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Abstract 

In this study a vision system was applied for assessing enzymatic browning evolution in fresh-cut 
apples slices stored at 7.5 °C and 85 % HR. Twenty-four slices were analyzed per day: at zero time 
and after storage for 1,3,7 and 9 days. A classification procedure was applied to virtual images 
obtained as a combination of the red (R) and blue (B) channel (B/R, R-B and R-B/R+B). In all cases, 
three images based browning reference classes were generated. An external validation was applied to 
a second set of samples submitted to the same treatments, obtaining a high percentage of samples 
correctly classified. Camera classification was evaluated according to colorimetric measurements 
usually utilized to evaluate enzymatic browning: CIE L*a*b* colour parameters and browning index 
(Bl). Virtual image based on B/R showed the best sensitivity to reflect the change in colours 
associated with browning. 
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1. Introduction 
Fresh-cut apples have recently emerged as a popular snack in food service establishments, 
school lunch programs and for family consumption. The market for fresh-cut apples is 
projected to continue to grow as more consumers demand fresh, convenient and nutritious 
snacks (Lu et al. 2007). However, the act of cutting fresh products invariably enhances 
degradative changes, which present additional challenges to the industry to maintain quality 
for an acceptable marketing period. An important factor causing loss of quality in much 
products is the development of browning in cut surface (Pristijono et al. 2006). 

Traditionally, enzymatic browning has been quantified using browning indicators through a 
biochemical index, for example using polyphenol oxidase activity (Osanai et al. 2003; 
Hosoda et al. 2005) or physical indicators, such as colour surface (Kang et al. 2004; Lu 
2004). In the case of physical indicators based on colour, CIE L*a*b* colour space has been 
the most extensively used colour reference, due to the uniform distribution of colours and 
because it is very close to human perception of colour (Yam et al. 2004). Based on CIE 
L*a*b* coordinates, especially on the L* value, or on CIE XYZ colour space (strongly related 
to the Lab), browning indicators in fruits have been developed (Valentines et al. 2005; Lu et 
al. 2007). Browning index (Bl), defined as brown colour purity, is one of the most common 
indicators of browning in sugar containing food products (Buera et al. 1986). In order to carry 
out a detailed characterization of the colour of a food item and thus more precisely evaluated 
its quality, it is necessary to know the colour value of each point of its surface. However, at 
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present available commercial colorimeters measure L*a*b* coordinates only over a very few 
square centimetres, and thus their measurements could be not very representative in 
heterogeneous materials such as most food products (Papadakis et al. 2000). Furthermore, 
the global analysis of the foods surface becomes more difficult (Mendoza et al. 
2004).Recently, Leon et al. (2006) have suggested a computer vision system (CVS) to 
measure colour in L*a*b* coordinates from RGB space to be used in image analysis and 
some studies have been undertaken applying that approximation to food (Pedreschi et al. 
2007; Quevedo et al. 2008). During the description of browning kinetics using colour 
information, an average of the L* values is usually calculated for colorimeter devices using a 
CVS for an analyzed area. However, in apple slices, the development of non-uniform colour 
patterns during browning (specifically for L*), is observed. An approximation aimed at 
quantifying non-homogenous colour surfaces in apple slices during enzymatic browning was 
undertaken by Yoruk et al. (2004); nevertheless, due to the complexity of analyzing and 
displaying the frequency of 16.7 million colours, they adopted a sub-colour space deriving 
from the RGB one, in which each colour axis (Red, Green, Blue), which normally ranges from 
0 to 255 was, was divided into eight and the colours were so regrouped in 8 x 8 x 8 = 512 
ranges. Texture image analysis has been suggested as one tool to quantify colour 
information extracted from both grey and colour images, without reducing the intensity levels 
of RGB components. This has been possible because texture of images is usually 
determinate by analyzing the surface intensity obtained by plotting the (x, y) pixel coordinates 
versus the gray level of each pixel (z axis): the changes in pixel value intensity reflect the 
texture of the image, which might contain information about the colour and the geometric 
structure of objects (Quevedo et al. 2002; Du et al. 2004; Zheng et al. 2006; Gonzales-
Barron et al. 2008). However, up to now image texture analysis has been employed to 
quantify the non-homogenous distribution of the L* coordinate in fresh-cut products with a 
cubical shape (Quevedo et al. 2009a; Quevedo et al. 2009b; Quevedo et al. 2009c). 

Spectral considerations about plant pigments content evaluation 

When assessing enzymatic browning with a vision system, it is important to identify spectral 
changes associated with pigments evolution during the browning process. After performing 
colorimetric analysis based on CIE L*a*b* colour space, several authors have observed that 
an increase in enzymatic browning in apple pieces during storage is accompanied by an 
increase in colorimetric a* and b* values, and a decrease in lightness (L*) and hue values 
(Sims et al. 2002; Pristijono et al. 2006; Lu et al. 2007). L* is the luminance component (it 
ranges from 0 to 100), while a* and b* are colour coordinates related respectively with the 
red/green and yellow/blue spectral ranges, with values varying from -120 to +120 (Yam and 
Papadakis 2004). The decrease of the L* values means that during the browning apple 
surface turns darker, while its colour turn to red and yellow, due to an increase in a* and b* 
colour coordinates. Fig. 1 presents the shape of a reflectance spectrum of a fresh-cut apple 
slice at zero time (t0) and of the same sample after 9 days (t9) stored ad 7.5 °C. The main 
differences are that relative reflectance values in the green and blue (430-490 nm 
approximately) areas are higher at the beginning of the storage period than at the end. On 
the contrary, reflectance values in the yellow and red (620-700 nm approximately) ranges are 
lower at t0 than atf9. 

Aims and objectives of the research 

The objective of the present research was to develop a multispectral vision system in order 
to classify fresh-cut apple slices according to their browning evolution. The aim was to 
identify the best virtual image (obtained as a combination of monochromatic images) able to 
detect changes in colour related with this physiological process. 
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Wavelength (nm) 

Fig. 1: VIS relative reflectance spectra belonging to a fresh-cut apple slice at zero time (t0) and to the 
same sample stored ad 7.5 °C during 9 days (t9). 

2. Materials and methods 

Fruit samples 

Fifteen apples var. Granny Smith were peeled and cut into eight equal slices, obtaining a 
total of 120 slices (set 1). Single slice were considered as sample units in this work. Fruit 
slices were stored at 7.5 °C and 85 % HR, covered with a cling film. Twenty-four samples 
were evaluated at zero time and after storage for 1, 3, 7 and 9 days. In this work each 
storage time corresponds to a treatment. A second set (set 2) of 120 samples was prepared 
in the same way and submitted to the same treatments that set 1. 

Reference values 

Non-destructive (ND) reference tests were carried out on both set 1 and set 2 samples 
through a portable spectrophotometer Minolta CM-50I (Konica Minolta Sensing, Inc., Japan). 
A standard white calibration plate was employed to calibrate the equipment. Measurements 
were performed on one side of each apple slice, in three different points of the cut area. 

Reflectance spectra analysis 

Visible relative reflectance spectra 360-740 nm, at 10 nm intervals, were obtained for each 
sample. A forward stepwise discriminant analysis was performed to the reflectance data, in 
order to reduce the original number of variables (A), corresponding to the wavelengths (360-
740 nm), to a subset of dependent variables (Ap), where it was possible to observe the main 
differences between the spectra, coinciding with the optimal optical range to detect browning. 
Five levels in the categorical variable were used, corresponding to the five treatments (t0, th 

t3, t7 and t9). 

Colour parameters 

CIE L*a*b* coordinates were measured and the results were also reported as XYZtristimulus 
values. In this way it was possible to calculate the browning index (Bl), by applying the 
equation [1]: 

£ /= ( X - ° - 3 1 >x l00 [1] 
0.172 

Where x is the chromaticity coordinate calculated from the XYZ values, according to the 
following formula x = X/(X+Y+Z). ANOVA analysis was applied to the Bl values and to each 
treatment. The results were employed as a reference of browning evolution during storage 
with regard to multispectral image information. All analysis were carried out using MATI_AB® 
(MathWorks, Inc., USA). 
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Vision system 

Images were acquired through a multispectral image system consisting of a frame-grabber 
and a 3 CCD camera (DuncanTech/Redlake MS-3100®, Redlake Inc., USA) with digital 
output. Camera resolution was 1300x1000 pixels, endowed with three band-pass filters 
(band-width: 20 nm), centred at 800 nm (infrared, IR), 680 nm (red, R), and 450 nm (blue, B) 
and three monochromatic images can be analyzed from each sample: IR, R and B. The light 
source was provided by six 100W/220V halogen lamps and the object distance between the 
lens system and the sample was 60 cm. The angle between the camera lens axis and the 
lighting source axis was 45°. The images were acquired using a black background. A black 
canvas was put around the vision test station, in order to create a uniform light field around 
the object and to eliminate any effect of environmental light. 

Image analysis: image segmentation and virtual images calculation 

An image was acquired for each sample. At first, apple slice samples were distinguished 
from the background through the Otsu method (Otsu 1979), a segmentation technique very 
commonly used in the bibliography. This technique computes threshold level on the basis of 
the image histogram distribution. It was performed on the R images, since they presented the 
greatest difference between the gray levels corresponding to samples (the region of interest) 
and to background. This operation results in a binary image which could be considered as an 
"image mask", in which only the pixels representing the sample were white, while the pixels 
corresponding to the background were black. This image mask was multiplied for the 
different type of images performed in this research. 

On the basis of the main differences found between spectra from samples with and without 
browning (Fig. 1), two wavelengths, and its corresponding channels, has been selected in 
order to generate virtual images: R (680 nm) and B (450 nm) channels. The following 
combinations of these channels were tested: B/R (B image divided by R image pixel by 
pixel), R-B (difference between the R and the B images) and R-B/R+B. Further analysis 
were based on the relative histograms of the described virtual images, computed as relative 
frequency of pixels over the intensity range of the image. In the present work, index 1 (Ind-i), 
index 2 (lnd2) and index 3 (lnd3) were employed to refer respectively to the R-B/R+B, R-B 
and B/R combination of monochromatic images and in what follow, "histogram" refers to 
"relative histogram" of the image. 

Non-supervised image classification 

A non-supervised classification according to Ward's method was performed in order to define 
browning reference classes (BRC) based on set 1 histograms calculated from lndh lnd2 and 
lnd3 images. All the intensity levels of the histograms were considered as the dimensions of a 
multidimensional space, where a single histogram was represented as a single point. The 
matrix of Euclidean distances between each pair of individuals (histograms) was computed in 
order to group the closest ones and to hierarchically merge individuals whose combination 
gave the least Ward Linkage distance (that is the minimum increase within sum of squares of 
the new-formed group). 

As an advantage to other classification methods, Ward's method takes into account all 
histograms of the data set at every level of the grouping, producing very well structured and 
homogeneous groups. Besides, this method allowed successful results in precedent works 
investigating fruit ripeness (Herrero A. et al. 2010 (in press)). A MATl_AB® devoted code was 
developed in order to generate automatically the groups on the basis of an input maximum 
Ward linkage distance, derived from the analysis of the cluster tree features. The average 
histogram was computed for each generated group and defined as BRC. 
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Validation: classification of anonymous samples Into browning reference classes 

External validation was carried out by assigning each anonymous individual into the 
previously generated BRC (each one defined by the average histogram of the class) to which 
it computed the minimum Euclidean distance (Ed). In order to test the robustness of the 
model based on set 1 data, an external validation procedure was performed: the observed 
classification of set 2 samples was compared with the predicted classification of each 
anonymous histogram through the minimum Ed to the BRC generated with the set 1 
population. 

Statistical analysis 

The colour reference parameters (Bl and CIE L*a*b* coordinates) were compared to the 
classification based on the histograms of virtual images of each index. ANOVA analysis was 
applied to the Bl and CIE L*a*b* values and to the classes extracted from the image 
analysis. 

3. Results 

Reflectance spectra discriminant analysis 

The stepwise method operated in a iterative manner, adding the variables whose F-statistics 
were greater than the Fin value. To eliminate the variables that provided superfluous 
information at a 99% confidence level, a Fin = 6.87 with tolerance of 0.01 was applied in the 
forward stepwise procedure. Iteratively, the algorithm took various steps to converge, 
producing a subset containing the most significant wavelengths to identify browning. The 
selected subset was formed by wavelengths belonging to the red range, i.e., 620, 650, 660, 
670 and 680 nm, and to the blue range, i.e., 430, 470 and 490 nm. This subset of 
wavelengths let to discriminate correctly a high percentage of samples (92-100 %) on the 
basis of their treatment. Besides, the samples that were incorrectly classified (0-8 %) were 
assigned to the immediately previous (or following) class. This means that in almost all cases 
the wavelengths corresponding to the red, whose reflectance values increase, and to the 
blue range, in which relative reflectance decreases, were able to identify spectral changes 
associated with pigment evolution related with the browning process. 

Generation of browning reference classes 

First column of Fig. 2 shows the average histograms calculated for each treatment and for 
each image combination. How the above consideration suggested, the average histograms 
calculated from /nd? and lnd2 shifted to higher intensity values, while images based on lnd3 

moved to lower ones. Fig. 2 also reports the dendrograms generated by applying Ward's non 
supervised classification to each image combination. On the basis of the dendrogram 
features, the maximum Ward Linkage distance within groups was set at 0.30 pixel relative 
frequency. In all cases, three clusters, corresponding to three BRC (Class A, Class B and 
Class C) were obtained. In the same figure the average histograms corresponding to these 
three clusters are also showed. 
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a b c 

A) Indi = R-B/R+ B 

B) lnd2 = R-B 

C) lnd3 = B/R 

Fig. 2: Average histograms (a), dendrograms (b) and average histograms (c) calculated from digital 
images of the set 1 samples based on Indi (panel A), lnd2 (panel B) and lnd3 (panel C). 

Table 1 reports, for each image combination, the classification matrix obtained by applying 
the Ward's non-supervised classification. For the three image indexes, Class A was mainly 
composed by samples measured at zero time, respectively 95, 76 and 84 %, Class B 
included 78, 60 and 81 % of samples measured after one and three days of storage, while 
Class C comprised 93, 92 and 93 % of the samples measured on the 7th and the 9th day. 
Therefore the three non-supervised classifications based on the virtual images were able to 
segregate storage periods, differentiating samples analyzed on the first day from samples 
analyzed on the second-third day and on the last two days of storage. 
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Tab. 1: Classification matrix of set 1 samples: treatments (observed classification) against 
reference camera classification (predicted classification). 

OBSERVED 

Classes \ Treatments to trt.3 t7-t9 

PREDICTED 

A 

B 

C 

A 

B 

C 

A 

B 

C 

21 

3 

22 

2 

24 

Ind^R-B/R+B 

1 

44 9 

3 39 

Ind 2= R-B 

6 1 

40 26 

2 22 

Ind 3= B/R 

6 

39 9 

3 39 

Fig. 3 plots the average values and confidence intervals (95%) of Bl and CIE L*a*b* 
coordinates for each image based class. ANOVA results performed on colour parameters showed 
that Bl, a*and Jb*values presented a consistent increase from Class Ato C, while L* decreased from 
Class A to C. These results are according to previous works that studied colour coordinates evolution 
related to enzymatic browning during storage (Perez-Gago et al. 2006; Lu et al. 2007).The best 
accordance between the image-based classes and their reference values was shown by a* and Bl 
values. According to L* parameter, class A and B are not significantly different and could be grouped 
in the same class. Pristijono at al. (2006) in a research regarding browning inhibitory techniques in 
Granny Smith apple slices, an L* value of 76.0 was considered as a limit of acceptability of browning 
and Class C was thus considered the class of samples exhibiting severe browning. Considering the 
Fisher Least Significant Differences (LSD) test, the classification based on lnd3 showed the best 
accordance with the colour parameters, succeeded by /nd? and lnd2 (table not shown). On the basis of 
these results, image based classes may provide relevant information for the management of fresh-cut 
apple slices, showing good potential to select fruits with an unacceptable level of browning. 
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A) Indi =R-B/R+B B)lnd2 =R-B C) lnd3 = B/R 
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F/g. 3; From figures a to of: P/of of averages and confidence intervals (95%) of L* a* b*and Bl values 
(x axis) of set 1 samples, classified in classes Ato C (y axis) according to Ward's method based on 

lnd1 (column A), lnd2 (column B) and lnd3 (column C) image histograms. Means characterized by the 
same letter are not significantly different by ANO VA Fisher Least Significant Differences (LSD) test 

(p<0.05); different letters implies there is significant difference between means. 

From ANOVA analysis applied to the Bl values for each treatment resulted that the 
confidence intervals (95%) of the all samples corresponding to the t9 treatment ranged from 
Blm/n = 36 to Blmax= 40 (data not shown). From this result Bl = 36 was proposed as threshold 
value for browning detection (6///m/t). Fig. 4 displays Bl values for each set 1 sample 
categorized in their corresponding image based class for the three image combinations. 
Considering camera classification, almost all the samples of Class A (97 % in the case of 
lnd2 and lnd3 and 95 % for lndi) and between 86 % (Jndi) and 83 % (lnd2 and lnd3) of the 
samples assigned to Class B were characterized by a Bl value lower than Bl„m/f. 
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Class C was constituted by 46 % {lnd2) and 43 % (Indi and lnd3) of samples with Bl value 
higher than the Bl threshold. These results confirmed that Class A and B would be mainly 
constituted by samples with a cut surface without or with a moderate browning, while half of 
samples of Class C would exhibit a severe browning. 
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Fig. 4: On the left: Bl values of set 1 samples categorized in their corresponding image based class 
(A, B and C) for the three image combinations. Horizontal lines represent B///m/i. On the right: number 
of set 1 samples assigned to each image based class categorized in their corresponding Bl range. 

External validation 

The proposed classification procedure, obtained through the minimum distance to the 
reference classes generated with /nd?, lnd2 and lnd3 histograms of set 1 samples, was able to 
classify correctly, respectively, 95, 92 and 75 from the 120 samples considered from set 2. 
According to the aforementioned Bl,/m/f value, between 81 % (lnd3) and 95 % (Ind^ of the 
samples assigned to Class A and between 68 % (lnd2) and 95 % (lnd3) of those assigned to 
Class B would be below the threshold Bl value. 
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4. Conclusion 

In the present work a new method to classify fresh-cut apple slices on the basis of enzymatic 
browning evolution applying a multispectral vision system was presented. The method 
utilized relative histograms of virtual images, e.g., Indh lnd2 and lnd3 indexes, combinations 
of red (R, 680 nm) and blue (B, 450 nm) images of the samples. Red and blue spectral 
ranges turn out to contain enough information for the proposed method to adequately classify 
samples images. On the basis of internal classification results, all the indexes were able to 
detect browning evolution, classifying samples into three reference classes (A to C). In all 
cases, Class A to C presented decreasing lightness and increasing Bl, a* and b* values. 
Image combination based on lnd3 showed the best sensitivity to reflect the change in colours 
associated with browning. The robustness of the model and classification procedure was 
observed applying an external validation to a second set of samples. It was possible to 
classify images from fruits of second testing set with the model generated with the first set, 
obtaining similar average and range of colour coordinates for the image-based classes. All 
these results present the potential of the proposed method to characterize enzymatic 
browning evolution in fresh-cut apples. It could be used as a potential criterion for 
establishing the optimal shelf-life of fresh-cut apple slices under refrigeration condition. 
Besides, this method allows a spatially detailed determination compared to colorimetric 
techniques that give a global determination of the browning stage. 
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