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The so-called electrical power generation problem for exploration of the outer planets could be
solved deploying an electrodynamic tether. Wave radiation by a conductor carrying a steady
current in a polar, highly eccentric, low perijove orbit, as in the planned NASA Juno mission, is
considered. The high Jupiter’s oblateness produces fast apsidal precession over the meridional
plane. In a cold plasma model, radiation occurs in the Alfven and Fast Magnetosonic modes,
exhibiting large refraction index. The radiation impedance in both modes is determined for a
representative arc in the orbits. Unlike the Earth ionospheric case, the low-dense and highly-
magnetized Jovian plasma makes the electron-gyrofrequency to plasma-frequency ratio large
[1]; this substantially modifies the power spectrum in either mode.

[1] Sdnchez-Torres, A., Sanmartin, J.R., Donoso, J.M., Charro, M., J. Adv. Space Res. (2010),
doi :10.1016/j.asr.2009.12.007; Sanmartin, J.R., Martinez-Sénchez, M., J. Geophys. Res. 100,
pp. 1677-1686 (1995).
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NASA's Juno mission to Jupiter will need electric power generation.
Tethers generate power more efficently than solar panels or (RTG's source).

The baseline Juno mission

» Solar-powered mission.
» high eccentricity polar orbit (avoiding the intense radiation belts).
» perijove (r, ~ 1,06 Ry), apojove (r, ~ 39Ry).

A tether generating power in a Juno-like mission:

> radiates waves as it moves through the Jovian magnetospheric plasma.

- The radiation impedance is required to determine the current in the overall
tether circuit.

- The radiated wave signal might be used for Jovian plasma diagnostics.



The large Jovian J» zonal harmonic produces substantial apsidal precession

Approximating the orbit as nearly-parabolic (1 + cos A = 2r,/r) away from
apojove, the orbital velocity modulus reads
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The plasma density (Divine-Garrett, 83) reads (1,0 < r/R, < 3,8)
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The magnetic field neglecting its tilt is
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The Alfven velocity (for ST ions) reads
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For a steady current-carrying tether, the Doppler relation gives
w= Ve k= (Vo —Vp/) -k, with the x-axis perpendicular to the orbital
plane and z along B.



It follows that the refraction index is very large.
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= Both Alfven and Fast magnetosonic waves are radiated in the cold
plasma model. The equation for the Fourier transform of electric field is
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with the Astrom dispersion relation reading
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With the Jovian plasma condition . > wpe FM resonances (k — o0)

occur at w = wpe and wiy = ,/wg,- + Q2 for # =0 and 7/2 respectively



For fast magnetosonic waves the matrix elements of the dielectric tensor are
further simplified
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and all three ratios |¢;/n?|, j=1,...,3 are small as in LEO =
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For Alfven waves (w < §;), the ratios £1/n?, £2/n? are small and
les/n?| < O(1) = D = Da(k,0,w) =& (sin29 — %) + e3c0s2 8.

In both modes, k is nearly perpendicular to B, cosf = k,/k < 1.



The electric field E, in the Fourier transform equation (x), is decomposed as
E = E; — ik¢. Using k- E; = 0 and (*) determines both |E;| < |E,| and the
electric potential, reading for either mode
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The radiated power (for |E;| < |E/|)
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depends on the source current-density js.

Introduce a normalized Fourier transform of the current-density divergence
g(k) = —i / drv - js(r)e= ™" 2z,

and consider a tether of lenght L spinning to keep it taut with (t) the
angle between tether and y-axis in the orbital plane.



The angle-averaged impedance then reads
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The current divergence V - js (r) is assumed as occurring on spherical
surfaces at end-connectors of dimension R small compared with L
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with k - u; >~ ky, sin ¢ and u; the unit vector along the tether for each
rotation angle .

We use k ~ k| (k, k) except at D, allowing to integrate over k, poles at
D=0, withw —w+iv (v—0").



For fast magnetosonic waves, we obtain
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Considering polar coordinates (k, ,&), the FM impedance becomes
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where | Vo sin§ — Vpicos| X kpe (kiH) = wpe (WiH)-
Using kipL, kpel > 1 the p-integral yields 7/2.

Using similarly ki HR, kpeR > 1, we set sin? (k. R) ~ 1/2 in the
k, -integral, which then yields 7 /4.



Finally, evaluating the &-integral as
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then the FM impedance is
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Nonlinear effects would adjust contactor areas to an effective value the
effective contactor surface
I
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with j;; the umperturbed random current density and N, and T, given by
the Divine-Garrett model. The voltaje drop for the FM impedance is
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The power radiated in the FM mode Zgp /2 will increase just linearly with /.
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For Alfven waves, the radiation impedance is
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Carring out the integral of sinQ(%ky sin @) over ¢ analitically and changing
to polar coordiantes, the double integral can be evaluated numerically.

Complete numerical results fit (within 10 %, roughly) an analytical law
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Notice that this law recovers previous resultsN(Adv. Space Res. 45, 1050,
2010) for v =0, and A = 0 and 7/2, where V,o = V,; and Vorb/ V2
respectively.
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CONCLUSIONS

- Both Alfven and FM radiation impedances have been analytically
determined.

- The typical voltaje drop for FM in JUNO would be two orders higher than
in LEO (AVEEP ~ 0,4 V).

- FM radiation ZF,\,,IS2 will dominate Alfven radiation, except at large current.



