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Abstract: Grid mapping is a very common technique used in mobile robotics to build a continuous 2D 
representation of the environment useful for navigation purposes. Although its computation is quite 
simple and fast, this algorithm uses the hypothesis of a known robot pose. In practice, this can require the 
re-computation of the map when the estimated robot poses change, as when a loop closure is detected. 
This paper presents a parallelization of a reference implementation of the grid mapping algorithm, which 
is suitable to be fully run on a graphics card showing huge processing speedups (up to 50X) while fully 
releasing the main processor, which can be very useful for many Simultaneous Localization and Mapping 
algorithms. 
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1. INTRODUCTION 

Although microprocessor manufacturing technology is 
continuously improving, it is reaching the point in which 
physical limits are becoming a major concern. Memory speed 
and power have imposed walls for increasing processing 
performance by scaling the clock frequency. Over the last 
years, Moore’s law and performance improvements have 
been maintained mainly due to one reason: multi-core 
processors (multiprocessors). In multiprocessors, several 
CPU cores are packaged into a single chip, taking advantage 
of their proximity, for example when accessing the cache 
memory. Some well known examples are Intel Dual-Core and 
Quad systems, Sony Cell (8-core) processor inside the 
PlayStation3 and PowerPC Xenon (3-core) processor of the 
Microsoft Xbox 360. 

Together with multiprocessors, programming models have 
been coming to scene, in order to manage and exploit the 
available concurrency in those systems. Message Passing 
Interface (MPI) is the de facto standard for high performance 
in distributed computing (multiple external processors each 
one with its own memory), while OpenMP is probably the 
most extended solution for multiprocessing in shared 
memory systems, as multi-core CPUs. 

Manufacturers of graphical processing units have been also 
continuously improving their systems, leading to multi-core 
Graphical Processing Units (GPUs) in which each core 
contains also a large number of Arithmetic and Logical Units 
(ALUs) specialized in parallel processing of graphics as 
textures, visibility, image processing, etc. Also the large 
market for graphics cards with ubiquitous 3D graphics 
(games, CAD, multimedia, etc), has implied a reasonable cost 
of very powerful devices that can fit into the class of what is 
known as commodity hardware. Major GPU manufacturers 
have recently released tools and programming models that 
allow programmers to access such computing power: ATI 

(now part of AMD) development platform is called ATI 
Stream, and the Nvidia one is called Computed Unified 
Device Arquitecture (CUDA). 

The CUDA approach has gained large attraction and many 
researchers have found a powerful computing platform for 
boosting the computations required in their job. Furthermore, 
several libraries as CUBlas (a port of the Basic Linear 
Algebra Set – Blas) or GpuCV (largely compatible with 
OpenCV) for computer vision have been developed that let 
developers take advantage of GPUs computing power 
without requiring explicit parallelization of algorithms. 
Applications such as Matlab or GIMP have also been 
provided with CUDA extensions that let the applications 
transparently benefit from GPUs processing. 

Many algorithms in mobile robotics are quite 
computationally intensive. Among them, the map building 
problem (see Thrun (2008) for a survey) has gained great 
attention in the last decade. Many solutions have been 
developed, as feature based Simultaneous Localization and 
Mapping (SLAM) with Extended Kalman Filters (EKF) and 
Information Filters, and particle filter FastSLAM. Feature 
based representations have the disadvantage of rejecting 
observations that cannot be modelled as a priori known 
features, typically lacking enough information to safely 
perform path planning or control tasks. Probabilistic grid 
maps (Elfes, 1987) divide the environment into small square 
cells and compute the probability of each cell to be occupied 
or free, independently from the other cells, so in order to 
obtain a reasonable result, the robot poses have to be known 
(mapping with known poses). Although another higher level 
approach has to be used for obtaining these poses, the final 
computation of the grid map is always a necessary task. 

In this paper we propose a parallelization of the grid mapping 
algorithm able to run on a multi-core GPU. The enormous 
speedup obtained shows the effectiveness of our approach, 
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and the potential of the system, that could open the door to a 
new perspective about robotic algorithms. 

The rest of the paper is structured as follows: First, previous 
related work is discussed in Section 2. A brief introduction to 
CUDA is provided in Section 3, and the common grid 
mapping algorithm is described in Section 4. The proposed 
parallelization of grid mapping is explained in Section 5, the 
obtained results with such approach are presented in Section 
6, and the conclusions are exposed in Section 7. 

2. RELATED WORK 

There exists a very closely related work from Yguel et al. 
(2008), in which GPU based processing of grid maps is also 
presented. Their work claims that grid mapping algorithms 
based on ray tracing, commonly using the line tracing 
algorithm of Bresenham (1965) are inaccurate as they present 
the de Moire effect, defined in the computational graphics 
domain as artificial discontinuities between rays far from the 
origin. They propose a so called exact solution and derive a 
thorough probabilistic formulation with the hypothesis that 
the unmodified cells between rays should be also updated 
accordingly. With this hypothesis they conclude with an 
algorithm that can be efficiently run in a GPU with the 
application of typical texture handling functions. Although 
their derivation is an important contribution it is only 
applicable in the case in which the laser beam width angle is 
equal to the angular spacing between consecutive beams, 
which is not a valid hypothesis in the general case of a typical 
laser range-finder. It is easy to validate this statement with a 
simple experiment as presented in Fig. 1. A SICK laser 
LMS200 is used, with an angular resolution of 1º, and an 
object of approximately 5 cm wide (double than the cell size 
we use in our experiments) is moved in front of the laser at 
approximately 4 meters. The object continuously appears and 
disappears while crossing the beams and the non-covered 
inter beams space respectively. 

 

Fig. 1.  Counter example to the exact solution proposed in 
Yguel (2008) The beams width is not equal to the inter beam 
space. 

This seems a reasonable result as the approximate beam angle 
is about 0,25º (as derived from the manufacturer technical 
data). At the light of this result, it is reasonable to follow a 

Bresenham line tracing algorithm, that might be not as 
accurate as a beam model, but in any case it is safer than a 
model with a wider than real laser beam. 

The work presented in this paper follows a different 
approach: it takes a well known algorithm and an extended 
implementation as the one in the CARMEN toolkit, and 
implements it for running in a GPU, by finding and adequate 
parallelization. Furthermore, the full grid mapping algorithm 
is addressed to the GPU, as opposed to Yguel et al. (2008) in 
which only certain parts of the algorithm are processed in the 
GPU, so we are able to present absolute timings comparison 
between the same algorithm in a CPU implementation and a 
GPU one. The main contribution of the paper is the proof that 
exactly the same algorithm that is being used by a large part 
of the community can be targeted to a graphical card with 
large computational savings and fully releasing the CPU.  

3. OVERVIEW OF NVIDIA CUDA ARCHITECTURE 

CUDA exposes the Nvidia multi-core GPUs computing 
capabilities through the following elements: 

- Thread hierarchy. The programmer develops a 
function of a working thread which can be massively 
launched in a kernel. The threads can be arranged in 
blocks, each block containing the same arrangement of 
threads. Such arrangement can get the form of a vector 
(1D), a matrix (2D), or a generic 3D matrix. The blocks 
themselves can also be arranged in vector or matrix forms 
in a so called grid. Each thread has built-in variables to 
access its indices in the block, as well as the block indices. 

- Memory hierarchy. Each thread has its own private 
memory space, each block has a shared memory that can 
be accessed by all threads in the block, and there exists a 
global memory accessible by all threads. The system is 
completed with two read-only memory spaces: the 
constant memory and the texture memory. The shared 
memory is built inside the GPU, so it is faster than the 
global memory that is outside the GPU (but located in the 
device, i.e. the graphics card). 

- Thread synchronization. All threads in a block can be 
forced to wait at a given point until all threads of the block 
arrive to that point. 

The use of these elements is available to the programmer via 
some extensions of the C language as well as a runtime 
library. With these extensions the programmer can define 
kernels, declare the type of device memory for each data, and 
synchronize threads. The framework has a low learning 
curve, but it should be said that optimization typically 
requires some extra work. 

A typical working cycle when using GPU consists of the 
following steps: allocating memory on the device, copying 
data from host (PC) memory to the device, launching a 
kernel, and finally copying the results from the device 
memory to host memory. 



 

 

 

     

In order to obtain a good performance several things have to 
be considered. The threads have practically no overhead of 
execution, changing, and finishing. The memory accesses to 
arithmetic computations ratio has to be low, i.e. the memory 
is quite slow compared with the computational capabilities. 
Also it has to be considered that shared memory is much 
faster than global memory. However, the memory latency can 
be typically hidden if there are enough threads to be 
scheduled. In practice this means that a kernel must launch 
thousands of threads (all of them running the same code) in 
order to achieve a good performance. 

4. BUILDING GRID MAPS WITH MOBILE ROBOTS 

The problem of estimating a map m  given the set of sensor 
measurements tz  and robot poses tx  up to timestep t in 
probabilistic terms is represented by the posterior 

( | , )t tp m z x . This conditioning on the robot poses is known 
as mapping with known poses. The sensor measurement and 
robot pose at a certain time step i will be grouped (for 
convenience) into a sensor interpretation called is . In 2D 
grid mapping, the environment map m  is divided in multiple 
square cells arranged in a grid fashion, being ,x y cm m  the 
cell c with indices (row and column) x and y. To cope with 
the high dimensionality of the problem of estimating the 
posterior ( | )tp m s , the problem is simplified assuming that 
the probability of occupancy of each individual cell is 
independent from each other: 

 ( ) ( )| |t t
c

c
p m s p m s=∏  (1) 

As explained in Thrun (1998), the probability of each cell 
given all the sensor information can be computed as: 
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Where ( )prior cp m  denotes the prior probability of occupation, 
and it is an initial parameter of the algorithm. It is assumed to 
be equal for all cells and thus can be simplified to  priorp . 
The above expression (2) can be conveniently expressed 
incrementally: 
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The probability ( | )c tp m s of occupancy of a cell conditioned 
only on one observation at a certain time step t is established 
by the probabilistic sensor model.  The model handles each 

laser beam separately, and for each beam uses the Bresenham 
(1995) line algorithm to define which cells will be affected 
by the sensor observations. All the cells that are not affected 
do not have to be updated by (3).  

The Bresenham algorithm takes as input a segment defined 
by two extreme cells: the first one c1 is the origin of the beam 
i of the laser scan, and the second one c2 is computed from 
the range measurement and an input parameter called wallsize 
that represents the most likely width of the objects of the 
environment (Fig. 2). 

 

Fig. 2. Bresenham line algorithm for a laser beam. Note that 
the occupied cells include those located further than the range 
measurement up to a certain limit wallsize that is defined as an 
input parameter to the algorithm. 

The obtained set of cells C is thus naturally clustered in two 
groups, those cells considered to be empty, and those 
considered to be occupied. Two probabilities are defined as 
parameters, a reference probability that a cell is empty pemp 
for those cells that are between the beam origin and the range 
measurement, and the reference probability that a cell is 
occupied pocc for those cells beyond the range measurement, 
up to the wall size.  
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Then the distance from each cell to the origin is computed, in 
order to be used in the sensor model. The probability function 
defined by the sensor model is divided in two parts. If the cell 
is very close to the laser, i.e. below a threshold called 
rangesure, then the probability of the cell is directly defined by 
the corresponding (occupied or empty) reference probability. 
If the cell distance is above that threshold, the corresponding 
reference probability varies linearly with the distance. 
Formally: 
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The algorithm iterates over all range measurements of the 
laser scan captured at time step t, and for each range 



 

 

 

     

measurement iterates over the set of cells defined by the 
Bresenham algorithm. 

The first step is to check whether this cell actually belongs to 
the grid map, as it is possible that range measurements could 
fall out of the map. Then the sensor model is applied to 
compute ( | )c tp m s according to (4)-(6), and finally the value 
of the cell is updated as defined in (3).  The outline of the 
algorithm is: 

1

1 2

1 2

Function Update(Grid ( | ), Scan , Pose )
foreach 
      , =ComputeExtremePoints( , ,  )
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               endif
       endfor
endfor

 

5. PARALLELIZATION OF GRID MAPPING 

5.1 Threads arrangement 

The core idea of the proposed parallelization is that one GPU 
thread will be launched to update each cell affected by a 
sensor observation. As cells are obtained from the Bresenham 
algorithm for each laser beam, it is adequate to group all the 
threads corresponding to those cells in the same thread block. 
Thus, a thread block per range measurement will be used 

Inside each block we theoretically need a variable number of 
threads depending on the actual range measurement, since a 
variable number of cells should be affected. Nevertheless, 
CUDA does not allow a variable number of threads in each 
block, so the number of threads is chosen to fit a maximum 
range of the measurements. Although the number of threads 
per block is limited depending on the hardware platform, it 
starts in 256 threads which can accommodate a sensor range 
of 6.4 meters for a cell size of 2,5 cm and 12,8 m for a cell 
size of 5 cm, which are reasonable values. 

The proposed kernel will be typically composed of 360 
blocks, each one with 256 threads, i.e. a total of 92160 
threads for handling each observation. To process a whole 
map, a kernel is launched for each observation. 

The working cycle is as follows: The first step is to allocate 
and copy the input data to the device memory. In this case it 
is necessary to copy the whole laser data (including all 
measurements from all time steps, as well as the robot poses), 
the probability grid, and the input parameters. Then a kernel 

is launched for every time step, but with the data already 
stored in the device. In this way, the transfer of data is 
avoided at each kernel launch. Please note that the map is not 
transferred to the GPU at each step. When all data has been 
processed, the resulting updated probability grid is 
transferred back to the host memory. 

5.2 Kernel computation 

Each one of the running threads will have three basic 
parameters: (I) the time step t which determines which 
observation has to be processed, (II) the index of the block i, 
which represents the laser beam index, and (III) the index of 
the thread j within the block, that represents a cell along the 
Bresenham line of the beam.  

The first step is to compute the extreme points of the laser 
beam, and also the relative increments between them: 
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According to the Bresenham algorithm the slope of the line 
has to be lower than 1, so if the absolute value of x∆ is larger 
than the absolute value of y∆ , then it is clear that we can 
compute the position of the cell according to: 
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Otherwise, the X and Y indices have to be swapped, and the 
position of the cell is computed by: 

 ( )
( )

1

1 1

/
sgn

g x y
y y y j

x x g y y

= ∆ ∆

= + ∆

= + −

 (9) 

Once the cell position is computed, the application of the 
sensor model is also done with (4)-(6) and the update of the 
cell probability with (3). 

5.3 Memory use 

Although the basic computations have been presented, the 
critical decisions in the parallelization are about memory use. 

There are some parameters of the algorithm that are not 
modified and are accessed many times, as rangesure, rangemax, 
pemp, pocc, pprior, wallsize. These parameters can be conveniently 
stored in read-only constant memory which is known to be 
faster than global memory. 

The CPU implementation uses a lookup table to precompute 
and store all the distances from a cell to the origin to avoid 
recomputing these distances at each time step. As explained 



 

 

 

     

above, the GPUs have a huge computing power compared 
with memory bandwidth, so the GPU implementation 
recomputes the distances at every time step avoiding in this 
way extra memory accesses. 

Each block manages a laser beam, so the computation of the 
extreme points of the beam can be shared among all threads 
in the block. Thus, the range measurement, the extreme 
points, and the increments are stored in shared memory. 
Although they could be recomputed by each thread, it is 
faster to use shared memory and let one thread compute these 
values for all threads in the block. A synchronization point is 
introduced here to make the other threads wait until the first 
one finishes computing these values. 

The grid map probability matrix is stored in global memory. 
As the computation is done per cell, and only one read and 
one write accesses are required, the use of shared memory is 
not justified. 

The final parallelized algorithm is outlined as: 
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6. EXPERIMENTS AND RESULTS 

We have implemented the presented parallelized approach 
with the CUDA programming tools, as well as an adaptation 
of the algorithm developed in CARMEN which is basically a 
C++ wrapper and some minor modifications in order to be 
able to make a fair comparison between both 
implementations. For example, most NVIDIA GPUs do not 
handle double precision arithmetic, and all doubles are 
automatically demoted to single precision floats. The original 
CPU implementation had double precision computations 
which are typically slower, so all the types were changed to 
faster single precision. In both implementations all the input 
data (laser scans and poses) is loaded in memory before 
starting the computation to eliminate delays from reading 
data from a hard drive. 

Two real different datasets with the robot poses already 
corrected (see Acknowledgment) have been used for the 
experiments and processed with two different PCs with Intel 
CPUs and NVIDIA GPUs. The desktop PC is equipped with 
an Intel 3,2Ghz Pentium D CPU and a NVIDIA GTX 280 

graphics card. The laptop has an Intel 2Ghz Core 2 Duo 
T7250 and a GF 8400M GS graphics card. 

In the first one, a Pioneer2 with a LMS-Laser was manually 
driven in the building 079 of the University of Freiburg 
(Fr079), acquiring 3118 lasers scans (each one with 360 
beams in a 180º FOV with 0.5º spacing) along a trajectory of 
approximately 209 meters. The maximum range used is 6.4m. 

Table I shows the absolute processing time in seconds 
required for processing this data set. The processing time is 
reduced down to 50% (2X) with the laptop graphics card 
(compared with the laptop CPU), and down to 1,7% (58X) in 
the desktop PC. For the GPUs, the memory transfer times to 
and from the graphics card are also included in the results.  

TABLE I PROCESSING TIMES (SECONDS) 

 ENVIRONMENT 

PROCESSOR Fr079 Fr101 

2Ghz Core 2 Duo T7250 11,5 25,3 
3,2Ghz Pentium D 15,2 30,9 
GF 8400M GS (laptop) 6,26 12,17 
GTX 280 (desktop) 0,26 0,52 

Fig. 5 shows the result of processing this data set. Although 
the map shown in the figure is the one processed with the 
GTX 280 graphics card, the result is visually identical (as 
expected) to the one obtained with CPUs. 

 

Fig. 5.  FR079 building map, computed in 0,26secs with GPU 

The second data set was captured in the Entrance Hall 
(Building 101) at the Department of Computer Science at 
University of Freiburg, with a Pioneer 2 DX8 robot and with 
the same laser configuration, during autonomous exploration 
and capturing 5299 laser scans along a 277 meters trajectory.  

 

Fig 6.  FR101 building map, computed in 0,52secs with GPU 



 

 

 

     

Fig. 6 shows the computed map, and the results presented in 
Table I show the same gain as in the previous data set. As the 
complexity of the grid mapping is constant time O(1) for 
each measurement update it is logical that the computational 
savings proportion remains constant irrespective of the data 
set and map size. 

Table II shows the importance of an appropriate use of device 
memory. It has been built using the laptop configuration, and 
shows the relative performance of the GPU implementation 
compared with the CPU one. It can be seen that if all the data 
is stored in the device (graphics card) in global memory, the 
performance of the GPU is worse than the one of the CPU up 
to a 50% of computation time increment. Nevertheless, 
moving a small part of the data to shared memory, and 
making it be computed by just one thread of the block, the 
computational savings become clearly visible. The use of 
constant memory to provide faster read access to common 
parameters allows further savings.   

    TABLE II EFFECT OF MEMORY USE 

Device memory use Processing time 
compared with the CPU 

All data in global memory, each thread 
computing beam data 150% 

Common block (beam) data in shared 
memory, computed only by one thread 65% 

Input parameters in read-only constant 
memory 50% 

It should be said here that the final results obtained with the 
CPUs and the GPUs are not completely identical. Although 
the resulting maps are visually undistinguishable, if their 
difference is computed and shown, several very small 
differences are visible. These differences can be due to the 
different floating point arithmetic carried out by the GPUs. 
However, these small differences are absolutely irrelevant for 
any navigation purpose. 

7. CONCLUSION 

This paper has presented a parallelization of the grid mapping 
algorithm as implemented in CARMEN, suitable to be run on 
a GPU. The GPU implementation has been proved to obtain 
large speedups, reducing the required computation time to 
50% in the case of common graphics cards as those in mid 
end laptops, and down to 2% with high end (but affordable) 
graphics cards, compared with the same algorithm running on 
a CPU. Moreover it is important to highlight that the full 
computation is being targeted to the GPU, thus fully releasing 
the CPU, which can be used in parallel for other tasks. 

Grid mapping falls into the category of mapping with known 
poses, so it requires other algorithm to correct the odometry 
drift and provide corrected poses. Many SLAM algorithms 
address this issue, and many of them are based on the idea of 
estimating the robot path as solution to the problem, and 
computing the resulting map afterwards. Those algorithms 
can greatly benefit from our approach. It can be seen from the 
experiments that the map resulting from a 200 meters 

trajectory can be computed in approximately 0,250 seconds, 
which in terms of mobile robots means practically real time, 
allowing the closure of large loops with an immediate 
computation of a complete global grid map. 

It is a bit surprising that after the performance shown in 
Yguel et al (2008), the use of GPUs for processing in mobile 
robotics has not been widely adopted by the community. We 
believe that mobile robotics algorithms necessarily have to be 
adapted for heterogeneous (CPU and GPU) multi-core 
processors to benefit from modern hardware computational 
power and to be able to increase their performance up to the 
next level. Our next work will focus on the parallelization of 
a full SLAM algorithm, which will probably require the use 
of both the CPU and GPU, with the expectation of achieving 
and order of magnitude of speedup compared with a classical 
implementation.   
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