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Abstract – This paper is going to address the topic of 
hardware/software systems co-design. The paper will 
develop two points of view. First, it provides a system-
theoretical layout on the problem of designing 
hardware-software systems. This layout will enable the 
designer to proceed systematically in optimizing the 
tradeoff between the desired functionality, available 
resources and operating conditions. Second, the paper 
will describe an application of some of the theoretical 
principles to the design of an embedded automotive 
system built on a low-cost FPGA. 

Keywords: Hardware/software co-desing, uncertainty 
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I. INTRODUCTION 
The need for optimization of systems in resources and 
performance implies a drive for hardware-software co-
design in order to achieve a strong coupling between 
algorithms and functions on one side (software) and 
platform on the other (hardware). This is required in order 
to satisfy strong real-time specifications, advanced 
functionalities or cost limitations, in many cases 
simultaneously. 

Many advanced applications which are being 
developed today using large computational resources are 
intended to be embedded in the near future. Some examples 
of these are space applications, automatic driving, collision 
warning and active safety systems and interfaces which 
interact with people in natural language and mood. The 
majority of these applications rely on highly resource-
consuming artificial intelligence techniques, which enable 
them to react adequately to the complex environments in 
which they have to operate. Apart from the nature and 
complexity of the applications themselves, many must 
show a high degree of dependability for safety-critical 
purposes [5][9]. 

Embedding this kind of applications with minimal 
resource/performance ratio requires hardware/software co-
design methodologies [9]. Dependability, cost and 
performance must be optimized. They rely on several 
critical design aspects: a good functional specification, a 
good system model, a good environment model, and an 
streamlined design process. 

This paper will develop the last point by describing a 
generic design process for embedded intelligence 
applications. The main contribution of the paper will be to 
identify the decisive factors in the design process which the 
engineer must evaluate, and an overview of the tradeoffs 
and constraints between them. This vision will then be 
exemplified with a commented description of a concrete 

design process realisation. The objective was to build a 
prototype for an embedded system for vehicles, to detect 
traffic signals in real world environments. The intelligent 
system was built on a low-cost FPGA by embedding a high 
level, blackboard-based intelligent architecture which had 
been originally used for other applications like mobile robot 
control, medical systems and social interaction(BB1 
architecture from Stanford KSL). Only design-procedural 
aspects relative to hardware/software co-design will be 
commented on this paper.  

II. A PERSPECTIVE ON HARDWARE/SOFTWARE 
SYSTEMS CO-DESIGN 

In brief, a methodology for hardware / software 
systems co-design must achieve an efficient tradeoff 
between three factors: desired functionality, system and 
operating environment [12]. They have to be understood in 
the wide sense. A desired functionality is the purpose for 
which the system is built in combination with any 
constraint or additional specification on how it must carry 
out this purpose. The system is the combination between a 
set of hardware resources which we will call platform and a 
set of software resources which we shall call functions. In 
these terms, the operation of the system is its set of 
functions executing over its platform. The environment is 
everything surrounding the system that may affect it. For 
the designer, the environment is not important in itself, but 
only to the extent given by the system and the desired 
functionality [8]. 

 
Figure 1. Some of the aspects intervening in hardware / 
software systems co-design. 
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We shall assume that a design process starts with a 
certain specification of the desired functionality, and of the 
system resources to use. The specification of the desired 
functionality may include some description of the 
environment where the system will be used. The objective 
is to find the architecture and functions capable of 
achieving the desired functionality with the given 
resources. We shall assume a secondary objective which is 
to discard any resources which are not strictly needed. 

Thus, a process of hw/sw system co-design will 
consist in a number of iterations leading to an efficient 
match between the three factors: functionality, system and 
environment. By efficient we mean first, that it satisfizes or 
improves the specifications given to the designer in 
functionality and cost; second, that it is physically 
realizable with the selected platform and functions.  

Many constraints, difficulties and problems may 
arise during the design of a hardware/software system. The 
uncertainty of the environment is the fact of ignoring the 
precise nature and intensity of the behaviour of the 
environment. In other words: ignoring exactly what is going 
to happen and ignoring how intense it is going to be. We 
shall call the first qualitative uncertainty and the second 
quantitative uncertainty. Building systems capable of 
operating in highly uncertain environments may require 
many resources. In general, designing for qualitative 
uncertainty implies building sophisticated models with 
many variables or costly competences for cognitive 
adaptation. Designing for high quantitative uncertainty 
requires a certain degree of precision in measurements and 
actuators and the existence of robust control mechanisms. 
Normally, real environments present both types of 
uncertainty. Controlled environments, such as industries or 
laboratories, generally eliminate qualitative uncertainty and 
minimize intensive uncertainty to an extent that it can be 
easily compensated for by simple controllers –e.g. by 
conventional PID controllers. 

Valuating the type and intensity of uncertainty 
associated to a particular design problem is critical. 
Depending on the level of uncertainty more or less 
variables will be required and more or less precise they 
must be for modelling the environment that the system will 
be operating in, and the complexity of the algorithms which 
it will implement. Thus, it determines an order of 
magnitude for resource requirements. A correct valuation of 
uncertainty is that which uses the minimal number of 
variables with the minimal resolution possible to correctly 
represent and execute the algorithms that allow the system 
to reach its objective. In the majority of cases it will result 
from a number of iterations. The experience of the designer 
is decisive. 

Uncertainty defines the context for a design 
problem. The first proper stage of a design process, 
following a correct evaluation of uncertainty, is the design 
of the system architecture. In hw/sw systems, the 
architecture includes both parts. An adequate architecture 
will specify a consistent structure of subsystems, interfaces 
and integration mechanisms. It will establish an adequate 
splitting of system functions between hardware and 

software, and specify the requirements for the coordination 
mechanisms between both.  

An important feature of a system’s architecture is its 
modularity. By this we mean “the degree to which a system 
can be separated and recombined” [13]. An adequate 
specification of subsystems and interfaces may increase or 
prevent modularity. The basic technique in which 
modularity is based is in designing interfaces between the 
parts of a system, so that an interface groups all the 
channels of interaction of one part with the rest. This 
provides a well defined structure of communication 
between parts, which allows tracing and controlling the flux 
of inputs and outputs. More evolved techniques, based in 
this principle, lead to operating systems and middleware 
[16]. Although these might be excessively resource 
consuming for many embedded systems, they may be 
useful in some applications, especially if they are 
distributed and under real-time or synchronization 
requirements. This is the case of automotive applications, 
based in a variably wide collection of communicating 
embedded systems across the vehicle. A special operating 
system standard and an architectural specification have 
been developed [2][11]. 

Modularity is desired for a number of reasons. First, 
from the point of view of the developer, it allows 
developing, modifying and upgrading each module 
separately from the rest, provided it meets the specification 
of its interfaces. Second, from the point of view of system 
operation, it makes the system easier to coordinate, it opens 
the possibility of the system using or discarding its own 
modules as part of its own operation and it enables 
implementing fault-tolerance mechanisms (it makes fault 
detection easier and is required for damage confinement) 
among other advantages. It may lead to greater resource 
requirements, so in the case of strong limitations it may 
have to be discarded. Otherwise, the overall system gain in 
efficiency and coordination may compensate for greater 
resource consumption in the modules. 

Another feature of the system architecture directly 
related to its mode of operation is the degree of automation 
of the functions. Architectures for design problems 
involving low levels of complexity may be completely 
automated. In more complex ones, especially if the 
complexity derives from qualitative uncertainty, only some 
functions may be fully automatic, while others may require 
some degree of inference or learning. In hardware/software 
co-design for embedded systems, automating as many 
functions as possible is interesting in general. In many 
cases, it is equivalent to deciding whether to make 
functions memory- or processor-based.  

In general, automatic functions can be implemented 
memory-based, as in the well-known case of automotive 
engine control, where the control law is stored in a ROM 
memory and consulted in run time by lookup-table [3]. This 
reduces the number of calculations to carry out to a 
minimum increasing dependability and freeing the 
processors for executing other functions. Memory-based 
implementations can be tested more easily and may be 
deployed over lower-cost hardware. As to performance, 
they are usually faster than processor-based 
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implementations, for they entail only basic arithmetic 
operations (comparison, interpolation) and memory access.  

Processor-based implementations calculate in run 
time. This might be associated also to large memory 
consumption for operands and intermediate results. This 
might be highly resource-consuming and not always 
affordable in embedded systems. They might compromise 
system dependability due to essentially two reasons: they 
might be affected by environmental conditions 
(temperature, EMI) and they might require implementing 
efficient run time support and scheduling algorithms for 
sharing the processor and managing their execution 
(halting, prioritizing, aborting, etc.) [16]. 

The previous points are architectural, but may also 
apply to detailed design. Detailed design establishes how to 
build the structure of system parts, associated functions, 
algorithms and interfaces specified by the architecture. This 
stands for deciding clock frequencies, bandwidths, 
designing pipeline structures, mechanisms of memory 
sharing, parallel and serial processes, etc. We are all 
conscious that a same algorithm can be programmed or 
coded in different ways, not all being equally resource 
consuming, fast and efficient. As a result from this, a same 
architecture can be made optimal or unviable.  

In conclusion, a design process must integrate 
desired functionality, system and environment. A deficient 
design or characterization of any of these three factors will 
drive the resulting design away from the optimal in cost, 
resource use or performance. It may even turn it unviable. 
A systematic application of problem analysis and design 
criteria for optimization throughout the design process is 
required. This in turn requires the designer to know the 
system-level implications of the design solutions being 
considered. For this, it is useful to think in terms of 
resource/performance ratio, modularity and operation 
automation, and how they can be reflected on architecture 
and detailed design. 

III. A PROCESS FOR HARDWARE/SOFTWARE 
SYSTEMS CO-DESIGN 

In this section we are going to propose an iterative 
process for hardware/software systems co-design, 
summarized in the figure. It is based on system theory [8], 
software engineering theory [13][15], application 
development techniques [3] and the past trajectory of the 
research team in embedded system design [1][10].  

The first steps of the process (0-4) will have more 
importance at the evaluation and basic design stages of an 
engineering project. The later steps (4-5) at the final stages 
concerning detailed design. A final step (8) called refine 
functionality specification has been included here explicitly, 
because it is understood that it may be significant in the 
design of embedded systems for mass production.  

The process consists of five steps that represent a 
conventional design sequence, indicated by thin arrows: 0, 
1, 4, 5 and 8. The proposed process for hardware/software 
co-design is indicated by block arrows, and leads to three 
kinds of loops labelled A, B and C, and to intermediate 
steps 2, 3, 6 and 7. 

 

 
Figure 2. Process for hardware/software co-design 

Steps 0 and 1 stand for evaluating and quantizing the 
complexity of the problem. Fixing the number of variables 
with which the system is going to operate and their 
resolution. Step 4 stands for designing the system 
architecture, subsystems and interfaces, algorithms, and 
deciding which are to be implemented in software and 
which in hardware. Step 5 consists in the detailed design of 
subsystems and algorithms. It may include partial testing, 
prototyping and redesign. Step 8 stands for improving the 
current functional specification according to the specific 
characteristics of the design learnt in the previous phases. 

We may realize that most software design is 
concentrated on steps 0,1 and 4. Most hardware design on 
step 5. In the design of standard hardware-based systems, 
step 5 might be limited to assembling pieces, compiling and 
checking the software generated in steps 0-4. This is the 
case of many functional prototypes which are implemented 
in desktop computers and tested before being deployed on 
chip. In embedded systems, a strong interaction must exist 
between hardware and software in order to maximize 
dependability and resource use. They must be adequately 
coordinated (for an overview on real-time system topics 
see).  

The proposed block-arrow process structures the 
sequantiation of design phases for obtaining the strong 
software-hardware coupling required in embedded systems. 
Let us describe the A, B and C loops: 
 Loop A. It focuses on the contextual aspects of the 

design, basically evaluating the minimal requirements 
for modelling the environment in which the system will 
be operating, both dynamically and statically. After 
some iteration, an experienced designer may also be 
able to grossly estimate the order of magnitude for the 
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resources needed for operating with these models 
(basically processor speed, bandwidth and memory). If 
the proposed platform does not match the results of the 
analysis, either the design must be terminated or its 
functionality redefined: its scope reduced or the target 
platform changed for a more powerful one. The 
proposed platform should exceed the requirements 
moderately to allow for additional needs that could 
eventually appear in future steps. This excess might be 
required if the system design is intended to be future-
proof, modular or scalable. A massive excess may 
indicate resource waste, and should lead to changing 
the target platform in step 8. 

 Loop B. This loop contains the design process as such. 
The basic design (4) comprises architecture, 
subsystem, interfaces, integration mechanisms and 
algorithms. It also includes deciding which algorithms 
are to be implemented in software and which in 
hardware, and designing the mechanisms to ensure 
coordination (in real-time system language, run-time 
support system, RTSS). Detailed design (5) comes from 
developing the previous into software programs and 
specific hardware designs for the target platform 
(frequently VHDL code). The difficulties and 
limitations encountered in this step may lead to 
adapting the basic design of (4). Step 6 must be carried 
out systematically in order to ensure the feasibility of 
the architectural requirements derived from (4) and the 
designs of (5) in combination. This last aspect is 
important: The algorithmic dependence between 
functions is established by the architecture generated in 
(4). If cost, size or weight requirements are strong, as 
in the case of embedded systems for mass production, 
it will not be possible to implement the several 
different functionalities independently and resource 
sharing will be required. This will cause extra 
dependence between functions apart from the 
algorithmic relations structured by the interfaces 
specified in the architecture. This dependence might 
require extra resource management functions (resource 
allocation, prioritization, synchronization), which must 
be included in the loop.   

 Loop C. This loop includes all ways leading to 
improving the functionality specification. It must 
concentrate on: 

8.1. Fixing architectural and functional features: 
scalable/enhanceable/fixed system 

8.2. Limiting the scope of the functionality 
8.3. Eliminating ambiguities and providing 

measurable requirements 
8.4. Adjusting the platform to the above: 

adding/eliminating hardware resources to the 
design 

IV. AN APPLICATION EXAMPLE: DESIGNING A 
VEHICLE-EMBEDDED SYSTEM FOR IDENTIFYING 

TRAFFIC SIGNALS IN REAL ENVIRONMENTS 
This section describes a real design which was 

prototyped for testing different functionalities and 

technologies being investigated at the time. A detailed 
description of the architectural design can be found in [6] 
and of the final implementation, including hardware 
synthesis results, in [7]. The project was developed within a 
line of research on scaling high-level intelligent 
architectures into embedded systems for commercial 
applications. 

The purpose of the system was detecting traffic 
signals and warning the driver in real time and urban 
driving conditions. The system must be enhanceable to 
pedestrian detection and other possible applications in the 
future. The system must minimize costs and size in order to 
be mass-produced in cars. 

In engineering terms, this problem implied moderate 
levels of both qualitative and quantitative uncertainty, in 
that the possible signals to appear belonged to a finite set, 
and that they could appear partially occluded, shaded or 
rotated. On the other side, the signals would most probably 
appear in fixed regions of the windscreen. There also 
existed very limitating resource constraints, which we 
pushed to the limit. 

The platform consisted on a camera installed on the 
dashboard facing the road, a FPGA-based board for real-
time image processing, and a very limited human-machine 
interface (HMI) consisting of a 3-led display. In order to 
minimize the cost, the camera was a low-cost PAL device 
and the FPGA was an Altera Cyclone. 

The requirements for scalability and enhanceability 
were met by adapting the BB1 high-level blackboard 
architecture [4] that had been used for autonomous robots, 
social interaction with humans and automatic medical 
monitoring.  

 
Figure 3. Blackboard architecture 

Very briefly, a blackboard architecture consists of 
four groups of resources: input channel, output channel, 
blackboard and agents (see figure). Although in the original 
BB1 the input channel was a complex part, its operation is 
conceptually similar to the combination of sensor-
conditioner-driver-interface. Analogously with the output 
channel and the driver-actuator set respectively. The 
blackboard contains knowledge in the form of production 
rules represented as black circles in the figure. The agents 
analyze the input to the blackboard produced by the input 

559



resources (black and white images in our case) using the 
knowledge stored in the blackboard. Each rule is evaluated 
against the input and grouped into a set if it could be 
applied to it (shaded in the figure), otherwise discarded. 
This is done by the agenda manager. The rater then assigns 
a priority among the applicable rules as shown in the figure. 
The highest priority rule is selected and adapted to be 
executed by the scheduler (resource allocation, device 
configuration, etc.) and executed through the output 
resources, under the control of the executor. In our case 
there will be only three possible actions: activating the 
corresponding light in the 3-led display depending on the 
type of traffic signal detected. 

A. Input resources  
PAL image digitizing into 720x576 pixel frames at 

25 fps, median and adapted sobel filtering. The results were 
black and white images of borders. Only a 60x45 region of 
the frames was analyzed for traffic signals, Region of 
Interest, RoI. This region is the most probable for a signal 
to appear in. Digitization, processing and RoI extraction 
were all implemented in the FPGA. 

B. Blackboard 
In the conventional BB1 architecture, different types 

of knowledge coexist. The unit of knowledge is an object, 
represented by complex data structures. We simplified this 
by making our architecure behave as if executing 
production rules: “if-then” rules. However, storing these 
rules explicitly as data structures as in the original 
architecture was impossible given the resource restrictions. 
Additional problems related to quantitative uncertainty also 
made this impossible. We managed to simplify drastically 
process of identificating signals:  
 Theoretical reduction of the problem: In real 

environments, there exists a moderate quantitative 
uncertainty: every new image of a same traffic signal 
might show differences in lighting, occlusion, angle 
and position. The range of variability is so broad that 
the detection is very difficult to automate. Full 
computer-based systems solve this problem by pattern 
matching and other artificial vision techniques out of 
the computational range of our platform. We used the 
concept of singularity: a characteristic feature of the 
object to be perceived, traffic signals in our case. 
Instead of attempting to identify the whole object, we 
deduced its presence by detecting singularities. We 
considered three: a right-angle corner, an acute corner 
and a curved segment. Once the singularities are 
detected in the RoI, deducing to which signal they 
correspond can be automated. We built three units of 
knowledge, one for each singularity, which we called 
knowledge units. 

 Implementation: The theoretical reduction achieved by 
the singularities was not enough to eliminate all 
quantitative uncertainty. Although simpler than 
analyzing for skewed triangles, squares and circles, 
singularities could appear also skewed, rotated or 
misplaced. We decided to overcome this by using a 
small neural network for detecting each singularity. 

The capacity of the FPGA, however, was not sufficient 
to hold the three (implementation results show a 54% 
use of the Altera Cyclone’s M4Ks for implementing a 
single network). We decided to share the FPGA 
resources between them: we decided to run the three 
networks sequentially. This was possible because the 
execution time of the hardware neural network design 
that we produced was short enough (in the order of 70 
µs to process a RoI) not to cause conflict with real time 
constraints (1/25fps = 40 ms). This entailed the 
problem of reconfiguring the FPGA on line. The 
strategy which was adopted was to implement a 
generic neural network, GNN, in the FPGA, whose 
weights were built as registers which could be loaded 
in run time. The three sets of weights, one for each 
network, were stored in memory. They were loaded 
into the GNN and run one after the other for each 
image.  

In summary, the camera delivered PAL video to the 
FPGA board which performed digitization, filtering and 
RoI extraction (input channel). The results of this were 
60x25 images delivered to the blackboard at 40 ms 
intervals. An incoming image was analyzed for the 
presence of three singularities: right-angle corners, acute 
angles and circular segments. This was carried out in 
sequence by a single hardware neural network, 
reprogrammed in sequence with the corresponding set of 
weights for detecting each singularity. The result was 
interpreted with a combinational circuit in the FPGA acting 
as rater, scheduler and executor, and the result shown by 
lighting the corresponding diode in the 3-led display. The 
system had capacity for discriminating round, square and 
triangular traffic signals. 

V. DISCUSSION ON THE PROCESS OF 
HARDWARE/SOFTWARE CO-DESIGN  

Most of the aspects and techniques described in 
the initial sections of this paper were exercised in this 
project. The extremely demanding functionality and limited 
resources were a design challenge throughout. Naturally, 
the final solution was reached after considering many 
intermediate designs, prototypes, tests or, in other words, 
many iterations of the proposed hardware/software co-
design process. Several interesting aspects must be 
remarked: 

A. Enhanceability, scalability and qualitative 
uncertainty  

The three requirements can be satisfied with the 
blackboard architecture. It allows separating knowledge 
from agents. Because of this, making the system capable of 
detecting one type of traffic signal equals to giving it the 
appropriate knowledge (one or more rules). For the same 
reason, making the system capable of detecting pedestrians 
in the future will consist in adding rules.  

Although this is basically true, our implementation 
ran out of resources for a proper, modular implementation 
of rater, scheduler and executor. Adding new knowledge 
would therefore require adapting the version referred to 

560



here, and would probably imply using more powerful 
hardware. 

The problem of qualitative uncertainty is solved by 
the design of the architecture itself. Due to the separation of 
knowledge and agents, and to the cycle of operation of the 
architecture, the system will adapt automatically to any new 
signal appearing in view.  

In strict architectural terms, choosing a blackboard 
approach provides scalability. Its modular design separating 
input, output, blackboard and agents makes possible to 
update or enhance one of them separately from the rest, or 
to implement it apart with dedicated hardware, only by 
providing minimal additional mechanisms for integrating 
all components. During the project, the idea of 
implementing the input resources on a separate FPGA was 
considered and left for future work. 

Regarding modularity, it is worth mentioning that 
the VHDL design produced for the GNN was highly 
modular. It was based on self-controlled perceptron layer 
modules which allowed coupling any number of layers 
without global control. Although the GNN in this system 
was a single layer perceptron, the design was prepared for 
future, more complex applications. 

B. Quantitative uncertainty  
This was a major problem throughout the project. 

Three design solutions were made in order to minimize it: 
 Reducing the resolution of the incoming resources by 

noise-filtering, extracting borders and limiting the 
image to black and white. The increase in complexity 
of richer representations and the processing algorithms 
they would have entailed made the design unviable. 

 Conceptual simplification of the problem: Instead of 
attempting to detect shapes, simpler patterns, 
singularities, were detected, and the presence of shapes 
deduced from them. 

 Neural networks: The robustness of neural networks 
against rotation, scaling, etc. was still required in spite 
of the above simplifications. 

C. Limited resources  
Many design decisions were made in order to 

adequate the system to the Altera FPGA. The major 
decision was to reduce the desired functionality from full 
traffic signal detection to discriminating three types.  

In the design, the most relevant ones are the 
following: 
 Analyzing a Region of Interest within the full frame 

instead of the whole frame. 
 Sharing the FPGA between the three networks. This 

required extra control mechanisms: registers, buses 
and flags.  

 Limiting the characterization of the signal types to 
three singularities: Alhough tests show good 
performance results, a larger number of singularities 
would be needed for commercial-level dependability 
(including night detection and a wide range of weather 
conditions). The pass from detecting signal-types to 
detecting specific signals would also require a larger 
number. 

 Collapsing rater, scheduler and executor to 
combinational logic. Logically, as it has been 
commented, this reduces system modularity and thus 
limits scalability and enhanceability.  

 Eliminating other functionalities: The original BB1 
architecture used automatic learning capabilities. They 
are based on complex schemes of data representation, 
intensive processing and memory usage.  

D. Time 
We assumed the restriction that the system should 

produce a detection on a frame-by-frame basis, which gave 
a 40 ms deadline. As a result of all simplifications and the 
optimized hardware implementation of the GNN, it was 
possible to execute the cycle of image preprocessing, 
singularity detection, signal type deduction and output in 
times near to 30 ms using a 100 MHz clock.  

This performance rate is critically dependent on 
the detailed design of the parts. The same cycle of operation 
was tested with earlier versions of the preprocessing 
architecture and the GNN, with the result that the 40 ms 
deadline was not met. 

VI. CONCLUSIONS 
In order to produce an efficient design, a 

conventional design process must be complemented with 
additional criteria. The objective of these criteria is to 
intervene in making design decisions, by referring them to 
complexity, resource/performance ratio, modularity and 
operation automation. It must define a sequence of phases 
which allows the designer to apply them systematically. 

In this line, the hardware/software co-design process 
proposed in this paper is a conceptual framework with 
which to systematize the design process requiring high 
integration between hardware and software. It structures 
and defines the relative importance of many ideas related to 
system design which are seldom unified in a single 
methodology. 

The design described in this paper is a good example 
of most of the ideas included in the proposed co-design 
process. It includes strong resource limitations, real time 
constraints, qualitative and quantitative uncertainty and the 
need for redefining the desired functionality of the original 
project. The exact places in the design process in which 
complexity, uncertainty, architecture, modularity, resources 
and optimization appear can be identified. 
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