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A review by Hollander et al. (in preparation), discusses the relative potentials, advantages and shortcomings of 
spatial and non spatial models of chemical fate, highlighting that spatially explicit models may be needed for 
specific purposes. The present paper revie ws the state of the art in spatially explicit chemical fate and transport 
modeling in Europe. We summarize the three main approaches currently adopted in spatially explicit modeling, 
namely (1) múltiple box models, (2) numerical solutions of simultaneous advection-dispersion equations (ADE) 
in air, soil and water, and (3) the development of meta-models. As all three approaches experience lfmitations, we 
describe in further detail geographic information system (GlS)-based modeling as an alternative approach 
allowing a simple, yet spatially explicit description of chemical fate. 
We review the input data needed, and the options available for their retrieval at the European scale. We also 
discuss the fmportance of, and lfmitations in model evaluation. 
We observe that the high uncertainty in chemical emissions and physico-chemical behavior in the environment 
make realistic simulations difficult to obtain. Therefore we envisage a shift in model use from process simulation 
to hypothesis testing, in which explaining the discrepancies between observed and computed chemical 
concentrations in the environment takes fmportance over prediction per se. This shift may take advantage of 
using simple models in GIS with residual uses of complex models for detailed studies. It also calis for tighter joint 
interpretation of models and spatially disfributed monitoring datase ts, and more refined spatial representation of 
environmental drivers such as landscape and climate variables, and better emission estimates. In summary, we 
conclude that the problem is not "how to compute" (i.e. emphasis on numerical methods, spatial/temporal 
discretization, quantitative uncertainty and sensitivity analysis...) but "what to compute" (i.e. emphasis on 
spatial disfribution of emissions, and the depiction of appropriate spatial patterns of environmental drivers). 

1. Introduction 

In the last years, increasing interest has been raised by spatially 
explicit multimedia chemical fate and transport models for the 
assessment of chemical concentrations. In this contribution we do not 
advócate systematic use of spatially explicit models: a discussion of the 
circumstances under which it is worth using spatially explicit models as 
an alternative to simpler and more traditional non spatial models in 
chemical fate evaluation can be found in Hollander et al. (this issue). 

We rather discuss here which spatially explicit models to use, 
depending on the purposes of the study, once it is clear that a spatial 
model is needed. 

It is worth mentioning that models used at a large scale and fine 
resolution (e.g. a catchment, an urban área, a contaminated site) are 
usually implemented to provide answers to very specific questions 

grounding on a wealth of information, and particularly field surveys and 
local, ad hoc measurements, and are usually requested to target a much 
finer accuracy. Throughout the paper, we limit instead our discussion to 
models applied for assessments at a small scale and coarse resolution, 
e.g. a country or a continent, which are conceptually comparable to 
"evaluative" models adopted in risk assessment (e.g. EC, 2003, 2004; 
Brandes et al., 1996). Although these models ideally aim at simulating 
chemicals at a given location, they normally target trends and orders of 
magnitude rather than point-wise quantities; the latter may be in fact 
affected by local factors (e.g., the stack height of an atmospheric 
emission or the mixing volume at the outlet of a water emission, or the 
specific location of a sampling point used for model evaluation), which 
are normally excluded from models at coarser resolution. Therefore, 
criteria to assess whether a large scale model matches or does not match 
observations are quantitatively very different from the ones used for 
small scale models (for instance, a factor 10 and an explained variance of 
50% are already reasonable performances at a small scale, while for a 
large scale model a factor higher than 1.5 and explained variance less 
than 70% may be unacceptable), and this derives from a qualitatively 
different expectation from the model results. 



It must be also pointed out that, as spatial distributions of 
contaminants can be reconstructed directly from monitoring data, 
through geostatistical estimation (e.g. Wackernagel, 1997), or other 
more recent techniques such as self-organizing maps (Kohonen, 
1990; see also Pistocchi et al., submitted for publication), it is not 
uncommon to refer to such reconstructions as "models" as well. The 
discussion might be broadened to a large extent, but this is beyond 
our scope. In this paper we only focus on "causal" models, i.e. models 
predicting chemical concentrations given emissions (direct mode) or 
emissions given an observed concentration (inverse mode). 

2. Spatially explicit models between realism and simplicity 

2.1. Early models 

Early spatially explicit models were developed in the 1990s and early 
2000s, as rather coarse múltiple linear box models each representing a 
región (Wania and Mackay, 1995; MacLeod et al., 2001), and were more 
conceptual schemes of possible mechanisms of environmental distri-
bution of chemicals, than tools for the prediction of concentrations at a 
specific location. In this sense, they are rather similar to conceptual 
schemes such as the CliMoChem (Wegmann, 2004) and ChemRange 
(Scheringer et al., 2004a,b,c) models, aiming at describing not even a 
broad región as a box, but a more abstract entity such as a latitudinal 
zone on earth. Such models describe what Mackay (2001) calis 
"evaluative environments" and can only account for the chemical 
transfer between large regions, and for coarse-scale variability of 
landscape and climate. 

2.2. More recent models 

More recent models have attempted a more realistic description of 
contamination with reference to specific zones of more limited 
extensión (Suzuki et al., 2004; Pennington et al., 2005; Prevedouros 
et al., 2004; MacLeod et al., 2005). In those cases, the región of interest 
was described through a more refined grid of cells with resolution of a 
few hundreds of kilometers, for each of which a mass balance was 
computed, considering local emissions, local removal mechanisms 
and transport to and from neighboring cells. This is done in practice by 
writing a system of linear equations in number equal to the grid cells, 
which are solved in a straightforward way for steady state (e.g. 
Pennington et al., 2005) or transient conditions (e.g. Suzuki et al., 
2004). Parameters describing landscape and climate were assigned 
considering the actual geography of each cell, achieving thus some 
realism. However, these models cannot be regarded as "realistic" 
chemical fate simulators, for a number of reasons. In the first place, a 
common approach in the setup of these models is to specify landscape 
and climate parameters, henee Ínter- and intra-media transfer rates, 
as representative valúes constant in time, which hampers the 
possibility of capturing mechanisms of transfer strongly dependent 
on time variations of environmental processes which may be very 
relevant (Lammel, 2004). Adopting constant valúes for environmental 
removal rates may make of little use developing models more 
complex than steady state calculations (see von Waldow et al., 2008). 

Another remarkable simplification that makes these models com­
parable with single box models is the high degree of simplification in 
describing the spatial variation of landscape and climate parameters, 
usually by providing an average valué over a very large región. 
Moreover, intra-media transporting currents (such as the water 
discharge between two cells, or wind flows) are not always easy to 
estímate. In particular, while transport in the inland stream network is 
fundamentally unidirectional and one-dimensional, and advection is 
clearly dominant over dispersión, transport in oceans needs always (at 
least) a two-dimensional description, and the atmosphere may well 
require a three-dimensional description. Things are complicated by the 
importance that dispersión takes on advection in these cases. The 

representative transporting currents estimated in the above quoted 
models are likely to reproduce the correct order of magnitude of 
advection and dispersión removal rates, but cannot be used to describe 
spatial patterns arising from these mechanisms, such as contamination 
plumes from a source of emissions (see, for instance, the comparison 
between box models and atmospheric transport models presented in 
Hollander et al., 2008). 

For these reasons, a similar performance of spatial and non spatial 
models is often highlighted (e.g. in the comparison of models for HCB 
and PAHs by Armitage et al., 2007). 

2.3. Complex transport models 

To describe more complex spatial patterns of chemical transport, 
the full advection-dispersion equation (ADE; e.g. Pistocchi, 2008a) 
should be solved, considering a two- (for oceans) or three-
dimensional (for the atmosphere) field of transporting currents. For 
soils, the ADE is often solved in one (vertical) dimensión. ADE models 
of very high complexity have been developed, such as DEHM-POP 
(Hansen etal., 2004), or MSCE-POP (Gusevetal., 2005). Lammel etal., 
2007, propose the use of such more complex models, with specific 
reference to the MCTM model, as tools to identify the mechanics of 
pollutant transport; the authors highlight that traditional box models 
may underestimate long range transport and overestimate sinks of 
chemicals in the environment, and should be therefore calibrated 
with benchmarks provided by such more complex models. 

Complex models based on the ADE bring together what is considered 
as the most realistic method for each environmental compartment 
considered. Typically, these models have grown by adding soil and 
ocean compartments to an original atmospheric model, which makes 
them biased towards the atmospheric phase of environmental fate. The 
spatial patterns of contamination described by ADE-based models over 
large regions have a more realistic appearance, although their results 
have seldom been experimentally evaluated for chemicals other than 
conventional pollutants, due to the very limited monitoring data 
available. 

Reliance on these models is based primarily on the reasonable 
performance of the ADE solutions in each médium separately, which 
has been tested traditionally at fine scale for soils (a plot or an 
experimental vertical profile), and at regional and even global scale 
for oceans and, most of all, atmosphere. 

Despite their high degree of sophistication, these models have a 
number of weaknesses. First of all, notwithstanding their elegant 
mathematical formulation, they are not fully based on fundamental 
physical relationships; at steps, a number of empirical correctors are 
added which are in practice calibration parameters impossible to 
evalúate in the absence of experimental data. These correctors are 
particularly used at the interface between two media, e.g. in the 
description of volatilization fluxes, often represented through a "series 
of resistances" analogy (e.g. Schwarzenbach et al., 1993) the parameters 
of which are only derived empirically. Understanding the limited 
physics behind even rigorous solutions to the ADE in the context of 
environmental modeling has stimulated criticism towards claims of 
their being "physics-based", in favor of a more modest but philosoph-
ically consciousdefinitionof "mediating models" (see e.g. Morton, 1993, 
and Beven, 1996, for a more thorough discussion). 

Another aspect not to be neglected is that all numerical solutions 
to the ADE carry some unavoidable artifaets, among which maybe the 
most important one is numerical dispersión (e.g. Zheng and Bennett, 
1995). This phenomenon depends on the resolution of the numerical 
grid of models in relationship to the celerity of transfer of perturba-
tions, and may be of the same magnitude as physical dispersión in the 
environment. A demonstration of the equivalence between grid 
resolution and assumed "physical" dispersión, and its positive 
exploitation in modeling, is provided by Sukop (2001), with reference 
to soil contaminant modeling. 



Table 1 
Meaning of the terms R, D and the type of distance, for Eq. (4) applied to different media. 

Environmental 
compartment 

Stream 
network 

Atmosphere 

Soil, ocean 

Dominant 
dilution 
mechanism 

Advection 

Dispersión 

Mixing at 
the source 

i 

Curvilinear 
abscissa on 
the stream 
network 
Euclidean 
distance 

Euclidean 
distance 

w 

Stream 
velocity 
(input map) 

Suggested 
constant 
valué: 3 m/s 

Dilution 
function, D 

<*($) 

aot" 

ctol 

Decay 
function, R 

e-<4 

e->é 

See text for the meaning of the symbols. 

It is worth mentioning, finally, that these models rely on an assigned 
field of transporting currents, which is in itself generally derived from a 
hydrologic, oceanographic or meteorological model, in turn affected by 
different errors, which can be seldom evaluated. As a conclusión, 
although in principie much more accurate and capable of detailed 
description of processes, sophisticated models produce as output spatial 

distributions of contaminants, which are a priori only one possible 
(although real-looking and consistent) realization of the environmental 
dispersión process, unless accurate model calibration is conducted. 
Model equations cannot be separated by the set of model parameters 
assigned. The fact that more than one combination of model equations 
and parameters yield equally satisfactory results, sometimes called 
model equifinality (e.g. Beven, 2006), further contributes to weakening 
our belief in even very comprehensive and advanced models. 

On the other hand, these models are overwhelmingly data 
demanding, computation intensive, and require much longer time 
to run compared to simpler models, which makes them extremely 
expensive and not practical for routine assessments or preliminary 
studies. Although modern computers and parallel, high performance 
computing do not pose, in principie, strong computational limitations, 
practical constraints when applying numerical solutions of the ADE in 
environmental modeling still limit their spatial resolution or 
coverage: as numerical solutions of the ADE are obtained by dividing 
the computational domain into an array of discrete elements for each 
of which an equation is solved algebraically, describing a domain of 
approximately 5000 km x 5000 km such as continental Europe with 
a resolution of 1 km would imply a system of equations of order 
2.5x107. 
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Fig. 1. Example of maps of chemical mass (concentra non times water flow) transported in river waters across Europe from a generic distribution of point sources (points represent 
emissions of dichloroethane (DCH) from the EPER emission inventory: www.eper.ec.europa.eu). Left: Whole Europe. Right: Detail highlighting how mass proflles along a river 
stretch show a saw-like sequence of exponentials with peaks at each emission source. Concentrations are estimated with Eq. (1) following the algorithms presented in Pistocchi, 
2005. In right panel, arrows represent dichloroethane emissions to water. 

http://www.eper.ec.europa.eu
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Fig. 2. Example of maps of concentrations across Europe of a generic pollutant due to punctual emissions of different intensities, as represented in A. Maps present cumulative 
concentraüons due to emissions in a single point (B), two remote points (C), two cióse points (D), four distant points (E) and many points distributed across Europe (F). 



Table 2 
Examples of landscape and climate parameters used in chemical fate modeling. 

Compartment 

Air 

Water 

Soil 

Vegetatíon 

Parameter 

Atmospheric boundary 
layer height 
Air temperature, 
precipitation, wind 
speed 
Aerosol concentratíon 
and depositíon flux 

OH-radical 
concentratíon 
Runoff 

Hydraulic geometry 

Suspended particulate 
matter (rivers) 

Suspended particulate 
matter (seawater) 
Ocean mixing depth 

Sea temperature 

Sea cúrrente 

Soil texture, bulk 
density, porosity, 
organic carbón 
Soil moisture 
Erosión rates 
Leaf área Índex 

Methods 

Reanalysis of meteorological 
simulations 
Interpolation of climatological stations; 
reanalysis of meteorological 
simulations 
Remote sensing of aerosol optícal 
depth; specialized atmospheric models 

Specialized atmospheric models 

Calibrated models 

Morphological analysis of digital 
elevation models (DEM) 

Empirical models, sediment rating 
curves 

Remote sensing 

Models 
Interpolation of climatological 
observatíons 

Models 
Remote sensing 

Models 
Interpolation of drifter data 
Soil surveys and national/international 
compilations 

Simplifled soil water balance models 
Erosión models 
Remote sensing 

Examples 

ECMWF ERA40: 

ECMWF ERA40: CRU Climatology 

MODIS producte; ICAROS products 
of LANDSAT TM and SPOT; MERIS 
producte: TM5, REMSAD, CMAQ 
models 

TM5 model (see Pistocchi et al., 2006) 

GRDC composite runoff flelds (Fekete 
et al., 2000) 

See Pistocchi and Pennington, 2006 

See review in Pistocchi, 2008c 

See Pistocchi et al., 2006 

E.g. GETM model for Europe 
Monterey-Levitus dataset 

E.g. GETM (See Pistocchi et al., 2006) 

E.g. GETM ( See Pistocchi et al., 2006) 

European Soil Datábase 

See Pistocchi et al., 2008 
See review in Pistocchi, 2008c 
FAPAR derived products; see 
Pistocchi et al., 2006 

Typical 

2.5° 

2.5° 10 

30 n r 2 

1° 

30' 

resolution 

km 

Depending on the 
digital i 
model 

ílevation 

Depending on the 
digital i 
model 

1° 

25 km 

l k m 

l k m 
l k m 
l k m 

ílevation 

Links 

http://www.ecmwf.int/ 

http://www.cru.uea.ac.uk/ 
cru/data/ 

http://modis.gsfc.nasa.gov/ 
http://envisatesa.int/ 
instrumente/meris/ 
http://www.phys.uu.nl/ 
-tm5/ 
http://remsad.saintl.com/ 
http://www.cmaq-model. 
org/ 

http://www.bafg.de/GRDC/ 
Home/homepage node. 
html 

http://oceancolor.gsfc.nasa. 
gov/SeaWiFS/ 
http://getm.eu/ 
http://www.cdc.noaa.gov/ 
data/gridded/data.nodc. 
woa94.html 
http://getm.eu/ 
http://oceancolor.gsfc.nasa. 
gov/SeaWiFS/ 
http://getm.eu/ 

http://eusoils.jrc.ec.europa. 
eu/ 

http://fapar.jrc.ec.europa.eu 

But the main disappointment with the use of such models lies 
often in the excessive detail of their description of chemical fate, 
compared with the actual knowledge of both chemical emissions and 
the fundamental physico-chemical properties of substances in the 
environment. Indeed, predicted environmental concentrations are 
highly correlated in space to emissions, which may explain a very 
large portion of the variance (see e.g. the discussion in Hollander et al., 
this issue). Unfortunately, however, emissions are seldom known in 
orders of magnitude, and almost never in spatial patterns for most 
chemicals. Therefore, the use of these models should be limited to 
detailed studies on pollutants. 

2.4. The issue of model evaluation 

In the literature, there are numerous examples of spatially explicit 
models used at local or regional scale, with different degrees of success 
in simulation and prediction. Any review of this material is beyond the 
scope of this work. It is interesting, on the other hand, to notice that not 
many models have been fully evaluated for prediction of chemical fate at 
the continental or global scale. A recent example by Lamon et al. (2009), 
investigating implications of climate change on the fate of pollutants, 

shows that the spatially explicit multimedia model BETR Global 
(MacLeod et al., 2005) predicts correct orders of magnitude, and 
captures general spatial trends, of air concentrations of PCB congeners 
28 and 153. However, the assessment is referred to 16 measurement 
points, included in 9 out of 288 cells in the model domain in the 
Northern Hemisphere. The information used for validation represents 
the best available knowledge on these chemicals, and gives an idea of 
the current difficulties in obtaining well-tested model simulations. 
Given this difficulty of evaluation, it is not surprising that one of the 
main uses of spatially explicit models is in the development and testing 
of hypotheses on global transport mechanisms. Examples are provided 
by the study of the global fate of European PAHs by Sehili and Lammel 
(2007), using a complex ADE-based transport model; the study of 
Armitage et al. (2006), on PFOA, using a múltiple box model; the 
assessment of persistence and long range transport potential of 
chemicals performed by Leip and Lammel (2004), highlighting the 
importance of exploring global variations in chemical concentratíon 
using realistic spatially explicit models. However, studies with similar 
aims have been conducted also with far simpler models (e.g. Scheringer 
et al., 2004a,b), and the advantage of using global transport models 
based on the ADE, with high computational burden and a higher number 

http://www.ecmwf.int/
http://www.cru.uea.ac.uk/
http://modis.gsfc.nasa.gov/
http://envisatesa.int/
http://www.phys.uu.nl/
http://remsad.saintl.com/
http://www.cmaq-model
http://www.bafg.de/GRDC/
http://oceancolor.gsfc.nasa
http://getm.eu/
http://www.cdc.noaa.gov/
http://getm.eu/
http://oceancolor.gsfc.nasa
http://getm.eu/
http://eusoils.jrc.ec.europa
http://fapar.jrc.ec.europa.eu
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Fig. 3. Example of data assimüation between (A) remote sensing-derived PMl 0 concentrations in the ambient air in the región of Lombardy, N. Italy; (B) PMl 0 concentrations derived from the REMSAD atmospheric fate model for aerosol. The 
two data models are fused using a Kalman-filter based algorithm that optimizes the assimüation procedure assigning variable weights to the 2 data sources across the domain (C). The final, optimized result is given in map (D). 



of parameters affecting the results (with clear consequences on 
sensitivity assessment and error tracking) is still to be clearly proven 
in the absence of full model validation. We will return on the issue of 
model evaluation later in this paper. 

3. Strategies of simpliflcation 

This practical experience with models has fostered the development 
of alternative strategies seeking a balance between realism in the spatial 
distribution of chemicals on one side, and practicity and cost of use on 
the other. In the literature, there are some examples of models 
developed in an attempt to simplify the ones based on the ADE, at the 
same time keeping a relatively very fine spatial resolution. For instance, 
Bachmann (2006), developed a classic múltiple box model with boxes of 
1 km resolution for all processes on land in Europe, while keeping a 
coarser resolution in the atmosphere, described in turn through a 
trajectory-based approach. However, the very fine resolution on land 
does not correspond to knowledge detailed enough, e.g. concerning soil 
properties or the representation of hydraulic geometries determining 
water residence times. Moreover, the numerical complexity of calcula-
tions does not correspond to the realism in simulation one may expect, 
given the simplistic first-order representation of many environmental 
processes. Therefore, this type of approach promises to lead to little 
improvement with respect to classical multi-box models with coarser 
resolution, at the same time approaching the computational burdens of 
ADE-based models. 

3.1. Multimedia models or cascades of media-specific models? 

A first relevant step forward in spatially explicit multimedia 
chemical fate modeling has come instead from the consideration that, 
once a chemical is emitted to one environmental compartment, it can be 
transported to other compartments, but its feedback fluxes from other 
compartments to the one of emission are very rarely relevant in 
quantitative terms (Margni et al., 2004). Therefore, for most applica-
tions, it is sufficient to treat one compartment at a time (i.e. set up a 
single-médium chemical fate model), and treat transport to other media 
as "losses"; then these losses can be used as input to other single-
médium models of different compartments. There are a number of 
models that can be applied to each single médium, or to a combination 
of two. Examples of spatially explicit chemical fate models that can be 
applied to model large regions for different single (or coupled) 
environmental media include GREAT-ER (Feijtel et al., 1997), a 
stochastic simulator based on a plug-flow equation model of rivers, 
that predicts concentrations of chemicals from wastewater and other 
sources in inland waters and has been used in the context of water 
management; SWAT (Neitsch et al., 2002), a model including catchment 
hydrology, soil processes, stream processes, with the resolution of a sub-
catchment, used for the simulation of nutrients and pesticides over large 
domains; and LOTOS-EUROS (Schaap et al., 2008), an atmospheric 
transport model for continental Europe. 

A cascade of off-the-shelf single-médium models combined together 
may be a practical option, but often a single one of these models is in 
itself already rather complex, and their combination may result in a still 
very complex model. 

3.2. Meta-models 

An increasingly followed strategy to simplify models is to build 
meta-models (e.g. Pineros Garcet et al., 2006). A meta-model can be 
described as a model that allows estimating chemical concentrations as 
a function of physico-chemical properties, emission rates and a set of 
pre-calculated concentration fields corresponding to reference chemi­
cals. Usually such model is obtained through some form of linear or non 
linear regression analysis (e.g. Tiktak et al., 2006), artificial neural 
networks (e.g. El Tabach et al., 2007) or other similar techniques. Pre-

calculated concentration fields are generated by making emissions and 
physico-chemical properties vary over appropriate and representative 
ranges of valúes, usually following random sampling logics (Pineros 
Garcet et al., 2006). An extensive meta-modeling activity has been 
developed in Europe for pesticides, using the PEARL model (Leistraet al., 
2001) within the HA1R project (http://www.rivm.nl/rvs/risbeoor/ 
Modellen/HAlRjsp) and the MACRO model (Larsson andjarvis, 1999) 
within the FOOTPR1NT project (http://www.eu-footprint.org). 

Once pre-calculated fields are available, the calculation of concentra­
tions is extremely fast and generally very accurate with respect to the 
original model. Therefore, meta-modeling is a feasible technique to 
generalize complex numerical models to cases not yet analyzed. The main 
problem with this approach is that sometimes the pre-calculation of 
concentration fields is very time-consuming, and the benefits of pre-
calculation can be observed only when frequent and varied routine 
application of the underlying model is foreseen. If this is not the case, 
developing pre-calculated fields may be less convenient than just running 
the underlying model in different case studies. Moreover, meta-models 
rely strictly on the underlying model assumptions and parameterization. 
It is not infrequent that an even well established model undergoes 
important modifications in time. In such cases, adaptations to the meta-
model to reflect modifications simply require re-running the model. 

A special case of meta-model is the construction of source-receptor 
relationships for advective-dispersive media such as the atmosphere or 
oceans. In such cases, the ADE for a conservative contaminant is always 
linear. Moreover, in such case the only relevant fate process is, by 
definition, dilution (advection and dispersión). Roemer et al. (2005), have 
developed a meta-model that they called ADEPT, which describes the 
concentration from emissions in each European country, distributed in 
space like population density, by running the LOTOS model (Builtjes et al., 
2003) with appropriate assumptions. Their meta-model takes the form of 
maps of spatially explicit source-receptor relationships, i.e. concentrations 
ata given location (receptor) from emission at another (sources). Source-
receptor model approaches have been extensively adopted in long range 
atmospheric modeling within global or continental decisión support 
systems such as GAINS (http://gains.iiasa.ac.at/gains/). 

3.3. Analytic elements 

Besides meta-modeling, in recent years attention has been focused 
on the possibility of describing even irregular, complex patterns using 
simple fundamental mathematical relationships in place of complex 
numerical methods. This path has been followed first in the domain of 
groundwater modeling, where a technique, called of the "analytic 
elements" (Strack, 1989; Haitjema, 1995), has been developed which 
consists of a superposition of simple analytical solutions to the ADE, 
corresponding to individual features such as sources/sinks, disconti-
nuities in flow properties, boundaries, etc. Each solution is infinite in 
space, and appropriate consistency conditions are specified in order to 
solve the system of these solutions. In this way, realistic, complex flow 
patterns can be reproduced by superimposing simple models. 

4. GIS-based modeling 

With the development of computational geography (e.g. Openshaw 
and Abrahart, 2000) and the proposal of systematizing geographic 
information system (GIS) practice into a more structured "geographic 
information science" (Goodchild, 1992), GIS functions have started 
being studied not just as software functionalities, but rather as 
"methods" to be used for broad classes of geographic modeling 
problems. This has fostered the inclusión in GIS of generic operators 
enabling the construction of simulation models of environmental 
processes, without the need to code sepárate numerical models to be 
eventually coupled with GIS. Examples of this approach, also enabling 
time-dependent simulation, are provided by the GIS package PCRaster 
(Van Deursen, 1995; Karssenberg, 2002) which has been also used to 

http://www.rivm.nl/rvs/risbeoor/
http://www.eu-footprint.org
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build a pan-European hydrologic model (De Roo et al., 2000). Another 
example is the functionality provided by popular ESRI producís 
Arclnfo© and, more recently, ArcGIS©, to perform simple groundwater 
contaminant modeling by combining flow path analysis and time-
dependent dispersión (see Tauxe, 1994, for further details). 

We focus here on an approach, conceptually similar to the analytic 
elements, proposed in the field of chemical fate modeling, grounding on 
simple standard GIS-analytical operations, including local drainage 
delineation and map algebra, to describe the spatial patterns of 
contaminants (Pistocchi, 2005, 2008b). The basic idea of this approach 
is to replace the numerical solution to the ADE with a superposition of 
local analytical solutions: in most cases the spatial distribution of 
chemicals in the environment can be described as a reasonable first 
approximation using very simple conceptual schemes, and particularly 
the elementary flow schemes traditionally applied in compartmental 
analysis: besides the already mentioned box model, or "continuous 
stirred tank reactor" (CSTR), the plug-flow (PF) and Gaussian plume 
(GP) models usually represent well most of the typical environmental 
distributions. 

4.1. The plug-flow model 

For instance, a PF model is often the elective tool for simulation of 
river quality (e.g. Chapra, 1997). In this case, concentration of a 
chemical substance along the stream network downstream of an 
emission of intensity E is described by the analytical solution: 

Cft) -& 
a(£,)w O) 

where w is the stream velocity, x the curvilinear abscissa along the 
stream line foriginating from the emission point, with origin £, = 0 at 
the location of emission, «(£;) is the stream cross sectional área 
(which can be represented as in Pistocchi and Pennington, 2006), and 
k is the first-order decay constant of the chemical. 

When w and/or k are not constant but depend on £;, the exponential in 
Eq. (1) needs to be replaced by e~ Jo #^. The formula can be computed 
practically as explained by Pistocchi (2005). The curvilinear abscissa £, can 
always be converted to geographic coordinates (xy) given the position of 
the stream network. 

4.2. The Gaussian plume model 

The GP model is used for screening level modeling of air emissions 
(e.g. Turner, 1994), groundwater pollution (e.g. Domenico and Schwarz, 
1998), and ocean or lake dispersión problems (Csanady, 1973). In this 
case, concentration downstream or downwind of an emission, within a 
field of wind or water current of constant intensity w and direction 
parallel to thep-axis, is: 

C(P,Q) 
Ee -»€ 
a0w (ap°) 

(2) 

«o is a parameter representing dilution near the source and is 
conceptually similar to a mixing depth/height, as discussed in Pistocchi 
and Galmarini (in press), while a and b represent empirical parameters 
of plume dispersión. It is clear that the Gaussian plume scheme cannot 
be used when variations in wind or current direction and intensity are 
relevant, as in the case of continental scale modeling. However, with 
reference to atmospheric dispersión in the European context, it has been 
shown that Eq. (2) can be replaced with the following: 

C(P,Q) 
a0w£," 

-'4 (2') 

with £; = (p2 + q2)05, which proves valid over long distances, irrespec-
tive of wind, w (Pistocchi and Galmarini, in press). Also, those authors 
suggest acceptable valúes of parameters a0, b and w generally applicable 
in Europe for screening level modeling. 

4.3. The continuous stirred tank reactor 

For the CSTR model, concentration is: 

C(p,q) 
«o £ 

(3) 

where | is the side length of the CSTR, OÍQ represents the mixing height 
or depth of the CSTR, w is the average wind or water current speed 
within the CSTR, and 8(£J is the integral of the Dirac delta function over 
the CSTR, equal to 1 for £,<£, and 0 for £,>|. Eq. (3) can be used only to 
predict the concentration at the emission location, but not outside of 
it. This scheme can then be used when dilution outside of the emission 
location is so high that concentrations become negligible, as is the 
case of small emissions to the ocean compartment, or when k 
dominates over OoW, i.e. advection is negligible. 

4.4. Generalization for GiS-based modeling 

Using these simple flow schemes allows the prediction of the local 
pattern of concentration by assuming a priori the mathematical shape 
of the patterns of concentration arising from a given source. The three 
simple models of Eqs. (1), (2') and (3) can be used to compute con­
centrations everywhere in space arising from a single emission at a 
given location. Their characteristic is that they are just algebraic com-
binations of functions of spatially distributed parameters and an 
appropriate distance from emissions, in the form: 

C 
D 

R (4) 

where E is the emission valué, and D and R are maps representing the 
"dilution function" D and the "removal function" R, and can be 
represented as maps as a function of an appropriate distance £, from 
the source of emission. Table 1 summarizes the meaning of terms R, D 
and the type of distance £, to be used in Eq. (4) for the cases discussed 
above. 

For a spatial distribution of emissions, the linearity of the ADE 
considered here allows to simply superimpose the results from the 
different emissions. The most trivial case isforEq. (3); in this case, one 
may consider a map of emissions E and maps of k, «o and w valúes, 
and the overall results is just the algebraic combination of these maps. 
For the case of Eq. (1), it is possible to use specific superimposition 
functions known as "flow accumulation" (Burrough and McDonnell, 
1998; Pistocchi, 2005). An example of this type of calculation is shown 
in Fig. 1. For Eq. (2'), one calculation for each emission location is 
required, and then results for all emission points need to be summed 
together. This may become very impractical for a large number of 
emissions, but it is still very convenient for a limited number of 
sources (of the order of 103), compared with running complex 
numerical models (Vizcaíno and Pistocchi, in preparation). An 
example of this calculation is shown in Fig. 2. Calculations conducted 
in this way are usually much quicker than the corresponding 
numerical models. Also, the model resolution is not as strongly 
limiting as in the case of numerical methods, because it is not related 
to the order of a system of equations to be solved, as in the case of 
models based on the ADE. 

The use of these simplified models, implemented directly using 
GIS-analytical capabilities, allows obtaining reasonably realistic 
spatial distributions of chemical concentrations, through extremely 
simple calculations. This has been shown with reference to the 
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continental distribution of PCBs and dioxins in Europe (Pistocchi, 
2008b); to the fate of pyrethroid insecticides in Europe (Pistocchi et 
al., 2009); to the distribution of lindane in Europe (Vizcaíno et al., in 
preparation); and industrial emissions from the European Pollution 
Emission Register (EPER) (Pistocchi and Galmarini, in press). 

5. Relevant landscape and climate parameters for spatially explicit 
chemical fate models 

5.1. Data availability on the Digital Earth 

An aspect of utmost importance in the use of spatially explicit 
chemical fate models is the choice of landscape and climate pa­
rameters. There is now an unprecedented availability of spatial in-
formation covering the whole globe, and more in detail specific 
regions such as the US or, more recently, Europe. In the years from the 
first theoretical discussions on the "Digital Earth" concept (Wikipedia, 
not dated) in the early 1990s, to the implementation of Google Earth 
and similar tools in mid 2000s, all human activities, and particularly 
scientific investigation, have seen their geographic dimensión 
enormously empowered and made explicit. In Europe, the adoption 
of a directive on an infrastructure for spatial information (EC of the 
Directive, 2007) promises to consolídate a scenario where landscape 
and climate parameters no longer represent a problem for fate and 
transport modeling; similar conditions occur in other parts of the 
world. Fate and transport models require a potentially endless list of 
landscape and climate variables, of which the most common are 
summarized in Table 2. It is not uncommon that new mechanisms, 
and consequently new environmental parameters required for their 
representation, come to the attention of researchers. For instance: 

— In recent times, studies on the effects of intermittent rainfall have 
suggested the utility of the number of dry days per month as a 
proxy in fate and transport modeling (Jolliet and Hauschild, 2005); 

— The importance of sinking fluxes associated with organic matter 
has suggested the use of chlorophyll in seawater (Dachs et al., 
2002); and 

— Studies on the sorption of chemicals to suspended matter in air or 
water support the adoption of more complex parameterization of 
these variables (Gótz et al., 2007). 

A relevant impulse to the development of spatial data sets has 
been given by increasingly available remote sensing producís, more 
and more used also in the field of chemical fate modeling (e.g. 
Vijayaghavan et al., 2008; Jurado et al., 2004; Montzka et al., 2008; 
Boschetti et al., 2006). 

5.2. Data assimilation 

In particular, data assimilation techniques bringing together remote 
sensing datasets with deterministic modeling results bear great potential 
for improving further the realism of environmental characterization 
provided by the respective models. This can be of particular importance 
when assessing the link between environmental pressure and human 
health risk (Sarigiannis et al., 2002, 2004). A good example of the 
usefulness of data assimilation in this regard is given by the study of 
particulate matter pollution in the ambient air at the regional scale. At 
this scale several problems with the spatial and temporal coverage of the 
environmental monitoring networks hamper the efficacy of pollution 
pattern determination. Lack of accuracy in key input parameters, 
including emission inventories, constrain the applicability of complex 
atmospheric models. Assimilation of particulate matter data from 
ground-based measurements with optical indicators of pollution such 
as turbidity as measured by the optical depth of atmospheric aerosol can 
enhance both the spatial extent and validity of the air pollution data in a 
spatially resolved manner. This allows the generation of a model for 
translating optical Índices into pollutant concentrations with the aid of 

ancillary models and data sets such as meteorological and landscape 
information (Fig. 3 (A)). Further fusión of this model with results from 
deterministic atmospheric fate modeling using decision-theory based 
algorithms to optimize the assimilation of the underlying data on the 
basis of self-estimates of uncertainty (e.g. using the well known Raiman 
filter) results in a meta-modeling system, which optimizes the 
uncertainty profiles across the computational domain (Fig. 3(B)). The 
model fusión algorithm assigns automatically variable weights to the 
different data sources (e.g. the atmospheric fate models, see Fig. 3(C)) 
depending on the determination of the minimal residual error of the 
method across the computational domain. The final result is an improved 
map of the horizontal profile of PM10 concentrations, characterized by 
optimal use of all relevant datasets and models (Fig. 3(D)). 

5.3. Types ofvariability in landscape and climate data, and their relevance 
in spatial predictions 

It should be stressed that the required detail in the description of the 
environment depends on the purpose of modeling. Some parameters 
are intrinsically so highly variable, that an explicit account of their 
spatial distribution increases the variability of predicted chemical 
concentrations, but does not provide any better insight on the spatial 
trends, hot spots etc., which are dominated by the interplay between 
emissions and environmental parameters. As an example, let's consider 
the case of a random emission to soil at a number of locations (Fig. 4( A)), 
for a chemical subject to degradation only (i.e., all other removal 
mechanisms are negligible). Let's also assume that degradation follows a 
strong exponential trend with temperature, increasing with location 
number. The distribution of predicted mass, i.e. ratio of emission to 
degradation rate, will follow an exponential decrease consistent with 
the trend in degradation (Fig. 4(B)). The oscillations of mass across the 
trend depend on the variability of emissions. Let's now assume that 
degradation rates are distributed randomly, following a Gaussian 
distribution with the same mean and standard deviation as the 
temperature-dependent rates. We have then a distribution of predicted 
masses as in Fig. 4(C). If we eventually replace the random-varying rate 
of Fig. 4(C) with the average of removal rates, we obtain the distribution 
of predicted masses of Fig. 4(D). In Fig. 4(C), inclusión of the spatial 
variability of the degradation rate increases significantly the variability 
of mass, but does not allow detecting trends. Therefore, it is appropriate 
to include the variability of the degradation rate if one is interested in 
extremes, but not if one wants to highlight hotspots or geographical 
trends. 

In reality, the different parameters used in models may or may not 
show a spatial trend. Fig. 5 shows examples of such parameters, which 
appear to have different evidence of spatial trends. An objective way 
to detect spatial trend, as is well known, is to draw the variogram of a 
spatially distributed variable, i.e. the plot of the variance of data points 
at a given spatial distance, as a function of the distance itself (see e.g. 
Clark, 1979), as is common practice in the geostatistical analysis of 
data. 

6. The evaluation of spatially explicit models 

An issue of key importance in any modeling exercise is the 
evaluation of models with observations. In the specific case of spatially 
explicit fate models of chemicals, evaluation poses a number of issues. 
First of all, chemicals are typically measured in the environment at trace 
levéis, the collection of sufficiently representative samples may be 
extremely difficult and, sometimes, analytical procedures are not 
sufficiently Consolidated, and do not provide sufficient quality assurance 
(e.g. Lepom et al., 2009; Quevauviller et al., 2007). 

Even when good sampling and analytical procedures exist, the 
costs of sample collection and analysis often make data generally 
rather rare and sparse; especially for substances of high variability in 
time and space, it is extremely difficult to build a data set of samples 



well representing the "true" spatial distribution. More often, samples 
only reflect the statistics of environmental concentrations, and not 
valúes that can be considered stable point-wise, henee used for the 
point-wise assessment of models. For this purpose, only observational 
data should be used that were originally conceived and developed as 
"spatial"; these data are increasingly available for large regions or the 
globe, e.g. from monitoring of lipids from commercial milk produets 
(Kalantzi et al., 2001; Weiss et al., 2005; Malisch and Dilara, 2007), air 
passive samplers (Gioia et al., 2007; Jaward et al., 2004), and 
systematic spatial sampling of a given environmental médium (Mejier 
et al., 2003; Loos et al., 2009). 

For these reasons, with spatial predictions we do not necessarily 
seek to match monitoring data to an extreme aecuracy: modeling 
exercises have been judged successful or useful even when highlight-
ing orders-of-magnitude discrepancies with observations; models 
may happen to be considered acceptable when matching orders of 
magnitude with no or weak correlation with observations in space, 
and such correlation has been demonstrated to be sufficiently high 
only in a few cases. When selecting the level of computational 
complexity of fate models, the fact that model evaluation is at least 
troublesome and sometimes impossible with the given data available 
cannot be ignored. Therefore, on the one hand using comprehensive 
models describing detailed mechanisms of transport in the environ-
ment may be useful in order to provide a benchmark; on the other 
hand, considering that no model represents the truth and even highly 
physics-based models introduce at some point semi-empirical 
parameterizations and arbitrary assumptions, complex models may 
tend to lack transpareney and hide some of their assumptions behind 
their own complexity, thus making the tracking of model errors a 
difficult task; moreover, their realistic-looking output based on great 
computational capabilities tends to define a virtual reality obeying the 
rules included in the model, and thus pushing simpler models to 
mimic their output rather than observations, in turn scarce and 
difficult to retrieve. This basically obliterates the lines of research not 
included in the development of the complex models used as 
benchmark. 

7. Conclusions and perspectives: GIS-suppotted revival of 
simple models? 

7.1. Models and observations in hypothesis testing 

In the last decades, voices have been raised against the 
development of overly complex models, especially in such fields as 
hydrology, where terrific computational developments have eventu-
ally shown that little further progress can come from modeling, and 
relevant steps forward are necessarily related to developments in 
measurement techniques (e.g. Beven, 2001). On the contrary, a very 
strong movement has grown in parallel, aimed at fostering the use of 
models as tools for hypothesis testing rather than aecurate simulators 
of reality (e.g. Beven, 2006). This has brought researchers and 
practitioners to reconsider simple models not just as remainders 
from the times when computation was expensive, but rather as 
parsimonious ways to interpret the complex reality in the presence of 
limited experimental information, henee preferable according to the 
Ockham's razor principie. The same considerations apply to chemical 
fate assessment, an área where hardly any further development is 
expected on the computational side, if not paralleled by substantial 
advances on observations. 

7.2. The crucial role of chemical emission maps 

Current limitations in the development of chemical fate models are 
identified mainly in the lack of information on chemical emissions to 
the environment; therefore, developing complex and computation-
intensive models, which involve a high effort in development, is likely 

to bring no better results than much simpler calculations that can be 
crudely summarized as estimates of chemical masses by algebraic 
combination of maps of emissions and dilution or removal factors 
(Eq. (4)). This is true in general, but particularly so for spatially 
explicit models, where emissions explain usually a very large amount 
of the variance in environmental concentrations of a given chemical. 
In this case, the most critical piece of information, and the most 
relevant área of research, seems to be about emission inventorying 
(e.g. Pistocchi and Bidoglio, in preparation; Hollander et al., in 
preparation; Pistocchi and Loos, 2009). 

7.3. Way forward: maps and simple calculations for hypothesis testing 

In this paper, we have discussed a few aspeets related to the 
development and use of spatially explicit models for the prediction of 
chemical fate at the scale of the European continent and similarly large 
regions. A shift in model use from process simulation to hypothesis 
testing is under progress, in which explaining the discrepancies 
between observed and computed chemical concentrations in the 
environment takes importance over prediction per se. 

This shift may take advantage of using simple models with residual 
uses of complex models for detailed studies, under conditions of high 
uncertainty concerning emissions and environmental processes such 
as phase partitioning and degradation. In addition, GIS technology and 
methods invite to developing models by reasoning in terms of maps, 
keeping the model structure extremely simple (as to be implemented 
with map algebra) and capitalize on spatial data to refine the spatial 
representation of environmental drivers such as landscape and 
climate variables, and better emission estimates. 

The problem, in this perspective, becomes one of producing 
appropriate maps of emissions, on the one hand, and removal rates, 
on the other hand; the latter capitalize on available spatial data sets of 
landscape and climate parameters such as air temperature, vegeta-
tion, precipitation, soil organic carbón content, runoff, etc., which are 
increasingly available for large regions also as a consequence of 
developments in remote sensing of the earth system. Such simple 
calculations based on a wealth of spatial information on environmen­
tal variables maintain an ease of tracking errors, visualizing 
intermedíate results and discussing in a quick and productive way 
the orders of magnitude of phenomena of which the interplay results 
in the environmental concentration of chemicals. At the same time, 
this approach lends itself to reducing the error of the overall 
environmental fate assessment across the spatial domain of study. 
This can be achieved by the application of model fusión techniques 
employing decision-theory approaches and information filters (such 
as the Raiman filter) to optimize the relative importance of different 
superimposed modeling results on the basis of a weight-of-evidence 
approach. This approach, which so far has been successfully 
implemented in atmospheric pollution problems for integrating 
satellite-based remote sensing with atmospheric models and 
ground-based air quality monitoring data, could be a viable 
advancement towards the enhanced utilization of GIS-based envi­
ronmental fate models at the continental and regional scale. 

It can be stated, in summary, that the problem is not "how to compute" 
(given the wealth of available numerical methods, spatial/temporal model 
ressolution, quantitative uncertainty and sensitivity analysis techniques, 
etc.) but "what to compute", as often our knowledge of emissions and 
environmental processes, and our chemical monitoring systems limit the 
application of even very simple models. 
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