

 Fast Processing of Grid Maps using Graphical Multiprocessors
Diego Rodriguez-Losada, Paloma de la Puente, Alberto Valero,

Pablo San Segundo, Miguel Hernando

Centro de Automatica y Robotica (UPM-CSIC)
Madrid, Spain. Tel: 913367729 e-mail: diego.rlosada@upm.es

Abstract: Grid mapping is a very common technique used in mobile robotics to build a continuous 2D
representation of the environment useful for navigation purposes. Although its computation is quite
simple and fast, this algorithm uses the hypothesis of a known robot pose. In practice, this can require the
re-computation of the map when the estimated robot poses change, as when a loop closure is detected.
This paper presents a parallelization of a reference implementation of the grid mapping algorithm, which
is suitable to be fully run on a graphics card showing huge processing speedups (up to 50X) while fully
releasing the main processor, which can be very useful for many Simultaneous Localization and Mapping
algorithms.

Keywords: Mobile robots, Robot navigation, Computer Graphics

1. INTRODUCTION

Although microprocessor manufacturing technology is
continuously improving, it is reaching the point in which
physical limits are becoming a major concern. Memory speed
and power have imposed walls for increasing processing
performance by scaling the clock frequency. Over the last
years, Moore’s law and performance improvements have
been maintained mainly due to one reason: multi-core
processors (multiprocessors). In multiprocessors, several
CPU cores are packaged into a single chip, taking advantage
of their proximity, for example when accessing the cache
memory. Some well known examples are Intel Dual-Core and
Quad systems, Sony Cell (8-core) processor inside the
PlayStation3 and PowerPC Xenon (3-core) processor of the
Microsoft Xbox 360.

Together with multiprocessors, programming models have
been coming to scene, in order to manage and exploit the
available concurrency in those systems. Message Passing
Interface (MPI) is the de facto standard for high performance
in distributed computing (multiple external processors each
one with its own memory), while OpenMP is probably the
most extended solution for multiprocessing in shared
memory systems, as multi-core CPUs.

Manufacturers of graphical processing units have been also
continuously improving their systems, leading to multi-core
Graphical Processing Units (GPUs) in which each core
contains also a large number of Arithmetic and Logical Units
(ALUs) specialized in parallel processing of graphics as
textures, visibility, image processing, etc. Also the large
market for graphics cards with ubiquitous 3D graphics
(games, CAD, multimedia, etc), has implied a reasonable cost
of very powerful devices that can fit into the class of what is
known as commodity hardware. Major GPU manufacturers
have recently released tools and programming models that
allow programmers to access such computing power: ATI

(now part of AMD) development platform is called ATI
Stream, and the Nvidia one is called Computed Unified
Device Arquitecture (CUDA).

The CUDA approach has gained large attraction and many
researchers have found a powerful computing platform for
boosting the computations required in their job. Furthermore,
several libraries as CUBlas (a port of the Basic Linear
Algebra Set – Blas) or GpuCV (largely compatible with
OpenCV) for computer vision have been developed that let
developers take advantage of GPUs computing power
without requiring explicit parallelization of algorithms.
Applications such as Matlab or GIMP have also been
provided with CUDA extensions that let the applications
transparently benefit from GPUs processing.

Many algorithms in mobile robotics are quite
computationally intensive. Among them, the map building
problem (see Thrun (2008) for a survey) has gained great
attention in the last decade. Many solutions have been
developed, as feature based Simultaneous Localization and
Mapping (SLAM) with Extended Kalman Filters (EKF) and
Information Filters, and particle filter FastSLAM. Feature
based representations have the disadvantage of rejecting
observations that cannot be modelled as a priori known
features, typically lacking enough information to safely
perform path planning or control tasks. Probabilistic grid
maps (Elfes, 1987) divide the environment into small square
cells and compute the probability of each cell to be occupied
or free, independently from the other cells, so in order to
obtain a reasonable result, the robot poses have to be known
(mapping with known poses). Although another higher level
approach has to be used for obtaining these poses, the final
computation of the grid map is always a necessary task.

In this paper we propose a parallelization of the grid mapping
algorithm able to run on a multi-core GPU. The enormous
speedup obtained shows the effectiveness of our approach,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148657785?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and the potential of the system, that could open the door to a
new perspective about robotic algorithms.

The rest of the paper is structured as follows: First, previous
related work is discussed in Section 2. A brief introduction to
CUDA is provided in Section 3, and the common grid
mapping algorithm is described in Section 4. The proposed
parallelization of grid mapping is explained in Section 5, the
obtained results with such approach are presented in Section
6, and the conclusions are exposed in Section 7.

2. RELATED WORK

There exists a very closely related work from Yguel et al.
(2008), in which GPU based processing of grid maps is also
presented. Their work claims that grid mapping algorithms
based on ray tracing, commonly using the line tracing
algorithm of Bresenham (1965) are inaccurate as they present
the de Moire effect, defined in the computational graphics
domain as artificial discontinuities between rays far from the
origin. They propose a so called exact solution and derive a
thorough probabilistic formulation with the hypothesis that
the unmodified cells between rays should be also updated
accordingly. With this hypothesis they conclude with an
algorithm that can be efficiently run in a GPU with the
application of typical texture handling functions. Although
their derivation is an important contribution it is only
applicable in the case in which the laser beam width angle is
equal to the angular spacing between consecutive beams,
which is not a valid hypothesis in the general case of a typical
laser range-finder. It is easy to validate this statement with a
simple experiment as presented in Fig. 1. A SICK laser
LMS200 is used, with an angular resolution of 1º, and an
object of approximately 5 cm wide (double than the cell size
we use in our experiments) is moved in front of the laser at
approximately 4 meters. The object continuously appears and
disappears while crossing the beams and the non-covered
inter beams space respectively.

Fig. 1. Counter example to the exact solution proposed in
Yguel (2008) The beams width is not equal to the inter beam
space.

This seems a reasonable result as the approximate beam angle
is about 0,25º (as derived from the manufacturer technical
data). At the light of this result, it is reasonable to follow a

Bresenham line tracing algorithm, that might be not as
accurate as a beam model, but in any case it is safer than a
model with a wider than real laser beam.

The work presented in this paper follows a different
approach: it takes a well known algorithm and an extended
implementation as the one in the CARMEN toolkit, and
implements it for running in a GPU, by finding and adequate
parallelization. Furthermore, the full grid mapping algorithm
is addressed to the GPU, as opposed to Yguel et al. (2008) in
which only certain parts of the algorithm are processed in the
GPU, so we are able to present absolute timings comparison
between the same algorithm in a CPU implementation and a
GPU one. The main contribution of the paper is the proof that
exactly the same algorithm that is being used by a large part
of the community can be targeted to a graphical card with
large computational savings and fully releasing the CPU.

3. OVERVIEW OF NVIDIA CUDA ARCHITECTURE

CUDA exposes the Nvidia multi-core GPUs computing
capabilities through the following elements:

- Thread hierarchy. The programmer develops a
function of a working thread which can be massively
launched in a kernel. The threads can be arranged in
blocks, each block containing the same arrangement of
threads. Such arrangement can get the form of a vector
(1D), a matrix (2D), or a generic 3D matrix. The blocks
themselves can also be arranged in vector or matrix forms
in a so called grid. Each thread has built-in variables to
access its indices in the block, as well as the block indices.

- Memory hierarchy. Each thread has its own private
memory space, each block has a shared memory that can
be accessed by all threads in the block, and there exists a
global memory accessible by all threads. The system is
completed with two read-only memory spaces: the
constant memory and the texture memory. The shared
memory is built inside the GPU, so it is faster than the
global memory that is outside the GPU (but located in the
device, i.e. the graphics card).

- Thread synchronization. All threads in a block can be
forced to wait at a given point until all threads of the block
arrive to that point.

The use of these elements is available to the programmer via
some extensions of the C language as well as a runtime
library. With these extensions the programmer can define
kernels, declare the type of device memory for each data, and
synchronize threads. The framework has a low learning
curve, but it should be said that optimization typically
requires some extra work.

A typical working cycle when using GPU consists of the
following steps: allocating memory on the device, copying
data from host (PC) memory to the device, launching a
kernel, and finally copying the results from the device
memory to host memory.

In order to obtain a good performance several things have to
be considered. The threads have practically no overhead of
execution, changing, and finishing. The memory accesses to
arithmetic computations ratio has to be low, i.e. the memory
is quite slow compared with the computational capabilities.
Also it has to be considered that shared memory is much
faster than global memory. However, the memory latency can
be typically hidden if there are enough threads to be
scheduled. In practice this means that a kernel must launch
thousands of threads (all of them running the same code) in
order to achieve a good performance.

4. BUILDING GRID MAPS WITH MOBILE ROBOTS

The problem of estimating a map m given the set of sensor
measurements tz and robot poses tx up to timestep t in
probabilistic terms is represented by the posterior

(| ,)t tp m z x . This conditioning on the robot poses is known
as mapping with known poses. The sensor measurement and
robot pose at a certain time step i will be grouped (for
convenience) into a sensor interpretation called is . In 2D
grid mapping, the environment map m is divided in multiple
square cells arranged in a grid fashion, being ,x y cm m the
cell c with indices (row and column) x and y. To cope with
the high dimensionality of the problem of estimating the
posterior (|)tp m s , the problem is simplified assuming that
the probability of occupancy of each individual cell is
independent from each other:

 () ()| |t t
c

c
p m s p m s=∏ (1)

As explained in Thrun (1998), the probability of each cell
given all the sensor information can be computed as:

1

1

()
(|) 1 1 '

1 ()

1 ()(|)'
1 (|) ()

prior ct
c

prior c

t
prior cc i

i c i prior c

p m
p m s p

p m

p mp m sp
p m s p m

−

=

 
= − +  − 

−
=

−∏
 (2)

Where ()prior cp m denotes the prior probability of occupation,
and it is an initial parameter of the algorithm. It is assumed to
be equal for all cells and thus can be simplified to priorp .
The above expression (2) can be conveniently expressed
incrementally:

1

1

1

(|)

1(|) (|)1 1
1 (|) 1 (|)

t
c

t
priorc c t

t
c c t prior

p m s

pp m s p m s
p m s p m s p

−
−

−

=

 −
− +  − − 

 (3)

The probability (|)c tp m s of occupancy of a cell conditioned
only on one observation at a certain time step t is established
by the probabilistic sensor model. The model handles each

laser beam separately, and for each beam uses the Bresenham
(1995) line algorithm to define which cells will be affected
by the sensor observations. All the cells that are not affected
do not have to be updated by (3).

The Bresenham algorithm takes as input a segment defined
by two extreme cells: the first one c1 is the origin of the beam
i of the laser scan, and the second one c2 is computed from
the range measurement and an input parameter called wallsize
that represents the most likely width of the objects of the
environment (Fig. 2).

Fig. 2. Bresenham line algorithm for a laser beam. Note that
the occupied cells include those located further than the range
measurement up to a certain limit wallsize that is defined as an
input parameter to the algorithm.

The obtained set of cells C is thus naturally clustered in two
groups, those cells considered to be empty, and those
considered to be occupied. Two probabilities are defined as
parameters, a reference probability that a cell is empty pemp
for those cells that are between the beam origin and the range
measurement, and the reference probability that a cell is
occupied pocc for those cells beyond the range measurement,
up to the wall size.

 <

emp

f
occ

p d range
p

p d range
= 

≥
 (4)

Then the distance from each cell to the origin is computed, in
order to be used in the sensor model. The probability function
defined by the sensor model is divided in two parts. If the cell
is very close to the laser, i.e. below a threshold called
rangesure, then the probability of the cell is directly defined by
the corresponding (occupied or empty) reference probability.
If the cell distance is above that threshold, the corresponding
reference probability varies linearly with the distance.
Formally:

 ()(|) () sure

c t f prior f
max

d rangep m s p p p
range

δ −
= + − (5)

where

0 <
1

sure

sure

d range
d range

δ


=  ≥
 (6)

The algorithm iterates over all range measurements of the
laser scan captured at time step t, and for each range

measurement iterates over the set of cells defined by the
Bresenham algorithm.

The first step is to check whether this cell actually belongs to
the grid map, as it is possible that range measurements could
fall out of the map. Then the sensor model is applied to
compute (|)c tp m s according to (4)-(6), and finally the value
of the cell is updated as defined in (3). The outline of the
algorithm is:

1

1 2

1 2

Function Update(Grid (|), Scan , Pose)
foreach
 , =ComputeExtremePoints(, ,)
 =BresenhamLineTrace(,)
 foreach

 if()

t
t t

i t

i t

j

j

p m s s pose
range s

c c range i pose
c c

c
c m

−

∈

∈

⊂

C
C

1

1

 =Distance(,)

 (|) SensorModel(,)

 (|) (|), (|) (Eq. 2)
j

j j j

j

c t i

t t
c c t c

d c c
p m s d range

p m s p m s p m s −

=

⇐

 endif
 endfor
endfor

5. PARALLELIZATION OF GRID MAPPING

5.1 Threads arrangement

The core idea of the proposed parallelization is that one GPU
thread will be launched to update each cell affected by a
sensor observation. As cells are obtained from the Bresenham
algorithm for each laser beam, it is adequate to group all the
threads corresponding to those cells in the same thread block.
Thus, a thread block per range measurement will be used

Inside each block we theoretically need a variable number of
threads depending on the actual range measurement, since a
variable number of cells should be affected. Nevertheless,
CUDA does not allow a variable number of threads in each
block, so the number of threads is chosen to fit a maximum
range of the measurements. Although the number of threads
per block is limited depending on the hardware platform, it
starts in 256 threads which can accommodate a sensor range
of 6.4 meters for a cell size of 2,5 cm and 12,8 m for a cell
size of 5 cm, which are reasonable values.

The proposed kernel will be typically composed of 360
blocks, each one with 256 threads, i.e. a total of 92160
threads for handling each observation. To process a whole
map, a kernel is launched for each observation.

The working cycle is as follows: The first step is to allocate
and copy the input data to the device memory. In this case it
is necessary to copy the whole laser data (including all
measurements from all time steps, as well as the robot poses),
the probability grid, and the input parameters. Then a kernel

is launched for every time step, but with the data already
stored in the device. In this way, the transfer of data is
avoided at each kernel launch. Please note that the map is not
transferred to the GPU at each step. When all data has been
processed, the resulting updated probability grid is
transferred back to the host memory.

5.2 Kernel computation

Each one of the running threads will have three basic
parameters: (I) the time step t which determines which
observation has to be processed, (II) the index of the block i,
which represents the laser beam index, and (III) the index of
the thread j within the block, that represents a cell along the
Bresenham line of the beam.

The first step is to compute the extreme points of the laser
beam, and also the relative increments between them:

{ } { }1 1 1 2 2 2

2 1

2 1

, , ,c x y c x y
x x x
y y y

= =

∆ = −
∆ = −

 (7)

According to the Bresenham algorithm the slope of the line
has to be lower than 1, so if the absolute value of x∆ is larger
than the absolute value of y∆ , then it is clear that we can
compute the position of the cell according to:

 ()
()

1

1 1

/
sgn

g y x
x x x j

y y g x x

= ∆ ∆

= + ∆

= + −

 (8)

Otherwise, the X and Y indices have to be swapped, and the
position of the cell is computed by:

 ()
()

1

1 1

/
sgn

g x y
y y y j

x x g y y

= ∆ ∆

= + ∆

= + −

 (9)

Once the cell position is computed, the application of the
sensor model is also done with (4)-(6) and the update of the
cell probability with (3).

5.3 Memory use

Although the basic computations have been presented, the
critical decisions in the parallelization are about memory use.

There are some parameters of the algorithm that are not
modified and are accessed many times, as rangesure, rangemax,
pemp, pocc, pprior, wallsize. These parameters can be conveniently
stored in read-only constant memory which is known to be
faster than global memory.

The CPU implementation uses a lookup table to precompute
and store all the distances from a cell to the origin to avoid
recomputing these distances at each time step. As explained

above, the GPUs have a huge computing power compared
with memory bandwidth, so the GPU implementation
recomputes the distances at every time step avoiding in this
way extra memory accesses.

Each block manages a laser beam, so the computation of the
extreme points of the beam can be shared among all threads
in the block. Thus, the range measurement, the extreme
points, and the increments are stored in shared memory.
Although they could be recomputed by each thread, it is
faster to use shared memory and let one thread compute these
values for all threads in the block. A synchronization point is
introduced here to make the other threads wait until the first
one finishes computing these values.

The grid map probability matrix is stored in global memory.
As the computation is done per cell, and only one read and
one write accesses are required, the use of shared memory is
not justified.

The final parallelized algorithm is outlined as:

1

1 2

Grid (|), Scan , Pose / /Device Memory
Thread Update(Block ,Thread) //360x256 threads
 if (0)
 []
 , =ComputeExtremePoints(, ,)

t
t t

i t

i t

p m s s pose
i j

j
range s i
c c range i pose

−

=
=

1 2

1

 endif
 =BresenhamPoint(, ,)

 if()
 =Distance(,)

 (|) SensorModel(,)

j

j

j

j

c t i

c c c j
c m

d c c
p m s d range

⊂

=
1 (|) (|), (|) (Eq. 2)

 endif
j j j

t t
c c t cp m s p m s p m s −⇐

6. EXPERIMENTS AND RESULTS

We have implemented the presented parallelized approach
with the CUDA programming tools, as well as an adaptation
of the algorithm developed in CARMEN which is basically a
C++ wrapper and some minor modifications in order to be
able to make a fair comparison between both
implementations. For example, most NVIDIA GPUs do not
handle double precision arithmetic, and all doubles are
automatically demoted to single precision floats. The original
CPU implementation had double precision computations
which are typically slower, so all the types were changed to
faster single precision. In both implementations all the input
data (laser scans and poses) is loaded in memory before
starting the computation to eliminate delays from reading
data from a hard drive.

Two real different datasets with the robot poses already
corrected (see Acknowledgment) have been used for the
experiments and processed with two different PCs with Intel
CPUs and NVIDIA GPUs. The desktop PC is equipped with
an Intel 3,2Ghz Pentium D CPU and a NVIDIA GTX 280

graphics card. The laptop has an Intel 2Ghz Core 2 Duo
T7250 and a GF 8400M GS graphics card.

In the first one, a Pioneer2 with a LMS-Laser was manually
driven in the building 079 of the University of Freiburg
(Fr079), acquiring 3118 lasers scans (each one with 360
beams in a 180º FOV with 0.5º spacing) along a trajectory of
approximately 209 meters. The maximum range used is 6.4m.

Table I shows the absolute processing time in seconds
required for processing this data set. The processing time is
reduced down to 50% (2X) with the laptop graphics card
(compared with the laptop CPU), and down to 1,7% (58X) in
the desktop PC. For the GPUs, the memory transfer times to
and from the graphics card are also included in the results.

TABLE I PROCESSING TIMES (SECONDS)

 ENVIRONMENT

PROCESSOR Fr079 Fr101

2Ghz Core 2 Duo T7250 11,5 25,3
3,2Ghz Pentium D 15,2 30,9
GF 8400M GS (laptop) 6,26 12,17
GTX 280 (desktop) 0,26 0,52

Fig. 5 shows the result of processing this data set. Although
the map shown in the figure is the one processed with the
GTX 280 graphics card, the result is visually identical (as
expected) to the one obtained with CPUs.

Fig. 5. FR079 building map, computed in 0,26secs with GPU

The second data set was captured in the Entrance Hall
(Building 101) at the Department of Computer Science at
University of Freiburg, with a Pioneer 2 DX8 robot and with
the same laser configuration, during autonomous exploration
and capturing 5299 laser scans along a 277 meters trajectory.

Fig 6. FR101 building map, computed in 0,52secs with GPU

Fig. 6 shows the computed map, and the results presented in
Table I show the same gain as in the previous data set. As the
complexity of the grid mapping is constant time O(1) for
each measurement update it is logical that the computational
savings proportion remains constant irrespective of the data
set and map size.

Table II shows the importance of an appropriate use of device
memory. It has been built using the laptop configuration, and
shows the relative performance of the GPU implementation
compared with the CPU one. It can be seen that if all the data
is stored in the device (graphics card) in global memory, the
performance of the GPU is worse than the one of the CPU up
to a 50% of computation time increment. Nevertheless,
moving a small part of the data to shared memory, and
making it be computed by just one thread of the block, the
computational savings become clearly visible. The use of
constant memory to provide faster read access to common
parameters allows further savings.

 TABLE II EFFECT OF MEMORY USE

Device memory use Processing time
compared with the CPU

All data in global memory, each thread
computing beam data 150%

Common block (beam) data in shared
memory, computed only by one thread 65%

Input parameters in read-only constant
memory 50%

It should be said here that the final results obtained with the
CPUs and the GPUs are not completely identical. Although
the resulting maps are visually undistinguishable, if their
difference is computed and shown, several very small
differences are visible. These differences can be due to the
different floating point arithmetic carried out by the GPUs.
However, these small differences are absolutely irrelevant for
any navigation purpose.

7. CONCLUSION

This paper has presented a parallelization of the grid mapping
algorithm as implemented in CARMEN, suitable to be run on
a GPU. The GPU implementation has been proved to obtain
large speedups, reducing the required computation time to
50% in the case of common graphics cards as those in mid
end laptops, and down to 2% with high end (but affordable)
graphics cards, compared with the same algorithm running on
a CPU. Moreover it is important to highlight that the full
computation is being targeted to the GPU, thus fully releasing
the CPU, which can be used in parallel for other tasks.

Grid mapping falls into the category of mapping with known
poses, so it requires other algorithm to correct the odometry
drift and provide corrected poses. Many SLAM algorithms
address this issue, and many of them are based on the idea of
estimating the robot path as solution to the problem, and
computing the resulting map afterwards. Those algorithms
can greatly benefit from our approach. It can be seen from the
experiments that the map resulting from a 200 meters

trajectory can be computed in approximately 0,250 seconds,
which in terms of mobile robots means practically real time,
allowing the closure of large loops with an immediate
computation of a complete global grid map.

It is a bit surprising that after the performance shown in
Yguel et al (2008), the use of GPUs for processing in mobile
robotics has not been widely adopted by the community. We
believe that mobile robotics algorithms necessarily have to be
adapted for heterogeneous (CPU and GPU) multi-core
processors to benefit from modern hardware computational
power and to be able to increase their performance up to the
next level. Our next work will focus on the parallelization of
a full SLAM algorithm, which will probably require the use
of both the CPU and GPU, with the expectation of achieving
and order of magnitude of speedup compared with a classical
implementation.

ACKNOWLEDGMENT

This work was supported by Spanish Ministry of Science and
Technology (Robonauta: DPI2007-66846-C02-01). Datasets
have been obtained from the Robotics Data Set Repository
Radish (2003), thanks to C. Stachniss

REFERENCES

Bresenham J. E.. (1965) Algorithm for computer control of a
digital plotter, IBM Systems Journal, V 4, N.1, pp. 25-30

CARMEN, The Carnegie Mellon Robot Navigation Toolkit.
Available at: http://carmen.sourceforge.net/

Elfes. A. (1987). Sonar-based real-world mapping and
navigation. IEEE Journal on Robotics and Automation.
Vol. 3 N. 3. pp. 249-265.

Halfhill T. R. Parallel Processing with CUDA. (2008).
Microprocessor. NVIDIA url: http://www.nvidia.com

Moravec H., Elfes A. (1985) High resolution maps from wide
angle sonar. IEEE International Conference on Robotics
and Automation . Vol. 2. pp. 116-121. 1985.

Radish, The Robotics Data Set Repository. (2003) C.
Stachhniss. URL: http://radish.sourceforge.net

Thrun S., Bücken A., Burgard W., Fox D., Fröhlinghaus T.,
Henning D., Hofmann T., Krell M., and Schmidt T..
(1998) Map learning and high-speed navigation in
RHINO. AI-based Mobile Robots: Case Studies of
Successful Robot Systems. MIT Press.

Thrun S., Leonard J. (2008). Simultaneous Localization and
Mapping. Handbook of Robotics, chapter 37. Springer..
Siciliano, Bruno; Khatib, Oussama (Eds.) ISBN: 978-3-
540-23957-4

Yguel M., Aycard O. and Laugier C..(2008) Efficient GPU-
based Construction of Occupancy Grids Using several
Laser Range-finders. International Journal of Vehicle
Autonomous Systems. Issue: Volume 6, Number 1-2.
Pages: 48 - 83

