
38th COSPAR Scientific Assembly 2010

Space Studies of the Upper Atmospheres of the Earth and Planets including Reference Atmo-
spheres (C)
Active Experiments Related to Space Plasmas (C52)

THE RADIATION IMPEDANCE OF A CURRENT-CARRYING CONDUCTOR
IN A JUNO-LIKE JOVIAN ORBIT

Antonio Sánchez-Torres, antonio.sanchezt@upm.es
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The so-called electrical power generation problem for exploration of the outer planets could be
solved deploying an electrodynamic tether. Wave radiation by a conductor carrying a steady
current in a polar, highly eccentric, low perijove orbit, as in the planned NASA Juno mission, is
considered. The high Jupiter’s oblateness produces fast apsidal precession over the meridional
plane. In a cold plasma model, radiation occurs in the Alfven and Fast Magnetosonic modes,
exhibiting large refraction index. The radiation impedance in both modes is determined for a
representative arc in the orbits. Unlike the Earth ionospheric case, the low-dense and highly-
magnetized Jovian plasma makes the electron-gyrofrequency to plasma-frequency ratio large
[1]; this substantially modifies the power spectrum in either mode.

[1] Sánchez-Torres, A., Sanmart́ın, J.R., Donoso, J.M., Charro, M., J. Adv. Space Res. (2010),
doi :10.1016/j.asr.2009.12.007; Sanmart́ın, J.R., Mart́ınez-Sánchez, M., J. Geophys. Res. 100,
pp. 1677-1686 (1995).
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NASA’s Juno mission to Jupiter will need electric power generation.
Tethers generate power more efficently than solar panels or (RTG’s source).

The baseline Juno mission

I Solar-powered mission.

I high eccentricity polar orbit (avoiding the intense radiation belts).

I perijove (rp ∼ 1,06 RJ), apojove (rp ∼ 39 RJ).

A tether generating power in a Juno-like mission:

I radiates waves as it moves through the Jovian magnetospheric plasma.

- The radiation impedance is required to determine the current in the overall

tether circuit.

- The radiated wave signal might be used for Jovian plasma diagnostics.



The large Jovian J2 zonal harmonic produces substantial apsidal precession
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Approximating the orbit as nearly-parabolic (1 + cos λ = 2rp/r) away from
apojove, the orbital velocity modulus reads
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The plasma density (Divine-Garrett, 83) reads (1,0 < r/RJ < 3,8)
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The magnetic field neglecting its tilt is
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)3√
1 + 3 sin2 (λ + ν) , B0 ≈ 4,23 Gauss

The Alfven velocity (for S+ ions) reads
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For a steady current-carrying tether, the Doppler relation gives
ω = Vrel · k = (Vorb − Vpl) · k, with the x -axis perpendicular to the orbital
plane and z along B.



It follows that the refraction index is very large.
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ω
=

ck

Vrel · k
� 1

⇒ Both Alfven and Fast magnetosonic waves are radiated in the cold
plasma model. The equation for the Fourier transform of electric field is
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with the Astrom dispersion relation reading
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With the Jovian plasma condition Ωe � ωpe FM resonances (k → ∞)

occur at ω = ωpe and ωLH =
√

ω2
pi +Ω2

i for θ = 0 and π/2 respectively



For fast magnetosonic waves the matrix elements of the dielectric tensor are
further simplified
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ω2
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and all three ratios
∣∣εj/n2

∣∣, j = 1, . . . , 3 are small as in LEO ⇒

DFM = ε1 sin2 θ + ε3 cos2 θ

For Alfven waves (ω < Ωi), the ratios ε1/n2, ε2/n2 are small and∣∣ε3/n2
∣∣ ≤ O(1) ⇒ D ≈ DA (k, θ, ω) = ε1

(
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)
+ ε3 cos2 θ .

In both modes, k is nearly perpendicular to B, cos θ ≡ kz/k � 1.



The electric field E, in the Fourier transform equation (∗), is decomposed as
E = Et − ikφ. Using k · Et = 0 and (∗) determines both |Et | � |El | and the
electric potential, reading for either mode
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ω
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]
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1/k2DFM FM

The radiated power (for |Et | � |El |)

Ẇrad = −
∫

js · Edr = −
∫
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depends on the source current-density js .

Introduce a normalized Fourier transform of the current-density divergence

g(k) ≡ −i

∫
dr∇ · js(r)e
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and consider a tether of lenght L spinning to keep it taut with ϕ(t) the
angle between tether and y -axis in the orbital plane.



The angle-averaged impedance then reads
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The current divergence ∇ · js (r) is assumed as occurring on spherical
surfaces at end-connectors of dimension R small compared with L
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with k · ut ' ky sin ϕ and ut the unit vector along the tether for each
rotation angle ϕ.

We use k ' k⊥ (kx , ky ) except at D, allowing to integrate over kz poles at
D = 0, with ω → ω + iν (ν → 0+).



For fast magnetosonic waves, we obtain
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with ω ≈ Vorb,y ky − Vplkx .

Considering polar coordinates (k⊥, ξ), the FM impedance becomes
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where |Vorb,y sin ξ − Vpl cos ξ| × kpe (kLH) = ωpe (ωLH).

Using kLHL, kpeL � 1 the ϕ-integral yields π/2.

Using similarly kLHR, kpeR � 1, we set sin2 (k⊥R) ≈ 1/2 in the
k⊥-integral, which then yields π/4.



Finally, evaluating the ξ-integral as
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then the FM impedance is
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Nonlinear effects would adjust contactor areas to an effective value the
effective contactor surface
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with jth the umperturbed random current density and Ne and Te given by
the Divine-Garrett model. The voltaje drop for the FM impedance is
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The power radiated in the FM mode ZFM I2
s will increase just linearly with Is .



For Alfven waves, the radiation impedance is
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Carring out the integral of sin2(L
2
ky sin ϕ) over φ analitically and changing

to polar coordiantes, the double integral can be evaluated numerically.

Complete numerical results fit (within 10%, roughly) an analytical law
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Notice that this law recovers previous results (Adv. Space Res. 45, 1050,
2010) for ν = 0, and λ = 0 and π/2, where Ṽrel = Vpl and Vorb/

√
2

respectively.
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CONCLUSIONS

- Both Alfven and FM radiation impedances have been analytically
determined.

- The typical voltaje drop for FM in JUNO would be two orders higher than
in LEO (∆V LEO

FM ∼ 0,4 V ).

- FM radiation ZFM I2
s will dominate Alfven radiation, except at large current.


