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Abstract 

The present research is focused on the application of artificial vision to peach ripening assessment, 
avoiding multiplicative and additive effect. Original images were acquired with a hyperspectral camera. 
Vision allows a spatially detailed determination of the ripening stage of the fruit. Optical indexes are 
proposed, based on the combination of wavelengths close to the chlorophyll absorption peak at 680 
nm. Ind1 corresponds approximately to the depth of the absorption peak, and Ind2 corresponds to the 
relative absorption peak. An artificial image of each index was obtained by computing the 
corresponding reflectance images. Score images have been also computed from Principal 
Components and Partial Least Squares Analysis. In any case the best performances correspond to 
such images that correct multiplicative and additive effects. Ind2 is the preferred index; it showed the 
highest discriminating power between ripening stages and no influence of convexity. Ind2 also allowed 
the differentiation of ripening regions within the fruits, and it showed the evolution of those regions 
during ripening. This fact has been also observed in some of the score images.  
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INTRODUCTION  

The quality assessment of fruits, particularly of peaches, is important for establishing the optimal 
harvest date and the best postharvest treatment, storage temperature and the delay before 
consumption. Peaches do not ripen in a homogeneous way. Depending on the cultivar, different areas 
of the fruit (e.g., the tip and shoulders) soften faster than others, and, therefore, these areas are more 
susceptible to damage and disease [1]. Consequently, there is a need to develop non-destructive 
measuring techniques such as vision, which can provide a spatially detailed measurement of the 
degree of ripeness. When assessing ripening with vision, it is crucial to identify the spectral changes 
associated with pigment evolution during ripening. Chlorophyll is the most important pigment 
associated with ripening and it presents an absorption peak at 680 nm. As the fruit ripens, the 
reflection in this band increases due to chlorophyll degradation. Indexes, ratios or differences of 
wavelengths are used for avoid variable irradiance, background and geometric effects, etc. [2]. 
Several authors have studied different spectral indexes related to fruit ripening [3, 4]; and to peach 
maturity: index of absorbance difference, IAD= A670-A720, [5]; the reflectance ratio 670 nm/800 nm [6]. 

The present research is focused on the application of artificial vision to peach ripening assessment, 
avoiding multiplicative and additive effect. The region of interest (the fruit) was previously segmented 
from the background using the Otsu method.Two main groups of artificial ripening images have been 
computed and compared:  

A) First group of images corresponded to indexes or combinations of wavelengths around 
chlorophyll absorption peak (Ind1, Ind2, Ind3=R675/R800 and IAD).   

B) Second group are images scores obtained from PCA, PLS computed on 1) a learning set of 
raw spectra extracted from equatorial area of the fruits (n=1069 spectra before ripening, n=1134 after 
ripening, 2) the same learning set of spectra, but pre-treated in order to avoid multiplicative (Standard 
Normal Variate, SNV) and additive (Savitsky Golay algorithm) effect. The images scores are the 
resulting inner product of the pixels of the raw images by the loadings obtained from the learning set. 
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Five commercially mature fruits (red-skinned, soft-flesh ‘Richlady’) were selected by expert 
assessment based on apparent colour and firmness. Hyperspectral images (HYSPEX VNIR 1,600-
pixel push-broom camera, Hyspex, Norsk Elektro Optikk AS, Norway) of the selected fruits were 
acquired before and after the following ripening process: refrigerated storage for four days at 10ºC and 
ripening for three days at room temperature (20ºC). Two images were acquired per fruit and therefore 
a total of 18-20 images are analysed. 

 

Fig. 1. Example of two reflectance spectra belonging to two different peaches: one unripe, which 
presents an absorption peak at 680 nm; and one ripe, which does not present any peak at 680 nm. 
The X axis corresponds to the wavelengths (nm). The Y axis corresponds to the reflectance level of 
the spectra (arbitrary units). The main difference is the chlorophyll absorption hole (around 680 nm), 
which disappears as the fruit ripens. Nevertheless, the apparent reflectance is affected by two 
phenomena. 1) A multiplicative effect due to variations of light scattering, which induce variations in 
the mean light path length. 2) An additive variation, due to some kind of specular reflection.  

Next, the retrieval of the true reflectance involves two corrections that are respectively related to the 
multiplicative and additive effects; 1) a normalisation that consists of dividing the spectrum by a 
quantity that is affected by the multiplicative effect, 2) a baseline subtraction that consists of removing 
the background trend from each spectrum. The second order of differentiation is usually preferred 
because it removes the linear baselines and magnifies the peaks. The application of such corrections 
to the chlorophyll peak with a limited number of wavelengths can be achieved on the basis of three 
reflectances: Ra (640 nm), Rc (730 nm) and Rb (680 nm). These reflectances correspond respectively 
to the sides and the bottom of the peak, as illustrated in Figure 1. Two levels of correction can be 
applied, yielding two indexes: 

- the baseline correction should be carried out by an approximation of the second derivative on 
the peak, as performed by Ind1: Ind1 = Ra + Rc - 2Rb 

- the correction for the multiplicative effect is done in Ind2 by dividing Ind1 by the mean value of 
the two reflectances Ra and Rc (which should not depend on the ripening): Ind2 = (Ra + Rc – 2Rb) / 
((Ra+Rc) / 2). After the simplification (dividing the numerator and denominator by Ra+Rc) and the 
removal of the constant terms, Ind2 becomes: Ind2 = Rb / (Ra+Rc) 

RESULTS 
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Figure 2. Lines 1 and 2 correspond to Ind1 and Ind2. Left column: reflectance images for fruits before, 
(first line of the image) and after ripening process (second line). Blue color corresponds to unripest 
areas or fruits and red to the ripest. Color bars of the figures indicate the scale of the values. Right 
column: averages plus minus standard deviation within the fruit; ‘x’ axis represents each fruit; ‘y’ axis 
represents the value of the index. Blue vertical lines correspond to the fruits before ripening and red 
lines to the same fruits after ripening process. Ind1 decreased with maturity as expected. It also 
showed a certain convexity effect, which disappeared after ripening. Also, the variability within fruits 
decreased in non ripened fruits images when compared to ripened fruits images. The vertical lines 
blue and red show parallel evolution; the original maturity of the fruits could determine fruit ripening at 
the end of the process (Figure 2). Additionally, Ind2 presented the lowest variability within fruits. The 
blue and red lines were completely parallel. Some ripened regions, on the top, near the shoulders, 
were allocated in the same areas before and after ripening. Intensity values and area increased after 
ripening, as can be observed in the third, fourth, seventh and eighth fruits from left to right, on the top 
of the fruit (Figure 2). 

PC on raw spectra. Image scores corresponding to PC1
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PC on pretreated spectra by SNV and Savitsky and Golay. Image scores of PC 1
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PC on pretreated spectra by SNV and Savitsky and Golay. Image scores of PC 2
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PLS on preatreated spectra. Image scores corresponding to one latent variable
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PLS on preatreated spectra. Image scores corresponding to two latent variables
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Fig.3. Score images are obtained from the projection of the hyperspectral raw or pretreated images 
onto PC’s, or latent variables subspaces. First row left, score images obtained from PC applied on raw 
spectra (PC1); on the right the corresponding PC loadings. Second and third line left, score images 
from PC1 and PC2 applied on the pretreatred learning set (xndd). Fourth line left loadings of the PC 
corresponding to xndd. Second and third line right, score images from PLS with one and two latent 
variables on xndd. Fourth line right, the loadings of PLS corresponding to one, two and three latent 
variables on pretreatred spectra xndd. 

PC1 and PC2 score images (not shown) corresponding to raw spectra present a high influence of the 
convexity of the fruit. It is not useful for ripening assessment since it appear no differences between 
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stages. Once the additive and multiplicative effects are corrected on the learning set, and also on the 
hyperspectral images, the corresponding score images present better performance. PC image scores 
(PC1 of pretreated images distinguish between ripening stages for each pair of fruits.  

Both, PC1 and PLS with one latent variable, distinguish between fruits, between ripening stages, and 
they also identify regions inside the fruit that evolve after ripening. If they are compared with Ind2, 
similar behaviour can be detected; all of them have been corrected from multiplicative and additive 
effect. Regarding loadings (from PC1 and PLS-one latent variable), the higher values correspond to 
the same wavelengths involved in the computation of Ind2. However, in PC2 score image and PLS 
with three or more latent variables (not shown), the effect of ripening is less evident, and their 
corresponding loadings show high values for regions of the spectrum not clearly related to ripening 
evolution, such as near infrared. Wilks’ lambda Λ (Wilks, 1960) was computed for each pair of fruits 
before and after ripening as the ratio between the inter-group variance and the residual variance. A 
high lambda value supposes high variance before and after ripening compared to the variability within 
fruits and, therefore, the corresponding index will have a higher discriminating power between the 
ripening stages. Nine pairs of fruits were considered, and thus, nine values of Λ were obtained per 
index and per type of scores. The objective of this analysis was to determine which artificial image 
better discriminate the ripening process.  
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Fig.4. On the left, Wilks’ lambda Λ inter-quartile ranges for the nine fruits before and after ripening (y 
axis) for the four indexes (x axis). Median values are indicated by horizontal lines in the boxes. The 
whole range is indicated by the whiskers. On the right, Wilks’ lambda value for each fruit and index 
before and after ripening. Bold case indicates the lowest Λ, whereas cursive case indicates the 
highest Λ.  

Ind2 presented the highest median of lambda (Λ=4) following by pls on xndd with 2 latent variables 
(lv), (Λ=2,64), pls with three lv, (Λ=2,1), Ind1 (Λ=1,5), etc. Furthermore Ind2 always produced the 
highest Λ in the nine pair of fruits (not shown). In addition, PC1 and PC2 on raw spectra presented the 
worst discrimination ability. 

CONCLUSIONS 

The present research proposes several procedures for generating artificial images in order to 
discriminate ripening stage of fruits. Also it is proposed a method to compare and evaluate these 
images regarding the discrimination power, based on Wilks’ lambda computation. These procedures 
could be applied to other kind of images and features, for discrimination or segregation of samples. 
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