
A VOCABULARY FOR THE MODELLING OF IMAGE SEARCH
MICROSERVICES

José Ignacio Fernández-Villamor, Carlos A. Iglesias, Mercedes Garijo
Departamento de Ingenierı́a de Sistemas Telemáticos, Universidad Politécnica de Madrid

{jifv, cif, mga}@dit.upm.es

Keywords: Service description, mashups, semantic web, web applications, REST

Abstract: In order to take advantage of the services that are available on the Web, several approaches that allow describ-
ing services have been proposed. With them, developers can publish service descriptions, allowing services to
be automatically executed and composed. However, in most cases, the service description task is not carried
out, partly because it is a time-consuming task. This has caused initiatives such as WSMO lite, SA-REST,
hRESTS or Microservices, that try to reduce complexity in services, to appear.
Also, an increasing number of web applications have followed the Linked Data initiative and publish infor-
mation that is machine processable thanks to Semantic Web technologies such as RDF. However, sometimes
direct access to information requires the usage of search forms and, in other cases, spidering techniques such
as focused crawling in order to aggregate and filter data. Automatic execution of search services would im-
prove access to information in the web by enabling agents to automatically aggregate, filter and directly access
data.
In this paper, it is presented how the Microservices framework can provide a feature-based vocabulary for the
description of image search services. Microservices framework is a lightweight service description framework
that take feature-oriented and aspect-oriented programming ideas to service description. The article illustrates
how this vocabulary can characterise a set of popular search services, such as Google Images or Flickr. In
addition, the article describes how this vocabulary can be used for the development of new services, such as a
metasearcher that aggregates results from various search services.

1 INTRODUCTION

In the current open Internet, several services are
available in web applications, following the Service-
Oriented Architecture (Erl, 2005) through either Web
Services architecture (McIlraith et al., 2001) or REST
architectural style (Fielding, 2000). This view sug-
gests services being publicly accessible to make the
Web a global software library, with software services
and components ready for their use by developers.

In order to make services machine processable,
Semantic Web Services (Zhou et al., 2006) standards
such as OWL-S (World Wide Web Consortium, 2004)
or WSMO (Roman et al., 2005) allow building se-
mantic service descriptions. Machine agents can au-
tomatically process service descriptions to perform
execution, discovery and composition operations in

an automated way.

Web Services architecture misses integration with
REST architectural style (Wilde and Gaedke, 2008),
resulting in the use of the Web as a platform and
thus adding unnecessary complexity to the protocol
stack. In order to improve the integration of the ser-
vice architecture with the REST architectural style of
the Web, initiatives such as WADL (Hadley, 2006)
try to enable Semantic Web Services approach with
a RESTful design in mind.

Anyway, both WS-based and REST-based seman-
tic web services approaches share the common tar-
get of defining semantically rich service descriptions
in order to enable agents to perform automatic tasks
such as service discovery, execution, and composi-
tion. Unfortunately, Semantic Web Services have
not reached wide adoption yet (Murphy et al., 2008),

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148657942?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

partly because building service descriptions is a very
time-consuming task. This has originated research
in lightweight semantic service descriptions with ini-
tiatives like WSMO lite (Vitvar et al., 2007), or
RESTful approaches such as SA-REST (Sheth et al.,
2007), hRESTS (Wright State University, 2008), or
Microservices (Fernández-Villamor et al., 2010).

Also, semantic technologies such as RDFa (Adida
and Birbeck, 2008) allow annotating web resources
and publishing Linked Data (Berners-Lee, 2006),
which makes information machine processable. Still,
there are pieces of information which are either hid-
den behind search services (or, in general, any HTML
form) or hardly accessible, so long as information dis-
covery in the Web is performed through web spider-
ing. This makes that tasks such as getting a particu-
lar archive of posts in a web log is a tough task that
requires spidering techniques such as focused crawl-
ing (Chakrabarti et al., 1999). Therefore, by describ-
ing search services semantically, access to informa-
tion would be improved.

This paper attempts to reduce the effort of build-
ing service descriptions of image search services
through the use of lightweight semantics. We
define a vocabulary for the description of image
search services by using Microservices framework, a
lightweight approach to service description inspired
in aspect-oriented and feature-oriented programming
paradigms. Microservices enable automatic discov-
ery of service descriptions, as well as reusing feature
descriptions among different services. A vocabulary
for defining descriptions for image search services has
been defined and applied on a case study of building a
metasearcher that aggregates search results from dif-
ferent search services.

The article is structured as follows. First, the
fundamentals of the Microservices framework is pre-
sented in section 2. Then, section 3 presents a vocab-
ulary for describing image search services, obtained
from the analysis of popular image search services.
Section 4 describes how this vocabulary has been ap-
plied on a case study for building a metasearcher that
aggregates search results from different search ser-
vices. Then, section 5 describes related work. Finally,
section 6 draws out the main conclusions and future
work derived from this research.

2 MICROSERVICES
FRAMEWORK

We will use Microservices framework
(Fernández-Villamor et al., 2010), a lightweight
RESTful feature-oriented service description frame-

work for describing services in RESTful web
applications. Microservices framework attempts to
simplify the process of defining service descriptions
to favour automatic service consumption in the
Semantic Web. In this section, an introduction of the
motivation behind this framework is given, followed
by a description of it.

2.1 Feature-orientation

Microservices framework apply ideas inspired in mix-
ins, aspect-oriented and feature-oriented program-
ming paradigms to semantic service description.
These paradigms extend object-oriented program-
ming by allowing the modelling of secondary con-
cerns in an isolated way. Feature-Oriented Program-
ming (FOP) (Prehofer, 1997) is a composition model
that allows refining classes through the definition of
features, i.e., subclasses with core functionality. Mix-
ins (Bracha and Cook, 1990), or abstract subclasses,
are separate groups of methods that can be inserted
into a class to override the original behaviour, but
which cannot be instantiated on their own. There-
fore, mixins serve to implement features in FOP (Apel
et al., 2006). FOP can be seen as a generalization of
traditional class inheritance in Object-Oriented Pro-
gramming, and is used to develop the so-called soft-
ware product lines, i.e. programs that provide differ-
ent combinations of features (Lopez-Herrejon, 2005).

Aspect-Oriented Programming (AOP) (Elrad
et al., 2001) similarly proposes separating concerns
that cross-cut various classes or methods, with the
logging aspect as the most popular example of a
cross-cutting concern. Code from aspects is injected
into specified join points in classes. This way, by us-
ing AOP, logging commands can be inserted into ap-
propriate join points in a class without changing the
original code of the class.

AOP and FOP are different paradigms despite the
existing similarity between them, as pointed out in
(Lopez-Herrejon, 2005), so long as they propose dif-
ferent methods to combine code (code weaving vs.
modification of inheritance chains). Some efforts try
to combine the two approaches by introducing new
concepts such as Multi Mixins, Aspectual Mixins,
and Aspectual Mixin Layers (Apel et al., 2005).

Feature and aspect orientation have inspired
other modelling approaches, such as Feature-Oriented
Model Driven Development (Trujillo et al., 2007),
in which models are created by composing features.
Similarly, Role-oriented programming (Steimann,
2000) or Subject-oriented programming (Harrison
and Ossher, 1993) regard separation of object roles
and the so-called subjective perceptions, respectively.

Figure 1: Feature-oriented description framework

In Microservices framework, the idea of sepa-
rating features and concerns is employed to enable
feature-oriented service modelling. A service de-
scription is a composition of features, allowing the
reuse of feature descriptions in a similar way as fea-
tures, aspects and abstract classes are reused in the
previously mentioned paradigms. This modelling ap-
proach is described in the following section.

2.2 Modelling approach

Microservices framework follows a feature-oriented
description framework, as shown in figure 1. This
framework allows to describe services semantically
in terms of their features in order to allow reusing de-
scriptions at a feature level.

In Microservices framework, a service is modelled
as a set of features f1, f2, ..., fi that it has. In web
applications, some examples of service features are
“performing a retrieval operation”, “requiring user
authentication”, “performing a storage operation”,
“handling images”, or “outputting a set of resources”.

In order to provide a mapping between a service’s
feature set and a service’s formal description, Mi-
croservices framework includes feature definitions. A
feature definition F is a rule that maps a set of fea-
tures f1, ..., fk to a set of conditions. It is activated
when the set of features is present in the service’s
feature-oriented description, and produces a formal
description. By aggregating all descriptions from the
activated feature definitions, a service formal descrip-
tion can be obtained.

For example, given a microservice description F
and features f1 (“outputting a set of resources”) and
f2 (“handling images”), some feature definitions can
be the following:

f1 ∈ F ⇒ |Out put|> 1 (1)

f1 ∈ F ∧ f2 ∈ F ⇒∀x(x ∈ Out put→ image(x)) (2)

Feature definition 1 formalizes feature f1 by stat-
ing that the service’s output cardinality has to be

higher than one. Meanwhile, feature definition 2 for-
malizes that all output resources are images, and is ap-
plicable for services that (i) output a set of resources
(as of feature f1) and (ii) handle images (feature f2).
Therefore, the formal description of a service that is
feature-oriented-described by f1 and f2 would be:

(|Out put|> 1)∧∀x(x ∈ Out put→ image(x)) (3)

It can be observed that feature definition 1 is ac-
tivated by the presence of one feature in the feature-
oriented description. Therefore, that definition serves
to formalize one feature. However, feature definition
2 is activated by the presence of two features in the
feature-oriented description.

Allowing definitions that are activated upon the
presence of more than one feature might be regarded
as unnecessary complexity. However, this versatility
is justified. Consider feature f3 as “The service stores
a resource that is provided as input”. When using f2
with f1, a postcondition should be set (i.e. “multiple
images will be returned”), but when used with fea-
ture f3, a precondition should be set (i.e. “an image
has to be provided as input”). This can be achieved
by setting one definition for f2 and f1 (as shown in
definition 2), and another definition for f2 and f3, as
shown next:

f2 ∈ F ∧ f3 ∈ F ⇒∀x(x ∈ Input→ image(x)) (4)

This serves to resolve the issue of feature interac-
tion, already identified in feature-oriented program-
ming (Prehofer, 1997). By describing features se-
mantically, feature descriptions can be combined to
produce a semantic service description.

Microservices framework has a vocabulary of
terms that can be extended, with each term represent-
ing a feature. As the framework follows the REST
architectural style, terms for HTTP GET, POST, PUT
or DELETE requests are already part of the vocabu-
lary.

As a feature-oriented description framework, the
microservice approach has the following advantages:
(i) it allows the reuse of feature descriptions among
different services, and (ii) it reduces the description
task to selecting a set of features that describes the
considered service, given a vocabulary of terms.

3 A VOCABULARY FOR SEARCH
MICROSERVICES

In this paper, we define a vocabulary for describ-
ing of services that perform retrieval operations, i.e.
search services. In order to narrow the modelling task,
we will only consider image search services. These

kinds of services attempt to fulfil the user’s goal of
finding a particular kind of image.

In order to perform this task, we will follow the
next steps:

1. Identify popular image search services.

2. Collect features across the considered services.

3. Model features through feature definitions.

4. Adapt services to fit the modelled interface.

3.1 Service modelling

We will consider Google Images, Panoramio, Bing
Images and Flickr search as search services that will
be analyzed and modelled. Many more image search
services are available, but we have based our decision
on the fact that:

1. Flickr offers capabilities that are not present on
the other services, such as tag search.

2. Panoramio offers additional capabilities that are
not present on the rest of services, such as search
by location.

3. Google Images and Bing Images have similar ca-
pabilities, but offer a different interface. This fact
could impact on the vocabulary.

After identifying the services that are considered
for the modelling task, we will collect raw features
from these services. By observing each of these ser-
vices, we can see that some features define the obvi-
ous behaviour of a search service and are enabled by
default, while others require additional configuration
in the service, often accessible through an “advanced
search” option. Therefore, for this task, we accessed
“advanced search” and help pages of the services in
order to discover their capabilities.

It is immediate to identify raw features such as
“the service returns a set of images as search re-
sult”. However, this raw feature can be split into finer-
grained features, such as “returning a set of results”,
“returning an image” and “performing a retrieval op-
eration”. The combination of these three features
would produce the firstly identified raw feature. By
splitting raw features into finer-grained features, more
feature combinations are possible.

Table 1 summarizes the features that we have
identified in the considered services. The first col-
umn shows raw features that were identified in the
services, while the next column represents the spe-
cific finer-grain features that are produced. The third
column is a shorthand term that represents the feature
and, finally, the last four columns indicate the pres-
ence of these features in each service. As anticipated,

Google Images and Bing Images share the same ca-
pabilities, while Flickr and Panoramio services serve
to enrich the vocabulary in order to cover a wider set
of features.

The next step is modelling the features, so that a
service description can be produced out of a list of
features. In Microservices framework, this is done by
defining feature definitions, i.e., sets of logical pre-
conditions and postconditions that are activated on the
presence of a specific set of features. An example is
the fact of outputting images: feature image and fea-
ture get should set the postcondition that the service’s
output has to be an image, which, more formally, is:

image∧get⇒∀x(x ∈ Out put→ image(x))

This feature definition solves the feature interaction
between image and get.

Therefore, for each of the identified features, a
set of feature definitions have been built that con-
sider the possible feature interactions. The identi-
fied feature definitions are shown in table 2. The first
column shows the features that are involved in each
definition, and the next two columns show the pre-
conditions and postconditions. Microservices frame-
work uses Javascript notation to express conditions,
but we have used Mathematical notation for this pur-
pose. Also, although Microservices framework also
allows defining a textual description for each feature
definition that enables documenting of the service, we
have omitted these textual descriptions in table 2 for
clarity purposes.

These feature definitions allow producing a for-
mal service description, defined by a set of precon-
ditions and postconditions. This service description
can be processed to perform operations such as au-
tomatic validation (validating preconditions and post-
conditions), automatic discovery of the semantics of
inputs, or automatic user interface generation, as will
be seen in section 4.

Microservices framework allow wrapping exist-
ing services into services that fit a specific interface.
In our case, we have defined a vocabulary of terms
that allow describing, at least, the considered services.
However, in our model we have made assumptions
such as resource attributes’ names or input parame-
ters’ names. In order for the services to fit this in-
terface, an adaptation has to be performed. For each
service, we have defined an adapter, i.e. a piece of
code that adapts input parameters, and a data extrac-
tor, i.e. a collection of XML selectors that trans-
forms HTML’s unstructured information into struc-
tured data. This lets using the existing services with
the interface that has been defined in the vocabulary.

Raw feature Feature Term G
oo

gl
e

B
in

g

Fl
ic

kr

Pa
no

ra
m

io

A set of images is returned to
the user as search result

Retrieval operation performed get X X X X
Multiple resources involved multiple X X X X
Service deals with images image X X X X

Images are filtered according to
a location

Resource is filtered by location location-filtered 7 7 7 X

Images are indexed from any-
where in the web

Resource cannot belong to another do-
main

local 7 7 X X

Images are summarized and
have a thumbnail

Resource is summarized summarized X X X X
Resource has a title titled 7 7 X X

Images can be searched by key-
words

Resource is filtered by given keywords keyword-filtered X X X 7

Images can be searched by tags Resource is filtered by given tags tag-filtered 7 7 X X
Images can be searched by di-
mensions

Resource is filtered by dimensions size-filtered X X X 7

Images can be searched by
creation or taking date

Resource is filtered by creation date creation-filtered 7 7 X 7
Resource is filtered by publishing date publishing-filtered 7 7 X 7

Images can be selected by li-
cense

Resource is filtered by license license-filtered 7 7 X 7

Images can be searched by
colour and content

Resource is filtered by colour colour-filtered X X 7 7
Resource is filtered by content content-filtered X X 7 7

Table 1: Analysis of detailed features in the considered services

3.2 Discussion

The considered services have been adapted for the de-
fined interface and are available online 1. Each service
can be executed through a user interface that is gener-
ated automatically by analysing the services’ feature
definitions. Also, a documentation of the service can
be obtained by combining the feature definitions. Ad-
ditionally, when executing the service adapters, the
preconditions and postconditions are checked, which
allows automatic validation of the services. Also,
microservices descriptions are published as Linked
Data, as well as the services’ output.

Some additional aspects of the approach are worth
mentioning. For example, both Bing and Google
Images allow filtering images by content. Bing al-
lows image filtering by photographies, illustrations
and content filtering by face or face and shoulders.
Instead, Google supports ‘clip art’ filtering, as well
as photos, illustrations and face filtering, but not face
and shoulders filtering. Therefore, although both of
them have the capability of filtering images by content
type, the specific feature is slightly different in each of
them. In order to reduce complexity, we will assume
that both services share the content-filtered fea-
ture, and adapt the input appropriately at the services’

1http://lab.gsi.dit.upm.es/microservices/
proxies

adapters. This means, however, that the specific fea-
ture of this filtering capability for each service cannot
be discovered from the service description.

Finally, the feature-oriented approach allows
reusing features across different services, even in the
case that they belong to different domains. Many of
the modelled features can be combined to describe
services that do not target image retrieval, but re-
source retrieval in general. A video search service
would only need to introduce a new feature (“deal-
ing with videos”) and define a few feature definitions.
Similarly, a document search service is simply a sub-
set of the defined vocabulary (i.e. to define a web page
search service, the image feature should be left out).
Storage services (i.e. those performed with the HTTP
POST and PUT methods) would require more feature
definitions, as most definitions interact with get fea-
ture.

4 CASE STUDY: METASEARCH
SERVICE

A metasearch service2 has been implemented
as a case study for the defined vocabulary. This
metasearcher aggregates results from the described

2http://lab.gsi.dit.upm.es/microservices/
metasearch

Features Preconditions Postconditions
get method(service) = get status(service) = 500
image get - ∀x(x ∈ Out put→ image(x))
multiple get - |Out put|> 1
summarized get - ∀x(x ∈ Out put→∃y(uri(x,y)))
keyword-filtered get ∃i(i ∈ Input ∧name(i,“keywords”)) ∀x(x ∈ Out put→ keywords(x)⊆ i)
tag-filtered get ∃i(i ∈ Input ∧name(i,“tags”)) ∀x(x ∈ Out put→ tags(x)⊆ i)
local get - ∀x(x ∈ Out put → domain(x) =

domain(service))
titled get - ∀x(x ∈ Out put→∃y(title(x,y))
size-filtered image get ∃i(name(i,“size”) ∧ i ∈ Input ∩

{small,medium,big})
∀x(x ∈ Out put→ size(x, i))

creation-filtered get ∃i(i ∈ Input ∩ Dates ∧
name(i,“creation”))

∀x(x ∈ Out put→ creation(x) < i)

publishing-filtered get ∃i(i ∈ Input ∩ Dates ∧
name(i,“publication”))

∀x(x ∈ Out put→ publication(x) < i)

license-filtered get ∃i(name(i,“license”) ∧ i ∈ Input ∩
{attribution,modi f iable,commercial})

∀x(x ∈ Out put→ license(x, i))

location-filtered get ∃lat, lng,r(lat, lng,r ∈ Input ∩R) ∀x(x ∈ Out put→ ||x− (lat, lng)||< r)
content-filtered get ∃i(name(i,“content”) ∧ i ∈ Input ∧ i ⊆

{ f ace,shoulders,clipart, illustration})
∀x(x ∈ Out put→ content(x, i))

colour-filtered get ∃i(name(i,“colour”) ∧ i ∈ Input ∩
{bw,r,g,b})

∀x(x ∈ Out put→ color(x, i))

Table 2: Specification of features

services (i.e. Google Images, Bing Images, Flickr and
Panoramio). As these services have heterogeneous
features, the problem is not trivial.

The metasearcher works as follows. First, it con-
siders a microservice description that includes all the
features shown in table 1. Then, by analizing the con-
ditions that result from combining feature definitions,
it identifies required inputs and their types. With this
set of inputs, it builds a user interface that allows ex-
ecuting the service.

However, as can be observed in table 1, no ser-
vice has all the mentioned features. The metasearcher
will then select matching services according to the
features that are used in each query. In order to do
so, the metasearcher validates preconditions for each
feature. If the precondition is not valid, the feature is
considered inactive. Only active features will be con-
sidered when filtering services. Then, the matching
services are executed and their results are aggregated.

For example, let’s consider that a user interacts
with the metasearcher by providing some keywords,
picking an image size, and clicking the submit
button. Then, location-filtered, tag-filtered,
creation-filtered, publishing-filtered,
license-filtered, coloured-filtered and
content-filtered features will be deactivated, as
long as their preconditions are not satisfied (as long
as their required inputs are not provided).

It is remarkable that the process of detecting the
features to deactivate is not immediate. An insatis-

fied condition belongs to a feature definition, which
can involve many features. For example, if no key-
words are passed to the metasearcher, it has to de-
cide whether to deactivate feature get or feature
keyword-filtered, as both are involved in the def-
inition that requires keywords as input. We consider
that the number of feature interactions is an indica-
tor of the importance of a feature. Therefore, the
employed criteria has been to perform the minimum
number of deactivations of definitions (and thus the
minimum number of deactivation of feature interac-
tions), and an algorithm has been implemented for
this purpose.

Also, the activation state of certain features can-
not be identified automatically. This is the case of the
local feature and titled feature, which are present
only in Flickr and Panoramio, and do not set precon-
ditions. These features are thus not considered by the
metasearcher for service matching, as their inclusion
would make that only Flickr and Panoramio are able
to match the required features.

The metasearcher has been implemented as a
generic microservice aggregator, in which a set of fea-
tures are selected for service matching and aggrega-
tion. This means that this implementation is indepen-
dent of the considered features, as the user interface
is built by analyzing a microservice description, and
the features are selected according to the satisfaction
of their preconditions. We have also experimented
on aggregating plain search services with same satis-

factory results, allowing to aggregate image results as
well as document results. This makes this implemen-
tation an interesting foundation for the definition of
an abstract microservice aggregator based on sets of
required features, which however is out of the scope
of this paper.

5 RELATED WORK

In our paper, we have addressed the issue of de-
scribing search services using lightweight semantics.
WADL (Hadley, 2006) defines a format for build-
ing and publishing RESTful semantic service descrip-
tions which can be discovered and processed by auto-
matic agentes. Other similar RESTful approaches are
SA-REST (Sheth et al., 2007) and hRESTS (Wright
State University, 2008), which allow building seman-
tic service descriptions by annotating textual descrip-
tions of services’ APIs with RDFa and Microformats
(Microformats community, 2008), respectively. Also,
RDForms (Baker, 2005) attempts to “add to the Se-
mantic Web capabilities similar to HTML forms”.
In this approach, schemas for indexable, container
and settable operations are defined, which represent
HTTP GET, POST, and PUT methods, respectively.
All these approaches focus on facilitating service de-
scription, but do not consider reuse of features across
different services, as they are not feature-oriented.
Also, a vocabulary for the description of search ser-
vices in these approaches is missing.

On the specific topic os search services,
OpenSearch (A9.com, inc., 2005) is an approach to
the description of search services. By creating an
OpenSearch description document, a search service
is published. The description document enumer-
ates the services’ capabilities and configurations.
OpenSearch delegates to service providers to build an
appropriate RESTful interface that can be described
using OpenSearch. Some services might require
adaptation in order to be described by an OpenSearch
description, but this issue is not addressed. Finally, as
OpenSearch is limited to search services, it considers
fine-grain aspects such as content encoding. In our
case, these details are missing, as complexity is
moved to service adaptation on behalf of a simpler
description framework.

6 CONCLUSIONS AND FUTURE
WORK

In this paper, we have reviewed the current state of
the art in semantic service description and discussed

how access to Linked Data could be improved by au-
tomating the execution of search services.

We have used Microservices framework to build
a vocabulary that can be employed to build seman-
tic service descriptions for image search services in
the web. The solution is a small set of terms that il-
lustrates the feature-oriented approach of the frame-
work and highlights the versatility of lightweight se-
mantics. The feature-oriented approach has provided
a solution that generalizes well to other search ser-
vices while it is specific to the targete domain. The
vocabulary has been used to semantically describe a
set of services that are aggregated on a metasearcher
as a case study.

Future works regard automatic creation of user in-
terfaces and services, and automatic detection of fea-
tures through pre and postconditions. Preliminary ap-
proaches have been shown in the case study, where
appropriate user interface controls are shown for each
search option, based on the semantics of each input
parameter, and where appropriate feature sets are se-
lected according to the provided inputs.

ACKNOWLEDGEMENTS

This research project is funded by the Euro-
pean Commission under the R&D project ROMU-
LUS (FP7-ICT-2007-1) and by the Spanish Govern-
ment under the R&D project Java sobre Ruedas (FIT-
350401-2007-8).

REFERENCES

A9.com, inc. (2005). OpenSearch specification.
http://www.opensearch.org/Specifications/
OpenSearch/1.1.

Adida, B. and Birbeck, M. (2008). RDFa Primer - Bridging
the Human and Data Webs. http://www.w3.org/
TR/xhtml-rdfa-primer/.

Apel, S., Leich, T., Rosenmller, M., and Saake, G. (2005).
Combining feature-oriented and aspect-oriented pro-
gramming to support software evolution. In In
AMSE05, at ECOOP05.

Apel, S., Leich, T., and Saake, G. (2006). Aspectual mixin
layers: aspects and features in concert. In Proceed-
ings of the 28th international conference on Software
engineering, page 131. ACM.

Baker, M. (2005). RDF Forms. http://www.markbaker.
ca/2003/05/RDF-Forms/.

Berners-Lee, T. (2006). Linked data. Retrieved April,
12:2008.

Bracha, G. and Cook, W. (1990). Mixin-based inheri-
tance. In Proceedings of the European conference
on object-oriented programming on Object-oriented
programming systems, languages, and applications,
pages 303–311. ACM New York, NY, USA.

Chakrabarti, S., Van den Berg, M., and Dom, B. (1999).
Focused crawling: a new approach to topic-specific
web resource discovery. Computer Networks, 31(11-
16):1623–1640.

Elrad, T., Filman, R. E., and Bader, A. (2001). Aspect-
oriented programming: Introduction. Commun. ACM,
44(10):29–32.

Erl, T. (2005). Service-oriented architecture: concepts,
technology, and design. Prentice Hall PTR Upper Sad-
dle River, NJ, USA.

Fernández-Villamor, J. I., Iglesias, C., and Garijo, M.
(2010). Microservices: Lightweight service descrip-
tions for REST architectural style. In Proceedings of
the 2nd International Conference on Agents and Arti-
ficial Intelligence.

Fielding, R. T. (2000). Architectural Styles and the Design
of Network-based Software Architectures. PhD thesis,
University of California.

Hadley, M. J. (2006). Web application descrip-
tion language. https://wadl.dev.java.net/
wadl20061109.pdf.

Harrison, W. and Ossher, H. (1993). Subject-oriented pro-
gramming: a critique of pure objects. ACM Sigplan
Notices, 28(10):411–428.

Lopez-Herrejon, R. (2005). Understanding feature mod-
ularity in feature oriented programming and its im-
plications to aspect oriented programming. In
ECOOP2005 PhDOOS Workshop and Doctoral Sym-
posium, Glasgow, Scotland.

McIlraith, S. A., Son, T. C., and Zeng, H. (2001). Semantic
Web Services. IEEE Intelligent Systems.

Microformats community (2008). Microformats. http:
//microformats.org/.

Murphy, M., Dick, M., Fischer, T., Fraunhofer, I., and
Stuttgart, G. (2008). Towards the” Semantic Grid”: A
state of the art survey of Semantic Web services and

their applicability to collaborative design, engineer-
ing, and procurement. Communications of the IIMA,
8(3):11–24.

Prehofer, C. (1997). Feature-oriented programming: A
fresh look at objects. Lecture Notes in Computer Sci-
ence, 1241:419–443.

Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R.,
Stollberg, M., Polleres, A., Feier, C., Bussler, C., and
Fensel, D. (2005). Web Service Modeling Ontology,
Applied Ontology. IOS Press.

Sheth, A. P., Gomadam, K., and Lathem, J. (2007). SA-
REST: Semantically Interoperable and Easier-to-Use
Services and Mashups. In IEEE Computer Society.

Steimann, F. (2000). On the representation of roles in
object-oriented and conceptual modelling. Data &
Knowledge Engineering, 35(1):83–106.

Trujillo, S., Batory, D., and Diaz, O. (2007). Feature ori-
ented model driven development: A case study for
portlets. In Proceedings of the 29th international con-
ference on Software Engineering, pages 44–53. IEEE
Computer Society.

Vitvar, T., Kopecky, J., and Fensel, D. (2007). Wsmo-lite:
Lightweight semantic descriptions for services on the
web. In Proceedings of the Fifth European Conference
on Web Services, pages 77–86. Citeseer.

Wilde, E. and Gaedke, M. (2008). Web Engineering Re-
visited. In Proceedings of the 2008 British Computer
Society (BCS) Conference on Visions of Computer Sci-
ence, London, UK (September 2008).

World Wide Web Consortium (2004). OWL-S: Seman-
tic Markup for Web Services. http://www.w3.org/
Submission/OWL-S/.

Wright State University (2008). HTML Microfor-
mat for Describing RESTful Web Services and
APIs. http://knoesis.wright.edu/research/
srl/projects/hRESTs/#hRESTs.

Zhou, J., Koivisto, J.-P., and Niemela, E. (2006). A survey
on semantic web services and a case study. In Com-
puter Supported Cooperative Work in Design, 2006.
CSCWD ’06. 10th International Conference on, pages
1–7.

