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Abstract—This paper presents a methodology for Ob
structive Sleep Apnea (OSA) detection based on the 
HRV analysis, where as a measure of relevance PLS is 
used. Besides, two different combining approaches for 
the selection of the best set of contours are studied. 
Attained results can be oriented in research focused 
on fínding alternative methods minimizing the HRV-
derived parameters used for OSA diagnosing, with a 
diagnostic accuracy comparable to a polysomnogram. 
For two classes (normal, apnea) the results for PLS are: 
specificity 90%, sensibility 91% and accuracy 93.56%. 

I. INTRODUCTION 

The obstructive sleep apnea syndrome (OSA) is a com
mon sleep disorder, characterized by obstruction in the 
airflow. To perform a OSA diagnosis, detection of repeti-
tive episodes of apnea and hypopnea during sleep is car-
ried out, mostly by attended overnight polysomnography 
in a sleep laboratory. However, regarding to standard 
polysomnography test the main disadvantage is the high 
amount of information required to be analyzed [1], [2]. 

One of the promising directions for a simple, less costly 
noninvasive, reliable and ambulatory screening method 
for OSA detection is provided by an analysis based on the 
heart rate variability (HRV) [3]. Nonetheless, analysis 
framed on the HRV-derived features must deal with 
nonstationary signáis (typical of apnea episodes), making 
clear the importance of using time-variant or time— 
frequency representation (TFR) [4]. Almost all extracted 
features from enhanced TFR, frequently reported, use 
to be analyzed by static statistical approach, causing 
the missing of valuable information in the time-evolving 
process. Conversely, extracted data might be analyzed as 
stochastically dependent, and thus, there is a need of a 
feature extraction approach being capable of capturing 
the dynamic information. In [5], [6], a methodology of 
feature extraction is discussed doing reference to the 
analysis of dynamic relevance based on time-adapted 
linear component approach, which lies on the hypothesis 
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that each time-dependent characteristic holds a relative 
associated weight of relevance. 

This paper presents a methodology for diagnosing of 
obstructive sleep apnea from HRV recordings, based on 
relevance analysis of dynamic features extracted from t— 
f representation. As a measure of relevance, the Partial 
Least Squares (PLS) method is used as a supervised mul-
tivariate transformation that yields components maxi-
mally related with labels [7]. 

The rest of this paper is organized as follows: first, the 
time-varying spectral analysis is introduced, then, the 
methodology for dynamic relevance of dynamic features 
is described in detail. Lastly the effectiveness of a feature 
set based on nonparametric TFR (that represents the 
dynamics of the HRV activity) is illustrated for the 
OSA detection through cross-validation using a k — nn 
classifier, followed by a discussion of the results. 

II. MATERIALS AND METHODS 

A. Time-frequency representations 

The time-frequency representations are based on the 
uncertainty principie where the signal frequency in a 
particular time cannot be determined. Sometimes, both 
parameters are needed (time and frequency), especially 
in non stationary signáis with dynamic changes. In this 
way, the Short Time versión of the Fourier Transform 
(termed STFT), introduces a time localization concept by 
using a tapering window function <p. The spectrogram 
is a common TFR used in different applications, and it 
is calculated as the magnitude square of the STFT, as 
follows: 

Ux,<p)\ IX x(r)(p(r - t)e -j2nfj dr Sx(t,f), (1) 

Another worthy approach to analyze non-stationary 
signáis is to expand them into basis functions, assembled 
from shifted and scaled versions of a given mother 
function, but keeping the energy concentrated in short 
intervals of the t-f plañe (referred as wavelets). Never-
theless, the tuning of this type of representation is more 
complex than the spectrogram and this topic is outside 
of the scope of the paper. 

B. Dynamic features 

A dynamic feature refers to numeric valúes that repre-
sent measures changing over some associated dimensión, 
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with the purpose of combine the frequency and magni-
tude information from the power spectrum. In this work, 
the dynamic features chosen, according with [8] are: 

- Linear Frequency Cepstral Coefficients (LFCC), ex
tracted by Discrete Cosine Transform of triangu
lar log-filter banks, {Hm[k]: m = 1,...,M}, linearly 
spaced in the frequency domain: 

M 

cr[n]= J^ log(sm[re])cos 
m = l 2 R 

(2) 

where R is the number of desired LFCC contours 
to be considered, and sm is the weighted sum of 
each filter response set, sm[n] = JJ£=1Sx[n,k]Hm[k], 
being m, n and k indexes for filter ordinal, time 
and frequency axes, respectively; K s tands for the 
number of samples in the frequency domain. 
Spectral Centroids, t ha t are computed for each filter 
in the frequency domain, H'm[k], by [9] : 

KmM-

L kH'm[k]Sr
x[n,k] 

k=i 

í H'm[k]Sr
x[n,k] 

k=i 

(3) 

where y is a parameter tha t represents the dynamic 
range of the spectrum, used in the computation 
of the centroid, and the filters H'm[k] are linearly 
distributed along the spectrum. 

- Energy of Centroids, is the energy around each cen
troid. It can be also considered for a fixed bandwidth 
Ak and is computed by means of: 

Km[n]+Ak 
•em[n]= £ Sx[n,k], l<m<M (4) 

k=Km[n]-Ak 

C. Dynamic relevance 

The Partial Least Squares (PLS) regression might 
be used as a supervised technique, adapted to extract 
stochastic features from data, building a linear model 
tha t describes some predicted variables X in terms of 
other observable variables Y [7]. The main idea is to 
find a transformation <S, such that : £ >-• f = r^{^,g}, 
which reduces p-dimensional feature vector, £, to q-
dimensional feature vector, f, with the best correspon-
dence with its own class. It has the advantage of the 
extra information given by the label class set c = {c¿}, 
when a given relevance function g(<f7;c¿) becomes label-
dependent. The basis vectors, {T¿ : i = 1 , . . . , q} result after 
simultaneous decomposition: 

X 

Y 

TPJ 

TQ1 

•EX, 

EY 

T*T = I 
(5) 

where matrices ex and ey are the error terms, as-
sumed to be i.i.d. normal. P and Q contain the weights 
used for revealing the influence of individual X and Y— 
variables, respectively. 

I I I . E X P E R I M E N T A L S E T - U P 

The proposed methodology for diagnosing obstructive 
sleep apnea, based on relevance analysis of dynamic 
features extracted from t-f representation, appraises 
next stages: First, a preprocessing phase is carried out. 
In the second phase, the dynamic features are extracted 
from nonparametric t—f representat ion based on spec-
trogram. In the third phase Partial Least Squares (PLS) 
is used as supervised method to perform dimensionality 
reduction. In The last phase the results are validated 
through cross-validation using a k - nn classifier as in 
[8]. 

A. Datábase and Preprocessing 

This collection of electrocardiographic recordings was 
downloaded from PhysioNet [10], which consists of 30 
ECGs, each one including a set of reference annotations 
obtained from the study of simultaneously recorded res-
piration signáis and added every minute of the recording 
tha t indicate either the presence or absence of apnoea 
during each segment of time. Datábase is divided into 
two groups: class Apnea, with at least 100 min with sleep 
apnea; and class Normal, with only 5 min or less with 
sleep apnea (no apnea). These recordings were obtained 
from men and women between the ages 27 through 
63 years oíd, with weights ranging from 53 to 135 kg. 
Datábase holds signáis digitized at 100 Hz with 16 bit 
resolution. It mus t be quoted tha t for comparison sake, 
t raining conditions over this datábase are selected as 
recommended in [11]. 

B. TFR Enhancement and Feature Generation 
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Fig. 1. Examples of TFR on dependence on considered nonparametric 
enhancement estimated for HRV recordings with labels: normal and 
apnea. 

Figure 1 shows examples of est imated t-f represen-
tations, performed for typical normal and pathological 



HRV signáis. As usual, the normal case holds the low 
frequency (0.04-0.15 Hz) and high frequency (0.15-
0.5 Hz) bands of the HRV. Conversely the pathological 
representation does not have this high frequency compo-
nent, but its energy is concentrated around the lower 
frequencies. For those reasons, the parameters of the 
representation are a Hamming window of 32.5 ms length 
and 50% of overlapping. 

The number of dynamic features chosen is: 20 spectral 
centroids and their respective energy (4) according with 
[12], and 12 vectors for cepstral coefficients. 

C. Estimation of relevance weights 

Each dynamic feature is assumed to have a relative 
associated weight of relevance; the largest weight the 
most relevant the contour. However, any estímate of 
relevance weight is conditioned by the given dynamic 
feature set taken for calculation. For the concrete case 
of OSA diagnosing, the best set of selected contours can 
be achieved using, al least, two different combining ap-
proaches of comparison: firstly, taking a partially divided 
set that comprises just a single type of performed dy
namic features, having the same principie of generation. 
Secondly, the best contours are chosen among the whole 
set of features, no matter on their physical meaning. 
In this work, both combining approaches of dynamic 
features are studied in terms of dimensión reduction and 
accuracy performance. Although the former approach is 
more commonly used because of the convenient physical 
interpretation of selected set, tuning of training proce-
dures is provided throughout this work based on latter 
combining way 
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Fig. 2. Computing relevance weights for considered combining ap
proaches of comparison among dynamic features. 

From Figure 2, it is possible to infer the advantage of 
cepstral coefficients contours among another compared 
dynamic sets because of their higher relevancy weights 
and the small size of the subset (only 12 features). 

D. Dimensión reduction 

Dimensión reduction can be achieved selecting the 
most significative weights (in terms of relevance) instead 
of adding one by one the features until find the break-
point of performance. When the amount of features is 
extensive, a simple classification task leads with a huge 
computational load. In fact, for the proposed dynamic 
relevance-based methodology of training, the estimation 

of the concrete number of selected contours to be consid
ered as the most relevant set remains an open issue [5]. 
However, it had been established that based of the above 
fixed changing behavior, the performance breakpoints 
could be found, assuming the ordinal of the respective 
weight as a coarse estimation of the needed number of 
relevance weights. 

With this in mind, the normalized difference between 
two consecutive ordered by relevance weights, as plotted 
in the Figure 3, gives better representation of changing 
behavior, where the local minimum is fixed to be the 
breakpoint and, therefore, pointing out on the number of 
selected contours to be considered as the most relevant 
set. In this case, the number of dynamic features needed 
is around 34. 
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Fig. 3. Performed accuracy dependence on normalized difference 
between two consecutive ordered by relevance weights for considered 
TFR enhancement 

Regarding to comparison among partially divided sets 
of dynamic features, Figure 4 depicts estimated accuracy 
valúes of time-dependent contours, which are estimated 
by adding one by one their weights ordered by de-
creasingly relevance. It can be seen that the subset of 
cepstral coefficients achieves better accuracy, according 
with relevance analysis. 
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Fig. 4. Accuracy performance for partially divided sets of selected 
dynamic features 

IV. RESULTS 

Table I shows the results for the best configuration 
for the full set and the partial set and its respective 
parameters. Figure 5 shows the Receiving Operating 
Curve (ROC) for the same configuration. The best perfor
mance is achieved by the full set for dynamic features, 
nevertheless, the computational cost is improved by the 
partial set with an acceptable performance. 



TABLE I 
PERFORMANCE OF CLASSIFIER FOR BEST CONFIGURATION 

Set 
LFCC 

All 

Accuracy 
91% 

93.56% 

Number of componente 
13 
21 

Fig. 5. Receiving Operating Curve for bests configurations 

Table II shows the sensibility and specificity for the 
same test, both measures indícate that the full set of 
dynamic features presents the best performance. 

TABLE II 

SENSIBILITY AND SPECIFICITY FOR BESTS CONFIGURATIONS 

Set 
LFCC 

All 

Sensibility 
92% 
91% 

Specificity 
87% 
90% 

Precisión 
88% 
90% 

Error-mean 
10% 
9% 

V. CONCLUSIONS AND FUTURE WORK 

The training methodology is explored, which is based 
on relevance analysis by PLS as an alternative technique 
for OSA detection. Both considered methods of feature 
extraction (partial and full set) presents an accuracy 
performance over 90% (93.56% in the full set case) and a 
reduction dimensión significant. The number of dynamic 
features needed for classification task is around 34 (18 
less than original set) and the number of components 
required after the linear transformation is about 21 for 
all features and 13 for LFCC subset (9 and 17 less 
than original number of components respectively). In 
[8] is reported an accuracy of 92.67% using SPWVD as 
TFR and relevance analysis by PCA; in this way the 
advantage of the supervised method proposed in this 
paper to get a better estimation of relevance measure 
and a suitable transformation is evident. As future work, 
further efforts finding an alternative for OSA diagnosing, 
having the added benefit of low cost and simplicity 
should be focused on extended studies over different ECG 
databases and another approaches in conjunction with 
HRV analysis [11] (by instance, photopletysmography 
signal [13] or ECG-derived respiration signal [14]). 
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