap, safe
alternative to manned systems and often provide a far greater
magnitude of capability.

Computer vision has played and important role on the
growing development of UAV, in which has been used
as an important sensor, initially used for surveillance and
then being integrated on the control system of the vehicle
in order to use the rich information provided by visual
systems as the main source of information for a vast list
of applications, covering from visual control system based
on regular cameras [13], [1] to autonomous landing [7], [19]
and obstacle avoidance [10], [2].

In contrast to conventional control, fuzzy control was
initially introduced as a model-free control design method
based on a representation of the knowledge and the reasoning
process of a human operator. Fuzzy logic can capture the
continuous nature of human decision processes and as such
is a definite improvement over methods based on binary logic
(which are widely used in industrial controllers). Hence, it
is not surprising that practical applications of fuzzy control
started to appear very quickly after the method had been
introduced in publications. Some of those applications of
Fuzzy control and UAV are: for visual servoing [18], for
an autopilot using a Fuzzy PID control [20], an obstacle
avoidance and path planning system [8] and to manage a
team of UAVs [25].
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Our research interest focuses on developing computer
vision techniques to provide UAVs with an additional source
of information to perform visually guided task - this includes
tracking and visual servoing, inspection, autonomous landing
and positioning, or ground-air cooperation. These situations
need reliable state information, that allows a onboard con-
troller to generate accurate positioning. In general the pose
information is estimated based on the the GPS and the inertial
measurement unit IMU sensor measurements. However, for
low altitude tasks in urban scenarios, the estimation often
is inaccurate because it is affected by GPS dropouts, thus
making flying in these constrained environments more vul-
nerable and more prone to problems. Computer vision as
passive sensor not only offers a rich source of information
for navigational purposes, but it can be also used as a main
navigational sensor in place of GPS. With the increasing
interest in UAVs, a visual system that can determine the robot
3D location in its operational environment is becoming a key
sensor for civil applications.

This paper presents a Fuzzy Controller which use the
visual information obtained by a real time 3D-position es-
timation method, based on the tracking of a helipad using
robust homographies estimation for descend in landing tasks.
Section II explains the visual algorithm used in order to
robustly track the reference landmark or helipad. Section
III explains how the pose of a planar object relative to a
moving camera coordinate center is obtained, using frame-
to-frame homographies and the projective transformation of
the reference object on the image plane. The definition of
the Fuzzy controller used to analyze the visual information
estimated onboard the UAV is presented in Section IV.
Finally, Section V shows the specifications of the Unmanned
Helicopter, and the test results of the proposed algorithm
running onboard a UAV, by comparing the estimated 3D
pose data with the one given by the inertial Measurement
Unit IMU. This validates our approach for an autonomous
landing control based in visual information.

II. VISUAL PROCESSING

This section explains how the frame-to-frame homography
is estimated using matched points and robust model fitting
algorithms. For it, the pyramidal Lucas-Kanade optical flow
[12] on corners detected using the method of Shi and Tomasi
[21] is used to generate a set of corresponding points,
then, a RANSAC [9] algorithm is used to robustly estimate
projective transformation between the reference object and
the image. Next section explains how this frame-to-frame is
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used to to obtain the 3D pose of the object with respect to
the camera coordinate system.

On images with high motion, good matched features can
be obtained using the well know Pyramidal Lucas-Kanade
algorithm modification [12]. It is used to solve the problem
that arise when large and non-coherent motion are present
between consecutive frames, by first tracking features over
large spatial scales on the pyramid image, obtaining an initial
motion estimation, and then refining it by down sampling the
levels of the images pyramid until it arrives at the original
scale.

The set of corresponding or matched points between two
consecutive images ((xi,yi)↔ (x′i,y

′
i) for i = 1 . . .n,) obtained

using the pyramidal Lucas-Kanade optical flow is used to
compute the 3x3 matrix H that takes each x̄i to x̄′i or
x̄′i = Hx̄i or the Homography that relates both images. The
matched points often have two error sources. The first one
is the measurement of the point position, which follows a
Gaussian distribution. The second one is the outliers to the
Gaussian error distribution, which are the mismatched points
given by the selected algorithm. These outliers can severely
disturb the estimated homography, and consequently alter any
measurement based on homographies. In order to select a
set of inliers from the total set of correspondences so that
the homography can be estimated employing only the set of
pairs considered as inliers, robust estimation using Random
Sample Consensus (RANSAC) algorithm [9] is used. It
achieves its goal by iteratively selecting a random subset of
the original data points by testing it to obtain the model and
evaluating the model consensus, which is the total number
of original data points that best fit the model. In the case of
a Homography, four correspondences are enough to have a
exact solution or minimal solution using the Inhomogeneous
method [6]. This procedure is then repeated a fixed number of
times, each time producing either a model which is rejected
because too few points are classified as inliers, or a refined
model. When total trials are reached, the algorithm returns
the Homography with the largest number of inliers.

III. 3D ESTIMATION BASED ON HOMOGRAPHIES

This section shows how to estimate the 3D position of
a world plane relative to the camera projection center for
every image sequence using previous frame-to-frame homo-
graphies and the projective transformation at first, obtaining
for each new image, the camera rotation matrix R and a
translational vector t. This method is similar to the one
propose by Simon et. al. [24], [23] and is deeply detail on
[14].

A. World plane projection onto the Image plane

Mondragon2010ICRA In order to align the planar object
on the world space and the camera axis system, we consider
the general pinhole camera model and the homogeneous
camera projection matrix, that maps a world point xw in P3

to a point xi on ith image in P2, defined by equation 1:

sxi = Pixw = K[Ri|ti]xw = K
[
ri

1 ri
2 ri

3 ti]xw (1)

where the matrix K is the camera calibration matrix,
Ri and ti are the rotation and translation that relates the
world coordinate system and camera coordinate system, and
s is an arbitrary scale factor. Figure 1 shows the relation
between a world reference plane and two images taken by
a moving camera, showing the homography induced by a
plane between these two frames.

Fig. 1. Projection model on a moving camera and frame-to-frame
homography induced by a plane.

If point xw is restricted to lie on a plane Π , with a
coordinate system selected in such a way that the plane
equation of Π is Z = 0, the camera projection matrix can
be written as equation 2:

sxi = PixΠ = Pi


X
Y
0
1

= 〈Pi〉

X
Y
1

 (2)

where 〈Pi〉 denotes that this matrix is deprived on its third
column or 〈Pi〉= K

[
ri

1 ri
2 ti]. The deprived camera pro-

jection matrix is a 3×3 projection matrix, which transforms
points on the world plane ( now in P2) to the ith image plane
(likewise in P2), that is none other that a planar homography
Hi

w defined up to scale factor as equation 3 shows.

Hi
w = K

[
ri

1 ri
2 ti]= 〈Pi〉 (3)

Equation 3 defines the homography which transforms
points on the world plate to the ith image plane. Any point on
the world plane xΠ = [xΠ,yΠ,1]T is projected on the image
plane as x = [x,y,1]T . Because the world plane coordinates
system is not know for the ith image, Hi

w can not be directly
evaluated. However, if the position of the word plane for a
reference image is known, a homography H0

w, can be defined.
Then, the ith image can be related with the reference image to
obtain the homography Hi

0. This mapping is obtained using
sequential frame-to-frame homographies Hi

i−1, calculated for
any pair of frames (i-1,i) and used to relate the ith frame to
the first image Hi

0 using equation 4:

Hi
0 = Hi

i−1Hi−1
i−2 · · ·H

1
0 (4)



This mapping and the aligning between initial frame
to world plane reference is used to obtain the projection
between the world plane and the ith image Hi

w = Hi
0H0

w.
In order to relate the world plane and the ith image, we
must know the homography H0

w. A simple method to obtain
it, requires to match four points on the image with the
corresponding corners of the rectangle in the scene, forming
the matched points (0,0)↔ (x1,y1), (0,ΠWidth)↔ (x2,y2),
(ΠLenght ,0)↔ (x3,y3) and (ΠLenght ,ΠWidth)↔ (x4,y4). This
process can be done by both, a helipad frame and corners
detector or by an operator through a ground station interface.
The helipad points selection generates a world plane defined
in a coordinate frame in which the plane equation of Π

is Z = 0. With these four correspondences between the
world plane and the image plane, the minimal solution for
homography H0

w =
[
h1

0
w h2

0
w h3

0
w
]

is obtained.

B. Translation Vector and Rotation Matrix

The rotation matrix and the translation vector are com-
puted from the plane to image homography using the method
described in [28].

From equation 3 and defining the scale factor λ = 1/s, we
have that[

r1 r2 t
]
= λK−1Hi

w = λK−1 [h1 h2 h3
]

where

r1 = λK−1h1, r2 = λK−1h2, t = λK−1h3

(5)

The scale factor is calculated as λ = 1
‖K−1h1‖

.
Because the columns of the rotation matrix must be

orthonormal, the third vector of the rotation matrix r3 could
be determined by the cross product of r1×r2. However, the
noise on the homography estimation causes that the resulting
matrix R =

[
r1 r2 r3

]
does not satisfy the orthonormality

condition and we must find a new rotation matrix R′ that best
approximates to the given matrix R according to smallest
Frobenius norm for matrices (the root of the sum of squared
matrix coefficients) [26] [28]. As demonstrated by [28],
this problem can be solved by forming the Rotation Matrix
R =

[
r1 r2 (r1× r2)

]
= USVT and using singular value

decomposition (SVD) to form the new optimal rotation
matrix R′ = UVT .

The solution for the camera pose problem is defined as
xi = PiX = K[R′|t]X. The translational vector obtained is
already scaled based on the dimensions defined for the
reference plane during the alignment between the helipad
and image I0, so if the dimensions of the world rectangle
are defined in mm, the resulting vector ti

w = [x,y,z]t is also
in mm. In [14], it is show how the Rotation Matrix can
be decomposed in order to obtain the Tait-Bryan or Cardan
Angles, which is one of the preferred rotation sequences in
flight and vehicle dynamics. Specifically, these angles are
formed by the sequence: (1 ) ψ about z axis (yaw Rz,ψ ), (2)
θ about ya (pitch Ry,θ ), and (3) φ about the final xb axis
(roll Rx,φ ), where a and b denote the second and third stage
in a three-stage sequence or axes.

C. Estimation Filtering.

An extended Kalman Filter (EKF) has been incorporated
in the 3D pose estimation algorithm in order to smooth the
position and correct the errors caused by the homography
drift along time. The state vector is defined as the position
[xk,yk,zk] and velocity [∆xk,∆yk,∆zk] of the kth helipad
expressed in the onboard camera coordinate system. We
consider the dynamic model as a linear system where system
has constant velocity, as presented in the following equations:

xk = Fxk−1 +wk (6)
xk
yk
zk

∆xk
∆yk
∆zk

=


1 0 0 ∆t 0 0
0 1 0 0 ∆t 0
0 0 1 0 0 ∆t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




xk−1
yk−1
zk−1

∆xk−1
∆yk−1
∆zk−1

+wt−1

(7)
Where xk−1 is the state vector (position and velocity), F

is the system matrix, w the process noise, and ∆t represents
the time step.

Because the visual system only estimates the position of
the helipad, the measurements are expressed as follows:

zk =

 x̄k
ȳk
z̄k

 +vk (8)

Where zk is the measurement vector and [x̄k,ȳk,z̄k]t is the
position of the helipad with respect to the camera coordinate
system and vk is measurement noise . With the previous defi-
nitions, the two phases of the filter Prediction and Correction
can be formulated as presented in [27], assuming that the
process noise wk and the measurement noise vk are white,
zero-mean, Gaussian noise with covariance matrix Q and R,
respectively.

The output of the filter is the smoothed position of the
helipad, that will be used as input for the control system.

IV. FUZZY CONTROLLER SYSTEM

This Section presents the implementation of the Mamdani
Fuzzy controller which analyzes the visual information in
order to generate descend commands for the UAV (velocity
commands in meters per seconds).

The MOFS has been designed by the definition of one
class for each part of the fuzzy-logic environment (variables,
rules, membership functions and defuzzification modes) in
order to facilitates the future updates and to make easier
work with it. In the Figure refclases are shown the different
classes and the structure of the software implementation in
a UML diagram. The boxes are divided in three parts and
show, in the upper part, the name of the class, in the middle
part, the attribute of the class, and in the bottom part,the
methods or operations. Currently, three different subtype of
membership functions have been implemented, those are the
pyramidal, the trapezoidal and the gaussian. Furthermore,for



Fig. 2. Classes structure of the Miguel Olivares’ Fuzzy Software.

the defuzzification phase the Height weight method is used
(Eq. 9).

y =
∑

M
l=1 yl

∏
(
µB′(yl)

)
∑

M
l=1 ∏

(
µB′(ȳl)

) (9)

.
Additionally, the four subtypes of inference models for the

fuzzification that have been implemented are the maximum
and the product with and without taking into account the
rule-weight characteristic of each rule. The weight of each
rule is a part of a learning algorithm based on the idea of
the synaptic weights of the neurons, but for this work this
improvement is not used, in [17] and [16] is possible to see
how it works. With this learning algorithm is possible to
adapt the base of rules to a particular behavior, by reading
patterns of inputs and its corresponding correct output.

More details about the structure of this software can be
found in [15].

The controller is implemented for control the altitude of
the UAV in order to be capable to made an auto-landing.
This controller is working inside the vision-computer, that
is onboard the UAV. Are defined two inputs and one output
for the fuzzy controller. For the definition of the variables
an heuristic method is used. The data is acquired from
different manual and hover flight tests. The two inputs are:
the estimation of the altitude, that is made by the homography
(Fig. 3), and the variation of this value between the last two
frames (Fig. 4). For this last input is taking into account
possible variation of the frame-rate of the camera in the last
second, in order to keep it more robust for possible changes

of the frame-rate caused by some computer operations. The
output of the controller is the velocity command to send to
aircraft to approximate to the helipad location (Fig. 5).

The control is made based on camera configuration, like
a eye-to-hand configuration, because the camera is fixed
on the UAV. The position of the camera respect the robot,
the configuration of the system is an eye-in-hand type, and
talking about the architecture of the visual and servo system,
the implementation is based on a dynamic look-and-move
visual control, that sends commands on velocity, because
the 3D pose is estimated using the homography, taking into
account the characteristic of the helipad and the intrinsic
parameters of the camera, and, then, the controller sends
velocity commands to move the UAV.

Fig. 3. Estimation of the altitude (in mm), based on the homography
of the helipad.

V. TESTS AND RESULTS

This section shows the specification of the UAV, and the
landing and pose estimation tests.

The Colibri project has three operational UAV platforms:
one electric helicopter and two gasoline-powered helicopters
[5] (figure (6)). The COLIBRI testbeds [1] are equipped with



Fig. 4. Velocity of the position changes (in mm/s), tacking into
account the estimation of the homography and the frame-rate of
each moment.

Fig. 5. Output of the Fuzzy Controller, the velocity commands for
the UAV in m/s

an Xscale-based flight computer augmented with sensors
(GPS, IMU, Magnetometer, fused with a Kalman filter for
state estimation). Additionally they include a pan and tilt
servo-controlled platform for many different cameras and
sensors. In order to enable it to perform vision processing,
it also has a VIA mini-ITX 1.5 GHz onboard computer
with 2 Gb RAM, a wireless interface, and support for many
Firewire cameras including Mono (BW), RAW Bayer, color,
and stereo heads.

Fig. 6. COLIBRI III Electric helicopter UAV used for pose estimation
tests.

The system runs in a client-server architecture using
TCP/UDP messages. The computers run Linux OS working
in a multi-client wireless 802.11g ad-hoc network, allowing
the integration of vision systems and visual tasks with flight
control. This architecture allows embedded applications to
run onboard the autonomous helicopter while it interacts with
external processes through a high level switching layer. The
visual control system and additional external processes are
also integrated with the flight control through this layer using
TCP/UDP messages, forming a dynamic look-and-move [11]
servoing architecture as is explained on Section IV and is
shown in figure 7. The helicopter’s low-level controller is
based on PID control loops to ensure its stability. Because
features are extracted in the image and then used to estimate
the pose of the helipad or target with respect to the camera
coordinate system (fixed on the UAV camera platform), our
control scheme is considered to be Position Base Visual
Servoing (PBVS) system [11], [4], [22]. In this kind of
control, an error between the current and the desired pose of

Fig. 7. UAV onboard visual control system following a dynamic look-and-
move architecture

the camera-UAV is calculated and used by a fuzzy controller
to generate the velocity references used by the low level
controller to descend the UAV.

For these test a Monocromo CCD Firewire camera with a
resolution of 640x480 pixels is used. The camera is calibrated
before each test, so the intrinsic parameters are know. The
camera is installed in such a way that it is looking downward
with relation to the UAV. A known rectangular helipad is
used as the reference object to which estimate the UAV 3D
position. It is aligned in such a way that its axes are parallel
to the local plane North East axes. This helipad was designed
in such a way that it produces many distinctive corners for
the visual tracking. Figure 8, shows the helipad used and
the coordinate systems involved in the pose estimation. For

Fig. 8. Helipad, camera and U.A.V coordinate systems

these tests a series of landing flights in autonomous mode at
different heights were done. Figure 9 shows the first frame
for tree different test. The test begins when the UAV is
hovering over the helipad. Then a user (through the ground
station interface) manually selects four point on the image
that corresponds to four corners on the helipad, forming
the matched points (0,0)↔ (x1,y1), (910mm,0)↔ (x2,y2),
(0,1190mm) ↔ (x3,y3) and (910mm,1190mm) ↔ (x4,y4).
This manual selection generates a world plane defined in a



coordinates frame in which the plane equation of Π is Z = 0
and also defining the scale for the 3D results. With these
four correspondences between the world plane and the image
plane, the minimal solution for homography H0

w is obtained.
Then, the UAV is moved, making changes on Z axis, (X,Y
axes are controlled by the autopilot, maintaining a hovering
condition while the helicopter is descending ). The helipad is
constantly tracking by estimating the frame-to-frame homo-
graphies Hi

i−1, which is used to obtain the homographies Hi
0,

and Hi
w from which Ri

w and ti
w is estimated. The 3D poses

estimation process is done with an average of 12 frames per
second FPS.

Fig. 9. Helipad position on each of the different landing tests. The helipad
is oriented in such a way that the X axis is the North position, the Y axis
is the East position and Z axis is the Down Position (Earth center).

Figure 10 shows a landing sequence in which the 3D
pose estimation based on a reference helipad is constantly
estimated. The landing test begins when the UAV is hovering
with an altitude of 5.2m, the figure shows the approach
sequence when the helicopter is descending on the helipad.
This figure also shows the original reference image, the
current frame, the optical flow between last and current
frame, the helipad coordinates in the current frame camera
coordinate system and the Tait-Bryan angles obtained from
the rotation matrix. Figure 11 shows the reconstruction of
the flight test 1, using the IMU data.

The 3D pose estimated using the visual system is com-
pared with helicopter position estimated by the controller,
with reference to the takeoff point (Center of the Helipad).
Because the local tangent plane to the helicopter is defined
in such a way that the X axis is the North position, the Y
axis is the East position and Z axis is the Down Position
(negative), the measured X and Y values must be rotated
according with the helicopter heading or Yaw angle, in order
to be comparable with the estimated values obtained from the
homographies. Figure 12 shows the estimated distance from
the landmark with respect to the UAV during the descending
approach and figure 13, shows the estimated yaw angle.

Results show a good performance of the visual estimated
values compared with the IMU data. In general, estimated
and IMU data have the same behavior for test sequences.
The estimated altitude position Z have a error for flight 1

Fig. 10. 3D pose estimation based on a helipad tracking using Robust
Homography estimation during a UAV landing process. Landing flight test
beginning at an altitude of 5.2m. For all images, the reference image I0 is
on the small rectangle on the upper left corner. Left it the current frame and
Right the Optical Flow between the actual and last frame. Superimposed
are the projection of the original rectangle, the translation vector and the
Tait-Bryan angles.

with a RMSE of 0.32m, 0.23m in test 2 and 0.13m in test
3, showing a good performance of the estimator during the
landing phase. Finally, the yaw angle is correctly estimated,
presenting a maximum error of 5.6o between the IMU and
the estimated data.

Results also have shown that the system correctly estimates
the 3D position when a maximum of the 70 % of the
landmark is out of the field of view of the camera (zoom).
On Colibri project web pages [5] and [3] are available
some videos showing these tests and the performance of the
proposed system.

VI. CONCLUSIONS

An approach of the application of landing task using only
vision for UAV is presented in this paper. The 3D-position
estimation of the UAV is acquired using the homography of
an specific helipad. This visual information is analyzed by
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Fig. 12. Comparison between the Z axis displacement for homography
estimation and IMU data.

a Fuzzy controller in order to generate the commands for
control the altitude of the unmanned helicopter to land on
the helipad. The presented results shown a descend from a
long distance, more than 5 meters, to the floor, obtaining
the visual information even just the 30% of the helipad is
in the camera field of view as is show in the last frame of
the sequence. The optimal visual information allows to carry
out the landing task in scenarios where the GPS dropouts
make this task impossible to be accomplished. Furthermore,
the obtained altitude information is more precise than the
GPS-IMU onboard system, as are shown in real tests.
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Fig. 13. Comparison between the Yaw angle measured using homography
estimation and IMU data.

Future work includes to implement other Fuzzy controllers
for the other possible movements of the UAV (Forward, Side
and heading), in order to perform a total autonomous landing
task in all axis. Use the implemented learning algorithm of
the MOFS to improve the base of rules by the adaptation to
manual flight. In addition, we are currently testing improved
versions of the Lucas-Kanade optical flow, like the Inverse
compositional algorithm (ICA) as well as evaluating the use
of a different Kalman Filters for improved the 3D pose
estimation.
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