
High level validation of an optimization algorithm for the implementation of
adaptive Wavelet Transforms in FPGAs

Rubén Salvador, Félix Moreno, Teresa Riesgo
Centre of Industrial Electronics

Universidad Politécnica de Madrid
José Gutierrez Abascal, 2

28006, Madrid, Spain
Email: ruben.salvador@upm.es

Lukáš Sekanina
Faculty of Information Technology

Brno University of Technology
Božetěchova 2

612 66 Brno, Czech Republic
Email: sekanina@fit.vutbr.cz

Abstract

The work reported in this paper describes the
steps given towards an FPGA-based implementation
of evolvable wavelet transforms for image compres-
sion in embedded systems. An Evolutionary Algorithm
(EA) for the design and optimization of the transform
coefficients is tailored for a suitable System on Chip
implementation. Several cut downs on the computing
requirements have been done to the original algorithm,
adapting it for the FPGA implementation. What this
paper addresses more specifically is the validation
of the algorithm using fixed point arithmetic for the
whole optimization process. The results show how
high quality transforms are evolved from scratch with
limited precision arithmetic. Also, preliminary results
of the implementation in an FPGA device are included.

1. Introduction

Traditional implementations of image compression
algorithms, whether they are conceived for small
computing devices or bigger systems such as medical
or industrial image vision systems, lack an adaptation
capability that is gaining importance.

New compression standards such as JPEG2000 are
based on the Discrete Wavelet Transform (DWT) [1],
in contrast to the previous JPEG standard based on the
Discrete Cosine Transform (DCT). One of the main
characteristics of the wavelet transform is its inher-
ent adaptation capability. The transform performance,
from the compression point of view, is determined by
the wavelet used. This means that it may deteriorate
if a different type of image than the one the wavelet

is adapted to is used. The accepted standard wavelet
considered to be the state of the art in compression
of photographic images is the hand-designed D9/7
Cohen-Daubechies-Feauveau (9/7-CDF or also D9/7).
Therefore, though it has a better coding performance
compared to JPEG, this will hold just for the type of
images the wavelet is adapted to.

The line of research open by the authors of this work
deals with the implementation of adaptive wavelet
transforms in FPGA devices so that embedded sys-
tems are provided with adaptation capabilities, which
may be applied, for instance, to an artificial vision
system able to self calibrate itself when it is deployed
on different environments (even to adapt through its
operational life) and has to deal with different type of
images.

The first step in the work is the design of an algo-
rithm able to find new wavelets adapted to an specific
kind of images. An Evolutionary Algorithm (EA),
specifically an Evolution Strategy (ES) [2] was chosen
as the search algorithm. This approach was already
proved useful in previous works reported by other
authors, which will be analyzed in Section 4. Since
the intended computing platform is an FPGA device,
a relatively low computing power will be available,
what will, undoubtedly, affect the performance of the
evolutionary search.

The structure of the paper is as follows. Section
2 covers an introduction to Evolution Strategies, fol-
lowed by a brief overview of the wavelet transform in
Section 3. An analysis of previously reported works is
given in Section 4. Afterwards, the original proposals
of this work are presented in Section 5, where the
fixed point implementation is tackled, as well as the
mapping of the algorithm to the hardware architecture.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148657721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The experimental setup developed and a further insight
into the details of the implementation, along with the
results obtained and some comments on the future
work can be found in Section 6. Paper is concluded
in Section 7.

2. Design and optimization via Evolution
Strategies

An Evolution Strategy (ES) is one of the fundamen-
tal algorithms among Evolutionary Algorithms (EA)
that utilize a population of candidate solutions and
bio-inspired operators to search for a target solution.
EAs have been chosen as the optimization algorithm
because of their applicability to a wide range of
problems and because they do not need much tailoring
for specific problems. Still, they deliver good (not
necessarily optimal) solutions within acceptable time.

ESs are primarily used for optimization of real-
valued vectors. The algorithm operators are iteratively
applied within a loop, where each loop run is called
a generation, until a termination criterion is met.
Variation is accomplished by the so-called mutation
operator. For real-valued search spaces, mutation is
normally performed by adding a normally distributed
random value to each component under variation.
Based on a normal (Gaussian) distribution, with mean
ξ and standard deviation σ, mutations are then done
by adding some ∆xi to each parameter xi encoded in
the individuals.

One of the particular features of ES is that the
individual step sizes of the variation operator for each
coordinate (or correlations between coordinates) is
governed by self-adaptation (or by covariance matrix
adaptation (CMA-ES)). This self-adaptation of the step
size, also known as mutation strength (i.e. standard
deviation of the normal distribution), implies that σ
is also included in the chromosomes, undergoing vari-
ation and selection itself (coevolving along with the
solutions).

The canonical versions of the ES are denoted by
(µ/ρ, λ)-ES and (µ/ρ + λ)-ES, where µ denotes the
number of parents, ρ ≤ µ the mixing number (i.e., the
number of parents involved in the procreation of an
offspring), and λ the number of offspring. The parents
are deterministically selected from the set of either the
offspring, referred to as comma-selection (µ < λ), or
both the parents and offspring, referred to as plus-
selection. Selection is based on the ranking of the
individuals’ fitness F (y) taking the µ best individuals.
Once selected, ρ out of the µ parents are recombined
to produce an offspring individual using intermediate
recombination, where the parameters of the selected

parents are averaged, or randomly chosen if discrete
recombination is used.

Each ES individual a := (y, s) comprises the object
parameter vector y ∈ Y to be optimized and a set
of strategy parameters s, needed especially in self-
adaptive ESs. For a general algorithmic description of
the
(
µ/ρ +, λ

)
-ES see [2].

3. Overview of the Wavelet Transform

The DWT is a multiresolution analysis (MRA) tool
widely used in signal processing due to its joint time-
frequency signal analysis characteristics, used for the
analysis of the frequency content of a signal at different
resolutions. It concentrates the signal energy into fewer
coefficients to increase the degree of compression
when the data is encoded. The energy of the input
signal is redistributed into a low resolution trend sub-
signal (scaling coefficients) and high resolution sub-
signals (wavelet coefficients; horizontal, vertical and
diagonal sub-signals for image transforms). If the
wavelet chosen for the transform is suited for the type
of image being analyzed, most of the information of
the signal will be kept in the trend sub-signal, while the
wavelet coefficients (high frequency details) will have
a very low value. For this reason, the DWT can reduce
the number of bits required to represent the input data.

For a general introduction to wavelet based multires-
olution analysis see [3]. The Fast Wavelet Transform
(FWT) algorithm computes the wavelet representation
by means of a subband filtering scheme, recursively
filtering the input data with a pair of high-pass and
low-pass digital filters and downsampling the results
by a factor of two [1]. The D9/7 wavelet gets its name
because its high-pass and low-pass filters have 9 and
7 coefficients respectively.

The FWT algorithm was improved by the method
known as Lifting scheme (LS), introduced by Sweldens
[4], which reduces the computational cost of the trans-
form. It does not rely on the Fourier Transform for its
definition and application, and has given rise to the
so called Second Generation Wavelets [5]. Besides,
the research effort put on LS has made easier the
construction of custom wavelets for very specific and
different types of data.

The basic LS, shown on Figure 1, consists of three
stages: Split, Predict and Update. The main idea
consist on exploiting the correlation structure of the
input data to obtain a more compact representation of
the signal [6].

Split stage divides the input data into two smaller
subsets, sj−1 and dj−1, usually, the even and odd
samples. It is also called the Lazy Wavelet.

sj

sj-1

dj-1

split P

-

U

+

sj-2
split P

-

U

+

dj-2

Figure 1. Lifting scheme

To obtain a more compact representation of the
input data, the sj−1 subset is used to predict the dj−1
subset, called the wavelet subset, and which is based
on the correlation of the original data. The difference
between the prediction and the actual samples is stored,
also, as dj−1, overwriting its original value. If the
prediction operator P is reasonably well designed, the
difference will be very close to 0, so the two subsets
sj−1 and dj−1 yield a more compact representation of
the original data set sj .

In most cases, it is interesting to maintain some
properties of the original signal after the transform,
such as the mean value. For this reason, the LS
proposes a third stage that not only reuses the com-
putations already done in the previous stages, but
that also defines an easily invertible scheme. This
is accomplished by updating the sj−1 subset with
the already computed wavelet set dj−1. The wavelet
representation of sj is therefore given by the set of
coefficients {sj−2, dj−2, dj−1}.

This scheme can be iterated up to n levels, so that
an original input data set s0 will have been replaced
with the wavelet representation {s−n, d−n, . . . , d−1}.
Therefore the algorithm for the LS implementation is:

for j ← 1, n do
{sj , dj} ← Split(sj+1)
dj = dj − P (sj)
sj = sj + U(dj)

end for
There exists a different notation for the transform

coefficients {sj−i, dj−i}; for a 2 level image decom-
position it is {LL,LH,HL,HH} where L stands for
low pass and H for high pass coefficients respectively.

4. Previous work on evolutionary wavelets
design

Research on adaptive wavelets has been active dur-
ing the last two decades. Basically, dictionary-based
methods, in some cases combined with EA, as well
as several stochastic optimization techniques like sim-
ulated annealing, or even using the LS technique, have
been reported.

The work described on this paper gets its origi-
nal idea of [7] by Grasemann and Miikkulainen. In
their work, the authors proposed the original idea of
combining the lifting technique with EA for designing
wavelets. As it is drawn from [4], [5] the LS is really
well suited for the task of using an EA to encode
wavelets, since any random combination of lifting steps
will encode a valid wavelet, what guarantees perfect
reconstruction.

Table 1 shows the most remarkable and up to date
reported results in the design of wavelet transforms by
means of Evolutionary Computation (EC). It should
be noted that in the cases of MRA, the coefficients
evolved each at level were different, since the authors
reported better results with this scheme.

Two are the most original contributions to the state
of the art reported by Grasemann and Miikkulainen.
First, the use of a coevolutionary GA (parallel evolving
populations) to encode wavelets as a sequence of lifting
steps. Second, the proposal of an idealized version of
a transform coder to save time in the complex eval-
uation method they used, which involved computing
Peak Signal to Noise Ratio (PSNR) for one individual
combined a number of times with other individuals
from each subpopulation. They propose using only
a certain percentage of the largest coefficients for
reconstruction.

The evaluation consisted of 80 runs, each of which
took approximately 45 minutes on a 3 GHz Xeon
processor (total time 80 ∗ 45). The results obtained
in this work outperformed the considered state-of-the-
art wavelet for fingerprint image compression, the FBI
standard based on the D9/7 wavelet, in 0.45 dB. The
set of 80 images used was the same as the one used
in this work, as shown in Section 6.

Works reported by Babb, Moore et. al. can be
considered the current state of the art in the use of EC
for image transform design. The milestones followed
in their research are summarized on the next list.

1) Evolve the inverse transform for digital pho-
tographs under conditions subject to quantiza-
tion.

2) Evolve matched forward and inverse transform
pairs.

3) Evolve coefficients for three and four level MRA
transforms.

4) Evolve a different set of coefficients for each
level of MRA transforms.

As stated by the authors, Babb, Moore, et al., their
algorithms are highly computationally intensive, so
the training runs were done using supercomputing re-
sources, available through the use of the Arctic Region
Supercomputer Center (ARSC) in Fairbanks, Alaska.

Table 1. State of the Art in evolutionary wavelets design.
Ref. EA Seed Conditions Image set Result (improvement)

[8] GA D4 mutations MRA (3). 64:1 Qa Photographs 0.60 dB (MSE)
[9] GA D9/7 mutations MRA (4). 16:1 Tb Fingerprints 0.76 dB (MSE)

[10] CMA-ESc D9/7 mutations 64:1 Q
Satellite 1.79 dB (MSE)

Fingerprints 3.00 dB
Photographs 2.39 dB

[11] CMA-ES 0.2 MRA (3). 64:1 Q Fingerprints 0.54 dB (MSE)
[7] Coevolutionary GA Random Gaussian MRA. 16:1 T Fingerprints 0,45 dB (PSNR)
a Quantization b Thresholding c Covariance Matrix Adaptation-Evolution Strategy

Although the work by Grasemann and Miikkulainen
was done on an accessible computer, both training
times and computing resources needed in both cases,
show the complexity of the algorithms developed.
These approaches are highly unfeasible for implemen-
tation as a hardware embedded system.

5. Proposed Evolutionary Algorithm

As proposed in the last reports by Babb, Moore, et
al. an ES seemed also to be the most suited algorithm
to meet the requirements of this work, but, however,
a simpler one was chosen so that a viable hardware
implementation was possible. By the contrary, this
work uses LS to encode the wavelets, as Grasemann
and Miikkulainen. Therefore, it is being originally
proposed in this work to mix both proposals from
the literature; using ES as the search algorithm and
encoding the individuals (wavelets) using the LS.

The whole process of evolution has to be down-
scaled in complexity. This implies changing not only
the parameters of evolution, but the EA itself. Al-
though the hardware architecture of an FPGA may
be considered up to some extent the paradigm of
parallelism, the complexity of such an implementation
is much higher than the software choice. A trade-
off between scalability, use of hardware resources and
difficulty (complexity) of the implementation has to be
taken into account when setting system performance
requirements. Therefore, the first task accomplished
by the authors was centered on building a prototype
implementation of the system to validate the proposed
resource consumption vs performance trade-off. In [12]
the decisions made for designing a simpler algorithm
than those previously published in the State of the Art
are presented. They are summarized below:

1) Single evolving population opposed to the par-
allel populations of the coevolutionary genetic
algorithm reported in [7] .

2) Use of uncorrelated mutations with one step
size [2] instead of the overcomplex CMA-ES
reported in [10], [11].

3) Evolution of one single set of coefficients for all
MRA levels.

4) Ideal evaluation of the transform. Since doing
a complete compression would turn to be an
unsustainable amount of computing time, the
simplified evaluation method reported in [7] was
further improved. For this work, all wavelet
coefficients dj are zeroed, keeping only the trend
level sj of the transform from the last iteration of
the algorithm. The evaluation of the individuals
in the population is done by computing the
PSNR after setting entire bands of high-pass
coefficients to 0. Two decomposition levels are
done and only the LL coefficients (trend image)
are kept before reconstructing the image and
measuring the resulting error. For 2 levels of
decomposition, this is an idealized 16:1 compres-
sion ratio.

These simplifications yielded very positive results
in previous works by the authors [12]. But, since
there were still some complex operations around in
the algorithm, the complexity relaxation before doing
the hardware implementation was taken even further,
so that a trade-off between performance and size is
observed. They are summarized below:

1) Uniform random distribution. Instead of using
Gaussian distributions for the mutation of the
object parameters, a Uniform distribution was
tested, for being simpler to implement in HW.

2) Mean Absolute Error (MAE) as evaluation fig-
ure. PSNR is the figure of merit more widely
used for image processing tasks. But, as previous
works show for image filter design problems
[13], using MAE gives almost identical results,
because the interest is in relative comparisons
among population members.

5.1. Fixed point arithmetic

For the implementation of the algorithm in an FPGA
embedded system, special care with binary arithmetic
should be taken, since floating point representation is

not hardware(FPGA)-friendly. Thanks to the LS, the
Integer Wavelet Transform (IWT) [14] turns up as
a good solution for wavelet transforms in embedded
systems. But, since floating point arithmetic is still in
the system as filter coefficients, a fixed point imple-
mentation is needed for hardware.

As shown on [15], [16], for 8 bits per pixel (bpp)
integer inputs from an image, a fixed point fractional
format of Q2.10 for the lifting coefficients and a bit
length in between 10 and 13 bits for a 2 to 5 level
MRA transform for the partial results is enough to keep
a rate-distortion performance almost equal to what is
achieved with floating point arithmetic. This yields
Multiply and Accumulate (MAC) units of 20-23 bits
(10 bits fractional coefficients part + 10-13 bits for
partial transform results). Details on the fixed point
implementation of the whole evolutionary process are
given in Section 6.

5.2. Algorithm to Hardware architecture map-
ping

Figure 2 shows the general architecture of the sys-
tem to be implemented in the FPGA. Critical oper-
ations of the algorithm has been identified and opti-
mized so that a hardware implementation is feasible.
So far, these modules are the Wavelet Transform (the
most time consuming operation), the Fitness Computa-
tion, the Population Sorting and the Evolution Strategy.
All of them, except for the ES will be implemented
as hardware peripherals attached to a microprocessor
embedded in the FPGA. This is a typical scenario in
these kind of systems, where some degree of perfor-
mance is sacrificed to gain flexibility in the system, so
that modifications may be easily done to the software
implementation of the EA (which is, of course, much
easier than changing its hardware counterpart).

Since the LS was proposed, several hardware im-
plementations have been reported both for ASICs and
FPGAs (JPEG2000 adopted LS). This means that good
results centered on exploiting LS features to obtain
fast implementations have already been done. But the
objectives at this stage of the work are just directed to
prove and validate the concepts and the feasibility of
the system as a whole. Therefore, the implementation
of the Wavelet Transform is a direct, algorithmic
mapping of the LS to its hardware equivalent VHDL
description (i.e., no hardware optimizations at the level
of data dependencies are accomplished).

As stated before, the embedded microprocessor is
responsible for running the ES (and each one of its
associated operators, to know, recombination, muta-
tion and selection). After generating a new offspring

NTERFACE

NTERFACE
ITNESS

FUNCTION

POPULATION
SORTING

LASH
MEMORY

FPGA (Virtex 5 FX70T)

COMPRESSION

Figure 2. System level architecture

population, each of them are sequentially sent to the
peripheral responsible of its evaluation. This comprises
the computation of the fitness as the MAE figure.
To tackle it, the following sequence of operations
(as named on Figure 2) has to be computed: For-
ward Wavelet Transform (fWT), Compression (C),
Inverse Wavelet Transform (iWT) and MAE (Fitness)
computation. Besides, when each offspring individual
has been evaluated, the population has to be sorted
according to it (Population Sorting). At this stage, the
microprocessor may close the evolutionary loop by
applying selection to form the new parent population.
After it, recombination and mutation are applied and
a new offspring population will be available to be
evaluated.

Taking advantage of the LS features, the fWT and
iWT can be computed by just doing a sign flip and a
reversal in the order of operations (P and U stages).
As a first attempt, they share resources, using the same
hardware in the FPGA. Compression block is simple,
since it only needs to substitute the fWT result by zeros
in the detail bands {LH,HL,HH}. Therefore, it is
working in parallel to the fWT. In a similar manner,
the Fitness module computes the difference image as
each pixel is produced by the iWT.

The fWT/iWT module is built up by applying the
sequence of P , U stages dictated by the LS. To
mimic the high level modeling of the algorithm (see
Section 6), 6 stages have been implemented (3 P and
3 U), each one containing 4 filter coefficients. The
implementation of each P,U stage can be seen in
Figure 3. Section 6 show the first preliminary results
of the implementation.

6. Experimental setup, results and discus-
sion

6.1. Experimental setup

Before accomplishing the hardware implementa-
tion, modeling and simulation of the algorithm was

D
E
L
A
Y
S

COEFFICIENTS

even

odd

P(even)

odd
-

Figure 3. Predict/Update stage implementation

accomplished using Python computing language to-
gether with its numerical and scientific extensions,
NumPy and Scipy [17], as well as the plotting li-
brary, MatPlotlib [18]. Fixed-point arithmetic was
modeled with integer types, defining the required quan-
tization/dequantization and bit-alignment routines to
mimic hardware behavior. The computer used was a
laptop containing an Intel CoreTM2 Duo processor at
2 GHz running a Debian GNU/Linux 64 bits operating
system. Each run of the algorithm took around 40
minutes to evolve for 1000 generations.

Standard representation of the individuals in ES
is composed of a set of object parameters to be
optimized, and strategy parameters, which determines
the extent to which the object parameters are perturbed
by the mutation operator:

〈x1, . . . , xn, σ〉

with xi being integer values representing the fixed-
point coefficients of the predict and update stages. The
individuals were seeded both randomly and with the
D9/7 wavelet.

The encoding of each wavelet individual is of the
form:

〈P1, U1, P2, U2, P3, U3, k1, k2〉

where each Pi, Ui is made up of 4 coefficients and
ki are single coefficients. Therefore, the total length
of each chromosome is n = 26. D9/7 wavelet uses
〈P1, U1, P2, U2, k1, k2〉.

The mutation operator is an uncorrelated mutation
with one step size, σ. The formulas for the mutation
mechanism are:

σ′ = σ · expτ ·N(0,1) (1)
x′i = xi + σ′ · Ui(−σ′, σ′) (2)

where N(0, 1) is a draw from the standard normal
distribution and Ui(−σ′, σ′) a separate draw from the
discrete uniform distribution for each variable i (for
each object parameter). The parameter τ resembles the
so called learning rate of neural networks, and it is

proportional to the square root of the object variable
length n:

τ ∝ 1/
√
n

The fitness function used to evaluate the offspring
individuals, MAE, is defined as:

MAE =
1

RC

R−1∑
i=0

C−1∑
j=0

|I(i, j)−K(i, j)| (3)

where R,C are the rows and columns of the image and
I,K the original and transformed images respectively.

For the survivor selection, comma-selection has
been chosen. It is generally preferred in ES over the
plus-selection for being, in principle, able to leave
(small) local optima and not letting survive misadapted
strategy parameters. Therefore, no elitism is allowed.

The recombination scheme chosen is intermediate
recombination, that averages the parameters (alleles)
of the selected parents.

To sum up, for the various tests run, the set of
parameters used correspond to a (10/5, 70)-ES with
a varying σ = {0.1, . . . , 1.5}. Initial population was
seeded both randomly and with the D9/7 wavelet.

The experiments reported in this work have also
used, as in [7], the first set of 80 images of the
FVC2000 fingerprint verification competition. Images
were black and white, sized 300x300 pixels at 500 dpi
resolution. One random image was used for training
and the other 79 for testing purposes.

6.2. Algorithm optimization results

All the results obtained are compared with the D9/7
transform implemented in fixed point arithmetic and
evaluated with the proposed method. Although evolu-
tion used MAE as the fitness function, for comparison
purposes, part of the results shown in this Section are
given as PSNR. As a reference, for the fixed point D9/7
wavelet, an average PSNR of 28.74 dB was measured
over the set of 79 test images.

Figure 4 shows how the algorithm behaves during
a typical run. As it can be seen, around generation
100 the performance of the evolved wavelet is already
similar to the D9/7. In Figure 5 the best evolved
wavelet is compared with the D9/7 for the whole image
test set, showing how the algorithm was able to evolve
a solution averaging 29.80 dB, that outperforms the
standard D9/7 by an average of 1,06 dB. Results cor-
respond to σ = 1.0 and a randomly seeded population.

In Figure 6 a comparison of the best evolved wavelet
with a fixed point implementation of D9/7 is shown.

(a) (b) (c)

Figure 6. (a) Original fingerprint image and comparison of the performance obtained with the best evolved
individual (b) and the D9/7 Fixed Point implementation (c)

0 200 400 600 800 1000

Generations

0

20

40

60

80

F
it

ne
ss

(M
A

E
)

Best fit
Worst fit
Average fit
D9/7 fit

Figure 4. Result of a typical evolution run

0 10 20 30 40 50 60 70 80

Image test set

24

26

28

30

32

34

36

38

F
it

ne
ss

(P
SN

R
)

Best fit PSNR: 36.1490
Average fit PSNR: 29.8079
Best fit D97Fxp PSNR: 33.6271
Average fit D97Fxp PSNR: 28.7472
[Fractional bit length: 16]

Best fitness
Fitness D97 Fxp

Figure 5. Tests of the best evolved wavelet. The
best individual (and D9/7 for comparison) is exer-
cised for each of the 79 images of the test set

6.3. Preliminary Hardware results

An ML507 development board has been chosen as
the prototype platform. It contains a Xilinx Virtex 5

Table 2. Preliminary implementation results for
the main modules in the system.

Module Resources Frequency (max)

fWT/iWT 2285 / 11200 (20%) 147 MHz
Fitness function 25 / 11200 (<1%) 330 MHz
Population sorting 984 / 11,200 (8%) 265 MHz

XC5VFX70T FPGA device with an embedded Pow-
erPC processor, which runs the ES. Table 2 shows
the preliminary implementation results for an over-
dimensioned datapath of 32 bits, using 16 bits for the
fractional part representation. This implementation is
directed to a system level functional validation in the
FPGA, yielding higher area results than expected for
the final system.

6.4. Discussion and future work

The results presented have shown how the algorithm
is not only able of evolving good quality wavelets, but
also, outperforming the standard D9/7 wavelet. This
can been noticed in Figure 6 where some artifacts
appear in the D9/7 result. It has to be stated, that, if a
real transform coder had been used, these artifacts may
have not appeared. They are due to the ideal compres-
sion used in this work. Therefore, higher quality results
(PSNR/MAE) are to be expected with a standard image
coder in both cases (D9/7 and evolved).

The preliminary (and partial) hardware results show
the feasibility of the implementation of the complete
system. The FPGA chosen as the implementation de-
vice is more than enough to host the system, probably
leaving extra available resources if a more complex
implementation is decided to be carried out.

At present, the rest of the system is being im-
plemented in the FPGA. Once the whole system is

functionally validated, the hardware description will
be optimized for a final implementation. For this im-
plementation, further tests for an optimized σ mutation
strategy will be done.

7. Conclusion

In this paper, a simplified ES (as compared to
the related reported works) has been validated for a
fixed point implementation, showing better average
performance than the D9/7 wavelet, used in JPEG2000
and in the FBI compression standard. The results of the
preliminary FPGA implementation validate its viability
from the point of view of, both, an implementation
directed to the FPGA acceleration of the evolutionary
process and for an adaptive embedded system.

Acknowledgment

The main author would like to thank the support
received from the Department of Computer Systems,
Brno University of Technology, during his research
stay as part of his PhD degree.

Lukas Sekanina has been supported by MSMT under
research program MSM0021630528 and by the grant
of the Czech Science Foundation GP103/10/1517.

References

[1] S. Mallat, A Wavelet Tour of Signal Processing, Second
Edition, 2nd ed. Academic Press, Sep. 1999.

[2] H. Beyer and H. Schwefel, “Evolution Strategies.
A comprehensive introduction,” Natural Computing,
vol. 1, no. 1, pp. 3–52, Mar. 2002.

[3] B. Jawerth and W. Sweldens, “An overview of wavelet
based multiresolution analyses,” SIAM Review, vol. 36,
no. 3, pp. 377–412, 1994.

[4] W. Sweldens, “The lifting scheme: A custom-design
construction of biorthogonal wavelets,” Appl. Comput.
Harmon. Anal., vol. 3, no. 2, pp. 186 – 200, 1996.

[5] ——, “The lifting scheme: a construction of second
generation wavelets,” SIAM J. Math. Anal., vol. 29,
no. 2, pp. 511–546, 1998.

[6] ——, “The lifting scheme: a new philosophy in
biorthogonal wavelet constructions,” in Wavelet Appli-
cations in Signal and Image Processing III, A. F. Laine
and M. Unser, Eds., vol. 2569, no. 1. SPIE, 1995, pp.
68–79.

[7] U. Grasemann and R. Miikkulainen, “Effective image
compression using evolved wavelets,” in Proceedings
of the 2005 conference on Genetic and evolutionary
computation. Washington DC, USA: ACM, 2005, pp.
1961–1968.

[8] F. Moore and B. Babb, “Revolutionary image compres-
sion and reconstruction via evolutionary computation,
part 2: multiresolution analysis transforms,” in Pro-
ceedings of the 6th WSEAS International Conference
on Signal, Speech and Image Processing. Lisbon,
Portugal: World Scientific and Engineering Academy
and Society (WSEAS), 2006, pp. 144–149.

[9] B. Babb and F. Moore, “The best fingerprint compres-
sion standard yet,” in Systems, Man and Cybernetics,
2007. ISIC. IEEE International Conference on, 2007,
pp. 2911–2916.

[10] B. Babb, F. Moore, M. Peterson, T. H. O’Donnell,
M. Blowers, and K. L. Priddy, “Optimized satellite
image compression and reconstruction via evolution
strategies,” in Evolutionary and Bio-Inspired Computa-
tion: Theory and Applications III, vol. 7347. Orlando,
FL, USA: SPIE, May 2009, pp. 73 470O–10.

[11] B. J. Babb, F. W. Moore, and M. R. Peterson, “Im-
proved multiresolution analysis transforms for satellite
image compression and reconstruction using evolution
strategies,” in Proceedings of the 11th Annual Confer-
ence Companion on Genetic and Evolutionary Compu-
tation Conference: Late Breaking Papers. Montreal,
Qubec, Canada: ACM, 2009, pp. 2547–2552.

[12] R. Salvador, F. Moreno, T. Riesgo, and L. Sekanina,
“Evolutionary design and optimization of wavelet trans-
forms for image compression in embedded systems,” in
IEEE International Conference on Adaptive Hardware
and Systems - To appear, 2010.

[13] Z. Vasicek and L. Sekanina, “An evolvable hardware
system in Xilinx Virtex II Pro FPGA,” Int. J. Innov.
Comput. Appl., vol. 1, no. 1, pp. 63–73, 2007.

[14] A. R. Calderbank, I. Daubechies, W. Sweldens, and
B.-L. Yeo, “Wavelet transforms that map integers to
integers,” Appl. Comput. Harmon. Anal., vol. 5, no. 3,
pp. 332 – 369, 1998.

[15] M. Martina, G. Masera, G. Piccinini, and M. Zamboni,
“A VLSI architecture for IWT (integer wavelet trans-
form),” in Circuits and Systems, 2000. Proceedings of
the 43rd IEEE Midwest Symposium on, vol. 3, 2000,
pp. 1174–1177 vol.3.

[16] M. Grangetto, E. Magli, M. Martina, and G. Olmo,
“Optimization and implementation of the integer
wavelet transform for image coding,” Image Pro-
cessing, IEEE Transactions on, vol. 11, no. 6, pp. 596–
604, 2002.

[17] T. E. Oliphant, “Python for scientific computing,”
Computing in Science and Engineering, vol. 9,
no. 3, pp. 10–20, 2007. [Online]. Available:
http://link.aip.org/link/?CSX/9/10/1

[18] J. D. Hunter, “Matplotlib: A 2D graphics environment,”
Computing in Science and Engineering, vol. 9, no. 3,
pp. 90–95, 2007.

