
A design process for harware/software system co-design and
its application to designing a reconfigurable FPGA

Félix Morenoa, Ignacio Lópezc and Ricardo Sanzb

aCEI - Centro de Electrónica Industrial, bASLab - Autonomous Systems Laboratory
a,bDepartamento de Automática, Ingeniería Electrónica e Informática Industrial

cDepartamento de Ingeniería Energética y Fluidodinámica
Universidad Politécnica de Madrid (UPM)

Abstract – This paper is going to address the topic of
hardware/software systems co-design. The paper will
develop two points of view. First, it provides a system-
theoretical layout on the problem of designing
hardware-software systems. This layout will enable the
designer to proceed systematically in optimizing the
tradeoff between the desired functionality, available
resources and operating conditions. Second, the paper
will describe an application of some of the theoretical
principles to the design of an embedded automotive
system built on a low-cost FPGA.

Keywords: Hardware/software co-desing, uncertainty
handling, cognitive architecture, FPGA, blackboard.

I. INTRODUCTION
The need for optimization of systems in resources and
performance implies a drive for hardware-software co-
design in order to achieve a strong coupling between
algorithms and functions on one side (software) and
platform on the other (hardware). This is required in order
to satisfy strong real-time specifications, advanced
functionalities or cost limitations, in many cases
simultaneously.

Many advanced applications which are being
developed today using large computational resources are
intended to be embedded in the near future. Some examples
of these are space applications, automatic driving, collision
warning and active safety systems and interfaces which
interact with people in natural language and mood. The
majority of these applications rely on highly resource-
consuming artificial intelligence techniques, which enable
them to react adequately to the complex environments in
which they have to operate. Apart from the nature and
complexity of the applications themselves, many must
show a high degree of dependability for safety-critical
purposes [5][9].

Embedding this kind of applications with minimal
resource/performance ratio requires hardware/software co-
design methodologies [9]. Dependability, cost and
performance must be optimized. They rely on several
critical design aspects: a good functional specification, a
good system model, a good environment model, and an
streamlined design process.

This paper will develop the last point by describing a
generic design process for embedded intelligence
applications. The main contribution of the paper will be to
identify the decisive factors in the design process which the
engineer must evaluate, and an overview of the tradeoffs
and constraints between them. This vision will then be
exemplified with a commented description of a concrete

design process realisation. The objective was to build a
prototype for an embedded system for vehicles, to detect
traffic signals in real world environments. The intelligent
system was built on a low-cost FPGA by embedding a high
level, blackboard-based intelligent architecture which had
been originally used for other applications like mobile robot
control, medical systems and social interaction(BB1
architecture from Stanford KSL). Only design-procedural
aspects relative to hardware/software co-design will be
commented on this paper.

II. A PERSPECTIVE ON HARDWARE/SOFTWARE
SYSTEMS CO-DESIGN

In brief, a methodology for hardware / software
systems co-design must achieve an efficient tradeoff
between three factors: desired functionality, system and
operating environment [12]. They have to be understood in
the wide sense. A desired functionality is the purpose for
which the system is built in combination with any
constraint or additional specification on how it must carry
out this purpose. The system is the combination between a
set of hardware resources which we will call platform and a
set of software resources which we shall call functions. In
these terms, the operation of the system is its set of
functions executing over its platform. The environment is
everything surrounding the system that may affect it. For
the designer, the environment is not important in itself, but
only to the extent given by the system and the desired
functionality [8].

Figure 1. Some of the aspects intervening in hardware /
software systems co-design.

2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools

978-0-7695-4171-6/10 $26.00 © 2010 IEEE
DOI 10.1109/DSD.2010.43

556

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148657693?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We shall assume that a design process starts with a
certain specification of the desired functionality, and of the
system resources to use. The specification of the desired
functionality may include some description of the
environment where the system will be used. The objective
is to find the architecture and functions capable of
achieving the desired functionality with the given
resources. We shall assume a secondary objective which is
to discard any resources which are not strictly needed.

Thus, a process of hw/sw system co-design will
consist in a number of iterations leading to an efficient
match between the three factors: functionality, system and
environment. By efficient we mean first, that it satisfizes or
improves the specifications given to the designer in
functionality and cost; second, that it is physically
realizable with the selected platform and functions.

Many constraints, difficulties and problems may
arise during the design of a hardware/software system. The
uncertainty of the environment is the fact of ignoring the
precise nature and intensity of the behaviour of the
environment. In other words: ignoring exactly what is going
to happen and ignoring how intense it is going to be. We
shall call the first qualitative uncertainty and the second
quantitative uncertainty. Building systems capable of
operating in highly uncertain environments may require
many resources. In general, designing for qualitative
uncertainty implies building sophisticated models with
many variables or costly competences for cognitive
adaptation. Designing for high quantitative uncertainty
requires a certain degree of precision in measurements and
actuators and the existence of robust control mechanisms.
Normally, real environments present both types of
uncertainty. Controlled environments, such as industries or
laboratories, generally eliminate qualitative uncertainty and
minimize intensive uncertainty to an extent that it can be
easily compensated for by simple controllers –e.g. by
conventional PID controllers.

Valuating the type and intensity of uncertainty
associated to a particular design problem is critical.
Depending on the level of uncertainty more or less
variables will be required and more or less precise they
must be for modelling the environment that the system will
be operating in, and the complexity of the algorithms which
it will implement. Thus, it determines an order of
magnitude for resource requirements. A correct valuation of
uncertainty is that which uses the minimal number of
variables with the minimal resolution possible to correctly
represent and execute the algorithms that allow the system
to reach its objective. In the majority of cases it will result
from a number of iterations. The experience of the designer
is decisive.

Uncertainty defines the context for a design
problem. The first proper stage of a design process,
following a correct evaluation of uncertainty, is the design
of the system architecture. In hw/sw systems, the
architecture includes both parts. An adequate architecture
will specify a consistent structure of subsystems, interfaces
and integration mechanisms. It will establish an adequate
splitting of system functions between hardware and

software, and specify the requirements for the coordination
mechanisms between both.

An important feature of a system’s architecture is its
modularity. By this we mean “the degree to which a system
can be separated and recombined” [13]. An adequate
specification of subsystems and interfaces may increase or
prevent modularity. The basic technique in which
modularity is based is in designing interfaces between the
parts of a system, so that an interface groups all the
channels of interaction of one part with the rest. This
provides a well defined structure of communication
between parts, which allows tracing and controlling the flux
of inputs and outputs. More evolved techniques, based in
this principle, lead to operating systems and middleware
[16]. Although these might be excessively resource
consuming for many embedded systems, they may be
useful in some applications, especially if they are
distributed and under real-time or synchronization
requirements. This is the case of automotive applications,
based in a variably wide collection of communicating
embedded systems across the vehicle. A special operating
system standard and an architectural specification have
been developed [2][11].

Modularity is desired for a number of reasons. First,
from the point of view of the developer, it allows
developing, modifying and upgrading each module
separately from the rest, provided it meets the specification
of its interfaces. Second, from the point of view of system
operation, it makes the system easier to coordinate, it opens
the possibility of the system using or discarding its own
modules as part of its own operation and it enables
implementing fault-tolerance mechanisms (it makes fault
detection easier and is required for damage confinement)
among other advantages. It may lead to greater resource
requirements, so in the case of strong limitations it may
have to be discarded. Otherwise, the overall system gain in
efficiency and coordination may compensate for greater
resource consumption in the modules.

Another feature of the system architecture directly
related to its mode of operation is the degree of automation
of the functions. Architectures for design problems
involving low levels of complexity may be completely
automated. In more complex ones, especially if the
complexity derives from qualitative uncertainty, only some
functions may be fully automatic, while others may require
some degree of inference or learning. In hardware/software
co-design for embedded systems, automating as many
functions as possible is interesting in general. In many
cases, it is equivalent to deciding whether to make
functions memory- or processor-based.

In general, automatic functions can be implemented
memory-based, as in the well-known case of automotive
engine control, where the control law is stored in a ROM
memory and consulted in run time by lookup-table [3]. This
reduces the number of calculations to carry out to a
minimum increasing dependability and freeing the
processors for executing other functions. Memory-based
implementations can be tested more easily and may be
deployed over lower-cost hardware. As to performance,
they are usually faster than processor-based

557

implementations, for they entail only basic arithmetic
operations (comparison, interpolation) and memory access.

Processor-based implementations calculate in run
time. This might be associated also to large memory
consumption for operands and intermediate results. This
might be highly resource-consuming and not always
affordable in embedded systems. They might compromise
system dependability due to essentially two reasons: they
might be affected by environmental conditions
(temperature, EMI) and they might require implementing
efficient run time support and scheduling algorithms for
sharing the processor and managing their execution
(halting, prioritizing, aborting, etc.) [16].

The previous points are architectural, but may also
apply to detailed design. Detailed design establishes how to
build the structure of system parts, associated functions,
algorithms and interfaces specified by the architecture. This
stands for deciding clock frequencies, bandwidths,
designing pipeline structures, mechanisms of memory
sharing, parallel and serial processes, etc. We are all
conscious that a same algorithm can be programmed or
coded in different ways, not all being equally resource
consuming, fast and efficient. As a result from this, a same
architecture can be made optimal or unviable.

In conclusion, a design process must integrate
desired functionality, system and environment. A deficient
design or characterization of any of these three factors will
drive the resulting design away from the optimal in cost,
resource use or performance. It may even turn it unviable.
A systematic application of problem analysis and design
criteria for optimization throughout the design process is
required. This in turn requires the designer to know the
system-level implications of the design solutions being
considered. For this, it is useful to think in terms of
resource/performance ratio, modularity and operation
automation, and how they can be reflected on architecture
and detailed design.

III. A PROCESS FOR HARDWARE/SOFTWARE
SYSTEMS CO-DESIGN

In this section we are going to propose an iterative
process for hardware/software systems co-design,
summarized in the figure. It is based on system theory [8],
software engineering theory [13][15], application
development techniques [3] and the past trajectory of the
research team in embedded system design [1][10].

The first steps of the process (0-4) will have more
importance at the evaluation and basic design stages of an
engineering project. The later steps (4-5) at the final stages
concerning detailed design. A final step (8) called refine
functionality specification has been included here explicitly,
because it is understood that it may be significant in the
design of embedded systems for mass production.

The process consists of five steps that represent a
conventional design sequence, indicated by thin arrows: 0,
1, 4, 5 and 8. The proposed process for hardware/software
co-design is indicated by block arrows, and leads to three
kinds of loops labelled A, B and C, and to intermediate
steps 2, 3, 6 and 7.

Figure 2. Process for hardware/software co-design

Steps 0 and 1 stand for evaluating and quantizing the
complexity of the problem. Fixing the number of variables
with which the system is going to operate and their
resolution. Step 4 stands for designing the system
architecture, subsystems and interfaces, algorithms, and
deciding which are to be implemented in software and
which in hardware. Step 5 consists in the detailed design of
subsystems and algorithms. It may include partial testing,
prototyping and redesign. Step 8 stands for improving the
current functional specification according to the specific
characteristics of the design learnt in the previous phases.

We may realize that most software design is
concentrated on steps 0,1 and 4. Most hardware design on
step 5. In the design of standard hardware-based systems,
step 5 might be limited to assembling pieces, compiling and
checking the software generated in steps 0-4. This is the
case of many functional prototypes which are implemented
in desktop computers and tested before being deployed on
chip. In embedded systems, a strong interaction must exist
between hardware and software in order to maximize
dependability and resource use. They must be adequately
coordinated (for an overview on real-time system topics
see).

The proposed block-arrow process structures the
sequantiation of design phases for obtaining the strong
software-hardware coupling required in embedded systems.
Let us describe the A, B and C loops:
 Loop A. It focuses on the contextual aspects of the

design, basically evaluating the minimal requirements
for modelling the environment in which the system will
be operating, both dynamically and statically. After
some iteration, an experienced designer may also be
able to grossly estimate the order of magnitude for the

558

resources needed for operating with these models
(basically processor speed, bandwidth and memory). If
the proposed platform does not match the results of the
analysis, either the design must be terminated or its
functionality redefined: its scope reduced or the target
platform changed for a more powerful one. The
proposed platform should exceed the requirements
moderately to allow for additional needs that could
eventually appear in future steps. This excess might be
required if the system design is intended to be future-
proof, modular or scalable. A massive excess may
indicate resource waste, and should lead to changing
the target platform in step 8.

 Loop B. This loop contains the design process as such.
The basic design (4) comprises architecture,
subsystem, interfaces, integration mechanisms and
algorithms. It also includes deciding which algorithms
are to be implemented in software and which in
hardware, and designing the mechanisms to ensure
coordination (in real-time system language, run-time
support system, RTSS). Detailed design (5) comes from
developing the previous into software programs and
specific hardware designs for the target platform
(frequently VHDL code). The difficulties and
limitations encountered in this step may lead to
adapting the basic design of (4). Step 6 must be carried
out systematically in order to ensure the feasibility of
the architectural requirements derived from (4) and the
designs of (5) in combination. This last aspect is
important: The algorithmic dependence between
functions is established by the architecture generated in
(4). If cost, size or weight requirements are strong, as
in the case of embedded systems for mass production,
it will not be possible to implement the several
different functionalities independently and resource
sharing will be required. This will cause extra
dependence between functions apart from the
algorithmic relations structured by the interfaces
specified in the architecture. This dependence might
require extra resource management functions (resource
allocation, prioritization, synchronization), which must
be included in the loop.

 Loop C. This loop includes all ways leading to
improving the functionality specification. It must
concentrate on:

8.1. Fixing architectural and functional features:
scalable/enhanceable/fixed system

8.2. Limiting the scope of the functionality
8.3. Eliminating ambiguities and providing

measurable requirements
8.4. Adjusting the platform to the above:

adding/eliminating hardware resources to the
design

IV. AN APPLICATION EXAMPLE: DESIGNING A
VEHICLE-EMBEDDED SYSTEM FOR IDENTIFYING

TRAFFIC SIGNALS IN REAL ENVIRONMENTS
This section describes a real design which was

prototyped for testing different functionalities and

technologies being investigated at the time. A detailed
description of the architectural design can be found in [6]
and of the final implementation, including hardware
synthesis results, in [7]. The project was developed within a
line of research on scaling high-level intelligent
architectures into embedded systems for commercial
applications.

The purpose of the system was detecting traffic
signals and warning the driver in real time and urban
driving conditions. The system must be enhanceable to
pedestrian detection and other possible applications in the
future. The system must minimize costs and size in order to
be mass-produced in cars.

In engineering terms, this problem implied moderate
levels of both qualitative and quantitative uncertainty, in
that the possible signals to appear belonged to a finite set,
and that they could appear partially occluded, shaded or
rotated. On the other side, the signals would most probably
appear in fixed regions of the windscreen. There also
existed very limitating resource constraints, which we
pushed to the limit.

The platform consisted on a camera installed on the
dashboard facing the road, a FPGA-based board for real-
time image processing, and a very limited human-machine
interface (HMI) consisting of a 3-led display. In order to
minimize the cost, the camera was a low-cost PAL device
and the FPGA was an Altera Cyclone.

The requirements for scalability and enhanceability
were met by adapting the BB1 high-level blackboard
architecture [4] that had been used for autonomous robots,
social interaction with humans and automatic medical
monitoring.

Figure 3. Blackboard architecture

Very briefly, a blackboard architecture consists of
four groups of resources: input channel, output channel,
blackboard and agents (see figure). Although in the original
BB1 the input channel was a complex part, its operation is
conceptually similar to the combination of sensor-
conditioner-driver-interface. Analogously with the output
channel and the driver-actuator set respectively. The
blackboard contains knowledge in the form of production
rules represented as black circles in the figure. The agents
analyze the input to the blackboard produced by the input

559

resources (black and white images in our case) using the
knowledge stored in the blackboard. Each rule is evaluated
against the input and grouped into a set if it could be
applied to it (shaded in the figure), otherwise discarded.
This is done by the agenda manager. The rater then assigns
a priority among the applicable rules as shown in the figure.
The highest priority rule is selected and adapted to be
executed by the scheduler (resource allocation, device
configuration, etc.) and executed through the output
resources, under the control of the executor. In our case
there will be only three possible actions: activating the
corresponding light in the 3-led display depending on the
type of traffic signal detected.

A. Input resources
PAL image digitizing into 720x576 pixel frames at

25 fps, median and adapted sobel filtering. The results were
black and white images of borders. Only a 60x45 region of
the frames was analyzed for traffic signals, Region of
Interest, RoI. This region is the most probable for a signal
to appear in. Digitization, processing and RoI extraction
were all implemented in the FPGA.

B. Blackboard
In the conventional BB1 architecture, different types

of knowledge coexist. The unit of knowledge is an object,
represented by complex data structures. We simplified this
by making our architecure behave as if executing
production rules: “if-then” rules. However, storing these
rules explicitly as data structures as in the original
architecture was impossible given the resource restrictions.
Additional problems related to quantitative uncertainty also
made this impossible. We managed to simplify drastically
process of identificating signals:
 Theoretical reduction of the problem: In real

environments, there exists a moderate quantitative
uncertainty: every new image of a same traffic signal
might show differences in lighting, occlusion, angle
and position. The range of variability is so broad that
the detection is very difficult to automate. Full
computer-based systems solve this problem by pattern
matching and other artificial vision techniques out of
the computational range of our platform. We used the
concept of singularity: a characteristic feature of the
object to be perceived, traffic signals in our case.
Instead of attempting to identify the whole object, we
deduced its presence by detecting singularities. We
considered three: a right-angle corner, an acute corner
and a curved segment. Once the singularities are
detected in the RoI, deducing to which signal they
correspond can be automated. We built three units of
knowledge, one for each singularity, which we called
knowledge units.

 Implementation: The theoretical reduction achieved by
the singularities was not enough to eliminate all
quantitative uncertainty. Although simpler than
analyzing for skewed triangles, squares and circles,
singularities could appear also skewed, rotated or
misplaced. We decided to overcome this by using a
small neural network for detecting each singularity.

The capacity of the FPGA, however, was not sufficient
to hold the three (implementation results show a 54%
use of the Altera Cyclone’s M4Ks for implementing a
single network). We decided to share the FPGA
resources between them: we decided to run the three
networks sequentially. This was possible because the
execution time of the hardware neural network design
that we produced was short enough (in the order of 70
µs to process a RoI) not to cause conflict with real time
constraints (1/25fps = 40 ms). This entailed the
problem of reconfiguring the FPGA on line. The
strategy which was adopted was to implement a
generic neural network, GNN, in the FPGA, whose
weights were built as registers which could be loaded
in run time. The three sets of weights, one for each
network, were stored in memory. They were loaded
into the GNN and run one after the other for each
image.

In summary, the camera delivered PAL video to the
FPGA board which performed digitization, filtering and
RoI extraction (input channel). The results of this were
60x25 images delivered to the blackboard at 40 ms
intervals. An incoming image was analyzed for the
presence of three singularities: right-angle corners, acute
angles and circular segments. This was carried out in
sequence by a single hardware neural network,
reprogrammed in sequence with the corresponding set of
weights for detecting each singularity. The result was
interpreted with a combinational circuit in the FPGA acting
as rater, scheduler and executor, and the result shown by
lighting the corresponding diode in the 3-led display. The
system had capacity for discriminating round, square and
triangular traffic signals.

V. DISCUSSION ON THE PROCESS OF
HARDWARE/SOFTWARE CO-DESIGN

Most of the aspects and techniques described in
the initial sections of this paper were exercised in this
project. The extremely demanding functionality and limited
resources were a design challenge throughout. Naturally,
the final solution was reached after considering many
intermediate designs, prototypes, tests or, in other words,
many iterations of the proposed hardware/software co-
design process. Several interesting aspects must be
remarked:

A. Enhanceability, scalability and qualitative
uncertainty

The three requirements can be satisfied with the
blackboard architecture. It allows separating knowledge
from agents. Because of this, making the system capable of
detecting one type of traffic signal equals to giving it the
appropriate knowledge (one or more rules). For the same
reason, making the system capable of detecting pedestrians
in the future will consist in adding rules.

Although this is basically true, our implementation
ran out of resources for a proper, modular implementation
of rater, scheduler and executor. Adding new knowledge
would therefore require adapting the version referred to

560

here, and would probably imply using more powerful
hardware.

The problem of qualitative uncertainty is solved by
the design of the architecture itself. Due to the separation of
knowledge and agents, and to the cycle of operation of the
architecture, the system will adapt automatically to any new
signal appearing in view.

In strict architectural terms, choosing a blackboard
approach provides scalability. Its modular design separating
input, output, blackboard and agents makes possible to
update or enhance one of them separately from the rest, or
to implement it apart with dedicated hardware, only by
providing minimal additional mechanisms for integrating
all components. During the project, the idea of
implementing the input resources on a separate FPGA was
considered and left for future work.

Regarding modularity, it is worth mentioning that
the VHDL design produced for the GNN was highly
modular. It was based on self-controlled perceptron layer
modules which allowed coupling any number of layers
without global control. Although the GNN in this system
was a single layer perceptron, the design was prepared for
future, more complex applications.

B. Quantitative uncertainty
This was a major problem throughout the project.

Three design solutions were made in order to minimize it:
 Reducing the resolution of the incoming resources by

noise-filtering, extracting borders and limiting the
image to black and white. The increase in complexity
of richer representations and the processing algorithms
they would have entailed made the design unviable.

 Conceptual simplification of the problem: Instead of
attempting to detect shapes, simpler patterns,
singularities, were detected, and the presence of shapes
deduced from them.

 Neural networks: The robustness of neural networks
against rotation, scaling, etc. was still required in spite
of the above simplifications.

C. Limited resources
Many design decisions were made in order to

adequate the system to the Altera FPGA. The major
decision was to reduce the desired functionality from full
traffic signal detection to discriminating three types.

In the design, the most relevant ones are the
following:
 Analyzing a Region of Interest within the full frame

instead of the whole frame.
 Sharing the FPGA between the three networks. This

required extra control mechanisms: registers, buses
and flags.

 Limiting the characterization of the signal types to
three singularities: Alhough tests show good
performance results, a larger number of singularities
would be needed for commercial-level dependability
(including night detection and a wide range of weather
conditions). The pass from detecting signal-types to
detecting specific signals would also require a larger
number.

 Collapsing rater, scheduler and executor to
combinational logic. Logically, as it has been
commented, this reduces system modularity and thus
limits scalability and enhanceability.

 Eliminating other functionalities: The original BB1
architecture used automatic learning capabilities. They
are based on complex schemes of data representation,
intensive processing and memory usage.

D. Time
We assumed the restriction that the system should

produce a detection on a frame-by-frame basis, which gave
a 40 ms deadline. As a result of all simplifications and the
optimized hardware implementation of the GNN, it was
possible to execute the cycle of image preprocessing,
singularity detection, signal type deduction and output in
times near to 30 ms using a 100 MHz clock.

This performance rate is critically dependent on
the detailed design of the parts. The same cycle of operation
was tested with earlier versions of the preprocessing
architecture and the GNN, with the result that the 40 ms
deadline was not met.

VI. CONCLUSIONS
In order to produce an efficient design, a

conventional design process must be complemented with
additional criteria. The objective of these criteria is to
intervene in making design decisions, by referring them to
complexity, resource/performance ratio, modularity and
operation automation. It must define a sequence of phases
which allows the designer to apply them systematically.

In this line, the hardware/software co-design process
proposed in this paper is a conceptual framework with
which to systematize the design process requiring high
integration between hardware and software. It structures
and defines the relative importance of many ideas related to
system design which are seldom unified in a single
methodology.

The design described in this paper is a good example
of most of the ideas included in the proposed co-design
process. It includes strong resource limitations, real time
constraints, qualitative and quantitative uncertainty and the
need for redefining the desired functionality of the original
project. The exact places in the design process in which
complexity, uncertainty, architecture, modularity, resources
and optimization appear can be identified.

REFERENCES
[1] J. Alarcón, R. Salvador, F. Moreno, P. Cobos, and I.

López, “A new real-time hardware architecture for
road line tracking using a particle filter,” in
Proceedings of the 32nd Annual Conference of the
IEEE Industrial Electronics Society, IECON’06,
Paris, France, pp. 736–741, IEEE Industrial
Electronics Society, November 2006.

[2] A. GbR, “Specification of the virtual functional bus,”
Standard V1.0.2 R3.1 Rev 0001, Autosar, August
2008.

561

[3] Bosch Automotive Handbook. ISBN 0837615402,
Robert Bosch GmbH, 7th ed., November 2007.

[4] B. Hayes-Roth, “An architecture for adaptive
intelligent systems,” Artificial Intelligence, vol. 72,
no. 1-2, pp. 329–365, 1995.
http://citeseer.nj.nec.com/hayes-
roth95architecture.html.

[5] D.-S. Huang, L. Heutte, and M. Loog, eds., Advanced
Intelligent Computing Theories and Applications.
With Aspects of Contemporary Intelligent Computing
Techniques. No. ISBN 978-3-540-74281-4 in
Communications in Computer and Information
Science 2, Springer, 2007.

[6] I. López, R. Salvador, J. Alarcón, and F. Moreno,
“Architectural design for a low-cost fpga-based traffic
signal detection system in vehicles,” in Proceedings of
SPIE Europe Microtechnologies for the New
Millennium (SPIE, ed.), ISBN 9780819467188, 2007.

[7] I. López, R. Sanz, F. Moreno, R. Salvador, and J.
Alarcón, “From cognitive architectures to hardware: a
low cost fpga-based design experience,” in
Proceedings of the IEEE International Symposium on
Intelligent Signal Processing, ISBN 1-4244-0830-X,
pp. 499–504, IEEE, 2007.

[8] G. J. Klir, An Approach to General Systems Theory.
Van Nostrand Reinhold, 1969.

[9] S. Lu and W. A. Halang, Contributions to Ubiquitous
Computing, vol. 42/2007, ch. A UML Profile to
Model Safety-Critical Embedded Real-Time Control
Systems, pp. 197–218. Springer, 2007.

[10] F. Moreno, F. Aparicio, W. Hernández, and J. Páez,
“A low–cost real–time fpga solution for driver
drowsiness detection,” in Proceedings of the 29th
Annual Conference, IEEE Industrial Electronics
Society, IECON’03. Virginia (USA), IEEE Industrial
Electronics Society, 2003.

[11] OSEK/VDX Operating System Specification 2.2.3.
OSEK, February 2005.

[12] R. Sanz, F. Matìa, and S. Galán, “Fridges, elephants,
and the meaning of autonomy and intelligence,” in
Proceedings of the 15th IEEE lntemational
Symposium on Intelligent Control (ISIC 2000),
pp. 217–222, IEEE, July 2000.

[13] R. Sanz, I. Alarcón, M. Segarra, J.A. Clavijo and A. de
Antonio. Progressive Domain focalization in
Intelligent Control Systems. Control Engineering
Practice, Volume 7, Issue 5, May 1999, Pages 665-
671, 1999.

[14] M. A. Schilling and C. Paparone, “Modularity: An
application of general systems theory to military force
development,” Defense Acquisition Review Journal,
pp. 279–293, 2005.

[15] I. Sommerville, Software Engineering. ISBN
0321313798, Addison Wesly, 2008.

[16] X. Wang, C. Lu, and C. Gill, “Fcs/norb: A feedback
control real-time scheduling service for embedded orb
middleware,” Microprocessors and Microsystems,
vol. 32, no. 8, pp. 413 – 424, 2008.

562

