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Abstract: This  paper  explores  the  effect  of  the  noise  in  the  reinjection 
probability  densities  (RPD)  for  type-II  and  type-III  intermittencies  by  using  the 
temporal series of iterative maps. The RPD are calculated by means of a new method 
proposed in  Refs.  [1]  and  [2]  and  the  results  are  compared  with  both,  numerical 
simulations and analytical calculations. In addition, we provide an explanation for the 
gap observed in early experiments around the unstable point in the Poincaré map. We 
show  that  and  added  white  noise  approaches  the  RPD  to  the  case  of  uniform 
reinjection for small distances of iterations to the unstable point. For large distances 
the RPD should be incremented with respect to the noiseless case. These numerical 
results suggest the existence of a noise induced reinjection mechanism. 
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Introduction

The  intermittency  is  a  particular  form  of  deterministic  chaos  where 
transitions between different behaviours of the system take place. The system 
exhibits a regular response until a small change in a given parameter brings it 
into a different regime. This results into a time dependent response where 
chaotic  bursts  are  separated  at  regular  intervals  by  a  laminar or  regular 
responses  [3].  The  original  idea  was  introduced  in  connection  with  the 
Lorentz system [4,5] but the intermittent behaviour is widespread in nature. It 
has  been  observed  in  the  Bénard  convection  experiments  [7],  nonlinear 
electronic circuits [2,8,9,10] or  in the human heartbeats time series [11]. 

In the type-II and III intermittencies, the reinjection mechanism from the 
chaotic motion into the laminar region depends on the dinamic of the chaotic 
phase. This constitutes global property and it was pointed out as a relevant 
factor  in the scaling time duration of the laminar region [8,  10, 12].  This 
reinjection process from the chaotic response back into the regular or laminar 
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response could be characterized by means of a reinjection probability density 
(RPD).  However,  only  in  few cases  it  is  possible  to  derive  an  analytical 
expression  for  the  RPD x  or  to  obtain  it  numerically  or  from 
experimental data or time series. The reason is the huge number of sampling 
data required to cover each small interval of initial conditions located within 
the reinjection zone. 

Figure 1. The map of Eq. (1) with 
p=3 and =10−3 .

Figure 2. The map of Eq. (2) for 
a=1 and =10−3.

In consequence, different simplifying assumptions have been proposed for
 x . The  widespread  approximation  considers  a  uniform  RPD 

independent  of  the  reinjection  point  [3,4,7-10,13-16]  or  a  rather  artificial 
assumption considers that the reinjection occurs at a fixed point [10,15]. 

In  this  note  we make use of  a  new approach to  derive  the  RPD from 
numerical  data  of  time  series  obtained  from  iterative  maps.  The  RPD is 
calculated using iterative data series of one dimensional maps which exhibit 
type-II and type-II intermittencies. 

Model maps
In order to model the type-II intermittency we analyze the following one 

dimensional map,

xn1={ F x n xn xr

F xn−1 xn xr

(1)

where F  xn=1 xn1− xn
p and x r is the root of F  x r =1 as 

it  could be  observed in  Fig.  1.  The  type-III  intermittency  is  modelled by 
using the map xn1=H  xn where the function,

H  xn=−1 xn−a xn
3
b xn

6 sin  xn (2)
is represented in Fig. 2 and is usually approximated by, 

H  xn≈−1 xn−a xn
3

and this last expression corresponds to the local Poincaré map for type-III 
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intermittency.
In Fig. 1 the origin x=0 is always an stable fixed point for 0 that 

becomes unstable for 0. The successive iterations from an initial value 
xo close  to  the  origin,  bring xn away  in  a  process  driven  by  the 

parameters  and p. When xn becomes  larger  than x r , a  chaotic 
burst occurs, that will be interrupted when xn is again mapped back into 
the laminar region of low values of xn.

For =1 for the map of Eq. (1) we have xn1=F  xn (mod 1) while 
for p=2 we recover the map used by Manneville in his pioneer paper [4]. 
The  case p=3 corresponds  with  the  local  Poincare  map  of  type-II 
intermittency  for  points  close  to x=0. Both  parameters  and p  
modify  the  duration  of  the  so  called  laminar phase,  where  the  system 
exhibits a quasiperiodic or regular response. 

Figure 3. The values of M x
(solid points) for the map of Eq. 
(1) for two values of 

Figure 4. The function M  x
(solid points) for the Eq. (2) for 
two values b showing x i0.

The RPD is strongly dependent on the parameter  which, as it could be 
observed in Fig. 1, determines the curvature of the map in region past x r

Then,  only  points xx r are  iterated  back  into  of  the  laminar  region 
around the unstable fixed point at the origin. As it could be observed in Fig. 
1  larger  values  of  increases  the  curvature  of  the  function  and, 
consequently, a larger fraction of iterated points are therefore mapped close 
to the unstable fixed point at x= .0

Reinjection Probability Distribution
It  is  difficult  to  derive  an  analytical  expression  for  x  because  it 

relies  on  the  chaotic  response  of  the  system.  In  order  to  obtain  a 
semiempirical expression for the RPD, we make use the function M x
defined in Refs. [1] and [2],
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M  x=
∫o

x
s s ds

∫0

x
 s ds

if ∫0

x

s  ds≠0 (3)

and M  x=0 otherwise. This average allows a more reliable experimental 
and numerical access than  x . The evaluation of M  x for the maps 
of Eqs. (1) and (2) are shown in Figs. 3 and 4 where the case of uniform 
reinjection corresponds to the dot dashed line with slope  x .

The  numerical  values  of M x could  be  approximated  by  a  linear 
function M x=m x−x id , where x i0 is  the  low  boundary 
reinjection (LBR) point.  This  latter is  defined as  the  lower value of x
where a reinjection event occurs and is also indicated in Fig. (4). In addition, 

x cxi represents the maximum value where a laminar or regular response 
is observed. Assuming a linear expression for M x we can solve the Eq. 
(3) and we have, 

 x =b  x−x i
   with  =

1−2 m
m−1

(4)

The constant b is determined by the by the normalization condition,

N ∫x i

xc

b  x−x i
 dx=1 (5)

The RPD must be symmetric in the map of Eq. (2), and the factor N=2  
in  Eq.(6)  is  introduced  to  account  for  the  negative  x0 reinjections, 
while  for  Eq.  (1)  we  have N=1. When −1, or  equivalently,  for 

0m−1, the above integral gives, 

b=
1
N

1
 x c−x i

1=
1
N

m
1−m

 xc−x i
m / m−1

(6)

which permits to evaluate the RPD. Therefore,  the value of m obtained 
from the numerical calculations of Figs. 2 and 3 determines the RPD using 
the  Eqs.  (5)  and  (6).  Then,  the  approximation M x=m x−x id ,
determines  x  which only rely the density  is  determined only by the 
parameters m and d that are easier to calculate than  x .

The  RPD  obtained  using  the  linear  approximation  for  Eq.  (3)  are  in 
agreement with the numerical calculations of  x  as evidenced in Figs. 2 
and 3. The RPD obtained in the numerical calculations using a huge number 
of  iterations  of  both  maps  are  represented  together  with  the  functions
 x  given by Eq. (4) obtained by the linear fits of M x in Figs. (2) 

and (3). 
From Eq.  (5),  is  also deduced  that  the  properties  of  the  RPD close  to
x=xi differ  accordingly  to  the  value  of m. That  is,  we  have
lim
x x i

 x=∞ when 0m1 /2 while  for 1 /2m1 we  obtain

lim
x x i

 x=0 and the value m=1 /2 corresponds to the uniform RPD

 x =1/ xc . Therefore,  from  Eq.  (3),  we  expect  for 1 values  of
m in  the  interval 0m1 /2 and  for 1 values  in  the  interval
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1 /2m1. These properties are also in agreement with the results of the 
numerical calculations as it could be oberved in Figs. 5 and 6.

Figure 5. Comparison of  x 
for the map (1) compared with Eq. 
(4) (solid line) using the numerical 
data of Fig. 3. 

Figure 6. The same of Fig 5 for the 
map of Eq. (2) using the data of 
Fig. 4. The gap around the unstable 
point is evidenced.

The expression (3) filters the usual noise of the numerical data; and allows 
us to obtain a better description than the numerical reinjection density. It is 
important to emphasize that a LBR different from zero (see Figs 4 and 6) 
produces a  gap around the unstable point  in  the  Poincaré  map. Such gap 
around  the  unstable  point  was  observed  in  early  experiments  [7,2].  Its 
existence is justified by the linear dependence of M x according to the 
values  of d. In  first  place,  when d≈0 and  simultaneously  we  have

0 , the  function x  approaches  to  zero  as x tends  to  the 
unstable point. In this case, the gap would be filled when we have in the 
Poincaré return map a large enough number of points. However, for a finite 
sampling d0 and the aforementioned gap develops as shown in Fig 5. 

The effect of the noise on the RPD
Most  of  investigations  on  the  role  of  an external  noise  in  the  Pomeau 

intermittency  introduce  random perturbations  in  the local  map around the 
unstable point, without considering its effect on the RPD. In this section we 
study the effect of a superposed random signal to the maps of Fig. 1 and 2 as,

xn1=G  xnC t  (7)
where −1t 1 is an uncorrelated white noise with amplitude C.

For  non  uniform  RPD  important  changes  would  be  expected  in  this 
distribution. On the contrary, for the particular case of the uniform reinjection 
the  RPD still  would  remain  independent  of x . In  Figures  7  and  8  are 
represented  the  numerical  evaluation  of M  x for  different  noise 
amplitudes C in  Eq.  (7).  These  results  are  calculated  with  the  same 
parameters used for the lower and upper lines in Figs. 2 and 3. The solid 
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bullets corresponding to the noiseless case C=0  and its linear fit (solid 
line) are represented in Fig.7. These previous results are compared with those 
with an added C0  white noise.

For  low  values  of x the  function M  x approaches  the  line  with 
slope 1 /2 (dashed lines) corresponding to the case of uniform RPD. This 
effect is caused by the noise induced spread of iterations for small of x.
For  different  noise  amplitudes,  the results  of  Figs.  9  and 10  suggest  that
 x  increases as the slope of M x grows. This fact suggests, a new 

noise induced reinjection process that.  For the map of Eq. (1)  this means 
there  points  with xx r are  iterated  downwards,  back  into  the  laminar 
region. This would explain the upwards legs of Figs. 9 and 10 where two 
reinjection mechanisms coexist. 

Figure 9. The numerical evaluation 
of M x for the map (1) for 
different noise amplitudes in Eq. 
(8) for the same parameters as in 
Fig. 5. 

Figure 10. The numerical evaluation 
of M  x for the map (2) for 
different noise amplitudes in Eq. 
(8) for the same parameters as in 
Fig. 7. 

Conclusions and Discussion
The  function M  x constitutes  a  tool  to  evaluate  the  RPD and,  in  a 

number  of  cases,  it  is  found  that M x=m x−x id , leading  to
 x =b  x−x i

 . Then the usual approximation of uniform reinjection 
approximation is recovered when =0 or equivalently m=1 /2. Similar 
power dependence for the RPD have been observed in different maps which 
exhibit  type II and III  intermittencies. The existence of a minimum initial 
value x r for reinjection also provides an explanation for the gap around the 
unstable point experimentally reported [7]. It  is currently assumed that the 
effect  of  the  noise  on  the  type-II  and  III  intermittencies  only  affects  the 
properties  of  the  map locally  around a stable  point.  On the  contrary,  our 
calculations  using  the  function M x indicate  that  the  RPD  is  also 
strongly affected. 
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The departure from the linear response observed in M  x in Figs. 9 and 
10 evidence an increment of the RPD for larger values of x r and suggests 
the  existence  of  a  noise  induced  reinjection  mechanism.  The  nonlinear 
expression  for M  x and  its  relation  between x  and  the  noise 
amplitudes will be the subject of further investigations. 
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