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1. Introduction

ABSTRACT

A review by Hollander et al. {in preparation), discusses the relative potentials, advantages and shortcomings of
spatial and ncn spatial models of chemical fate, highlighting that spatially explicit models may be needed for
spedific purposes. The present paper reviews the state of the art in spatially explicit chemical fate and transport
modeling in Europe. We summarize the three main appreaches currently adopted in spatially explicit medeling,
namely (1) multiple bex medels, (2) numerical selutions of simultanecus advection—dispersion equations {ADE)
inair, scil and water, and ( 2) the develepment of meta-models. As all three approaches experience limitations, we
describe in [urther detail geographic infermation system (GIS)-based modeling as an alternative approach
allowing a simple, yet spatially explicit description of chemical fate,

We review the input data needed, and the opticns available for their retrieval at the European scale. We also
discuss the impertance of, and limitations in medel evaluation.

We cbserve that the high uncertainty in chemical emissiens and physice-chemical behavior in the environment
make realistic simulations difficult te cbtain. Therefore we envisage a shift in model use from process simulation
to hypothesis testing, in which explaining the discrepancies between observed and computed chemical
concentrations in the envirenment takes importance over prediction per se. This shift may take advantage of
using simple models in GIS with residual uses of complex models for detailed studies. 1t alsc calls for tighter joint
interpretaticn of models and spatially distributed monitcring datasets, and more refined spatial representaticn of
environmental drivers such as landscape and climate variables, and better emission estimates. In summary, we
conclude that the problem is not “how to compute” {i.e. emphasis ¢n numerical methods, spatial temporal
discretization, quantitative uncertainty and sensitivity analysis...) but “what to compute™ (ie. emphasis on
spatial distributicn of emissions, and the depiction of appropriate spatial pattemns of envirenmental drivers).

grounding on a wealth of information, and particularly field surveys and
local, ad hoc measurements, and are usually requested to target a much

In the last years, increasing interest has been raised by spatially
explicit multimedia chemical fate and transport models for the
assessment of chemical concentrations. In this contribution we do not
advocate systematic use of spatially explicit models: a discussion of the
circumstances under which it is worth using spatially explicit models as
an alternative to simpler and more traditional non spatial models in
chemical fate evaluation can be found in Hollander et al. (this issue).

We rather discuss here which spanially explicit models to use,
depending on the purposes of the study, once it is clear that a spatial
model is needed.

It is worth mentioning that models used at a large scale and fine
resolution (e.g. a catchment, an urban area, a contaminated site) are
usually implemented to provide answers to very specific questions

finer accuracy. Throughout the paper, we limit instead our discussion to
medels applied for assessments at a small scale and coarse resolution,
e.g. a country or a continent, which are conceptually comparable to
“evaluative” models adopted in risk assessment (e.g. EC, 2003, 2004;
Brandes et al,, 1996). Although these models ideally aim at simulating
chemicals at a given location, they normally target trends and orders of
magnitude rather than point-wise quantities; the latter may be in fact
affected by local factors {e.g., the stack height of an atmospheric
emission or the mixing volume at the outlet of a water emission, or the
specific location of a sampling point used for model evaluation), which
are normally excluded from models at coarser resolution. Therefore,
criteria to assess whether a large scale model matches or does not match
observations are quantitatively very different from the ones used for
small scale models (for instance, a factor 10 and an explained variance of
50% are already reasonable performances at a small scale, while for a
large scale model a factor higher than 1.5 and explained variance less
than 70% may be unacceptable), and this derives from a qualitatively
different expectation from the model results.



It must be also pointed out that. as spatial distributions of
contaminants can be reconstructed directly from monitoring data,
through geostatistical estimation (e.g. Wackernagel, 1997), or other
more recent techniques such as self-organizing maps {Kohonen,
1990; see also Pistocchi et al., submitted for publication), it is not
uncommon to refer to such reconstructions as “models” as well. The
discussion might be broadened to a large extent, but this is beyond
our scope. In this paper we only focus on “causal” models, i.e. models
predicting chemical concentrations given emissions (direct mode) or
emissions given an observed concentration {inverse mode).

2. Spatially explicit models between realism and simplicity
2.1. Early models

Early spatially explicit models were developed in the 1990s and early
2000s, as rather coarse multiple linear box models each representing a
region {Wania and Mackay, 1995; MacLeod et al,, 2001, and were more
conceptual schemes of possible mechanisms of environmental distri-
bution of chemicals, than tools for the prediction of concentrations at a
specific location. In this sense, they are rather similar to conceptual
schemes such as the CliMoChem (Wegmann, 2004) and ChemRange
(Scheringer et al.,, 2004a,b,c) models, aiming at describing not even a
broad region as a box, but a more abstract entity such as a latitudinal
zone on earth. Such models describe what Mackay {2001) calls
“evaluative environments” and can only account for the chemical
transfer between large regions, and for coarse-scale variability of
landscape and climate.

2.2. More recent models

More recent models have attempted a more realistic description of
contamination with reference to specific zones of more limited
extension {Suzuki et al., 2004; Pennington et al., 2005; Prevedouros
etal., 2004; MacLeod et al.. 2005). [n those cases, the region of interest
was described through a more refined grid of cells with resolution of a
few hundreds of kilometers, for each of which a mass balance was
computed, considering local emissions, local removal mechanisms
and transport to and from neighboring cells. This is done in practice by
writing a system of linear equations in number equal to the grid cells,
which are solved in a straightforward way for steady state (eg.
Pennington et al., 2005) or transient conditions {e.g. Suzuki et al.,
2004). Parameters describing landscape and climate were assigned
considering the actual geography of each cell, achieving thus some
realism. However, these models cannot be regarded as “realistic”
chemical fate simulators, for a number of reasons. In the first place, a
common approach in the setup of these models is to specify landscape
and climate parameters, hence inter- and intra-media transfer rates,
as representative values constant in time, which hampers the
possibilicy of capturing mechanisms of transfer strongly dependent
on time variations of environmental processes which may be very
relevant {Lammel, 2004). Adopting constant values for environmental
removal rates may make of little use developing models more
complex than steady state calculations (see von Waldow et al., 2008).

Another remarkable simplification that makes these models com-
parable with single box models is the high degree of simplification in
describing the spatial variation of landscape and climate parameters,
usually by providing an average value over a very large region.
Moreover, intra-media transporting currents {such as the water
discharge between two cells, or wind flows) are not always easy to
estimate. In particular, while transport in the inland stream network is
fundamentally unidirectional and one-dimensional, and advection is
clearly dominant over dispersion, transport in oceans needs always (at
least) a two-dimensional description, and the atmosphere may well
require a three-dimensional description. Things are complicated by the
importance that dispersion takes on advection in these cases. The

representative transporting currents estimated in the above quoted
models are likely to reproduce the correct order of magnitude of
advection and dispersion removal rates, but cannot be used to describe
spatial patterns arising from these mechanisms, such as contamination
plumes from a source of emissions {see, for instance, the comparison
between box models and atmospheric transport models presented in
Hollander et al., 2008).

For these reasons, a similar performance of spatial and non spatial
models is often highlighted (e.g. in the comparison of medels for HCB
and PAHs by Armitage et al., 2007).

2.3. Complex transport models

To describe more complex spatial patterns of chemical transport,
the full advection-dispersion equation (ADE; e.g. Pistocchi, 2008a)
should be solved, considering a two- {for oceans) or three-
dimensional (for the atmosphere) field of transporting currents. For
soils, the ADE is often solved in one {vertical) dimension. ADE models
of very high complexity have been developed, such as DEHM-POP
(Hansen et al., 2004), or MSCE-POP ( Gusev et al., 2005). Lammel et al.,
2007, propose the use of such more complex models, with specific
reference to the MCTM model, as tools to identify the mechanics of
pollutant transport; the authors highlight that traditional box models
may underestimate long range transport and overestimate sinks of
chemicals in the environment, and should be therefore calibrated
with benchmarks provided by such more complex models.

Complex models based on the ADE bring together what is considered
as the most realistic method for each environmental compartment
considered. Typically, these models have grown by adding soil and
ocean compartments to an original atmospheric model, which makes
them biased towards the atmospheric phase of environmental fate. The
spatial patterns of contamination described by ADE-based models over
large regions have a more realistic appearance, although their results
have seldom been experimentally evaluated for chemicals other than
conventional pollutants, due to the very limited monitoring data
available.

Reliance on these models is based primarily on the reasonable
performance of the ADE solutions in each medium separately, which
has been tested traditionally at fine scale for soils {a plot or an
experimental vertical profile}, and at regional and even global scale
for oceans and. most of all, atmosphere.

Despite their high degree of sophistication, these models have a
number of weaknesses. First of all, notwithstanding their elegant
mathematical formulation, they are not fully based on fundamental
physical relationships; at steps, a number of empirical correctors are
added which are in practice calibration parameters impossible to
evaluate in the absence of experimental data. These correctors are
particularly used at the interface between two media, eg. in the
description of volatilization fluxes, often represented through a “series
of resistances” analogy {e.g. Schwarzenbach et al,, 1993) the parameters
of which are only derived empirically. Understanding the limited
physics behind even rigorous solutions to the ADE in the context of
environmental modeling has stimulated criticism towards claims of
their being “physics-based”, in favor of a more modest but philosoph-
ically conscious definition of “mediating models” (see e.g. Morton, 1993,
and Beven, 1996, for a more thorough discussion).

Another aspect not to be neglected is that all numerical solutions
to the ADE carry some unaveidable artifacts, among which maybe the
most important one is numerical dispersion (e.g. Zheng and Bennett,
1995). This phenomenon depends on the resolution of the numerical
grid of models in relationship to the celerity of transfer of perturba-
tions, and may be of the same magnitude as physical dispersion in the
environment. A demonstration of the equivalence between grid
resolution and assumed “physical” dispersion, and its positive
exploitation in modeling, is provided by Sukop (2001), with reference
to 30il contaminant modeling.



Table 1

Meaning of the terms R, I and the type of distance, for Eq. {4) applied to different media.

Environmental Dominant § w Dilution Decay
compartment  dilution function, I function, R
mechanism
Stream Advection  Curvilinear Stream ) e ié
network abscissa on  velocity
the stream  (input map)
netwaork
Atmosphere Dispersion  Fuclidean  Suggested  apt” et
distance constant
value: 3 m/s . 5(6)
Soil, ocean Mixing at  Euclidean - ok, =
the source  distance gk +w

See text for the meaning of the symbols.

It is worth mentioning, finally, that these models rely on an assigned
field of transporting currents, which is in itself generally derived from a
hydrologic, oceanographic or meteorological model, in turn affected by
different errors, which can be seldom evaluated. As a conclusion,
although in principle much more accurate and capable of detailed
description of processes, sophisticated models produce as output spatial
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distributions of contaminants, which are a priori only one possible
(although real-looking and consistent) realization of the environmental
dispersion process, unless accurate model calibration is conducted.
Model equations cannot be separated by the set of model parameters
assigned. The fact that more than one combination of model equations
and parameters yield equally satisfactory results, sometimes called
model equifinality {e.g. Beven, 2006), further contributes to weakening
our belief in even very comprehensive and advanced models,

On the other hand, these models are overwhelmingly data
demanding, computation intensive, and require much longer time
to run compared to simpler models, which makes them extremely
expensive and not practical for routine assessments or preliminary
studies. Although modern computers and parallel, high performance
computing do not pose, in principle, strong computational limitations,
practical constraints when applying numerical solutions of the ADE in
environmental modeling still limit their spatial resolution or
coverage: as numerical solutions of the ADE are obtained by dividing
the computational domain into an array of discrete elements for each
of which an equation is solved algebraically, describing a domain of
approximately 5000 km 5000 km such as continental Europe with
a resolution of 1 km would imply a system of equations of order
25x10°,
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Fig. 1. Example of maps of chemical mass {concentration times water flow) transported in river waters across Europe from a generic distribution of point sources ( points represent
emissions of dichloroethane {DCH) from the EPER emission inventory: www.eper.ec.europa.eu). Left: Whole Europe. Right: Detail highlighting how mass profiles along a river
stretch show a saw-like sequence of exponentials with peaks at each emission source. Concentrations are estimated with Eq. (1) following the algorithms presented in Pistocchi,

2005. In right panel, arrows represent dichloroethane emissions to water,


http://www.eper.ec.europa.eu
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Fig. 2. Example of maps of concentrations across Furope of a generic pollutant due to punctual emissions of different intensities, as represented in A. Maps present cumulative
concentrations due to emissions in a single point (B), two remote points {C), two close points (D), four distant points (E} and many points distributed across Europe (F).



Table 2
Examples of landscape and climate parameters used in chemical fate moedeling.

Compartment Parameter Methods Examples Typical resolution  Links
Air Atmospheric boundary  Reanalysis of meteorological ECMWTF ERA40: 25° hep:/ fwwrw ecmowdint/
layer height simulations

Air temperature,
precipitation, wind
speed

Aerosol concentration
and deposition flux

Interpolation of climatological stations;
reanalysis of meteorological
simulations

Remote sensing of aerosol optical
depth; specialized atmospheric models

OH-radical Specialized atmospheric models
concentration
Water Runoff Calibrated models
Hydraulic geometry Marphological analysis of digital
elevation madels {DEM)
Suspended particulate  Empirical models, sediment rating
matter {rivers) curves
Suspended particulate  Remwote sensing
matter {seawater)
Ocean mixing depth Madels
Interpolation of climatological
observations
Sea temperature Models
Remote sensing
Sea currents Madels
Interpolation of drifter data
Soil Soil texture, bulk Soil surveys and national/international
density, porosity, compilations
organic carbon
Soil moisture Simplified soil water balance models
Erosion rates Erosion models
Vegetation Leaf area index Remote sensing

ECMWF ERA40: CRU Climatology

MODIS products; ICAROS products
of LANDSAT TM and SPOT; MERIS
products: TM3, REMSAD, CMAQ

madels

TMS5 model [see Pistocchi et al., 2006)

GRDC composite runoff fields {Felete

et al., 2000)

See Pistocchi and Pennington, 2006

See review in Pistocchi, 2008¢

See Pistocchi et al., 2006

E.z. GETM model for Europe
Manterey—Levitus dataset

E.z. GETM {See Pistocchi et al., 2006)

E.g. GETM [ See Pistocchi et al,, 2006)

European Soil Database

See Pistocchi et al., 2008

See review in Pistocchi, 2008¢

FAPAR. derived products; see
Pistocehi et al, 2006

2510

30m~ km

1°

30

Depending on the
digital elevation
model

Depending on the
dizital elevation
model

1

25km

1km

1km
1km
1km

http:/Awww.cruueaacuk/
cru/data/

hetp:/fmodis.gsfc.nasa.gov/
http://envisatesaint/
instruments;/meris;
herp:/Aww, phiys.uunl/
-5/
http://remsad.saintl.com/
http:/ fwww.cmag-model.

orag/

hep:/ fwww bafg.de/GRIC/
Home/homepage__node,
html

hep:/foceancolor.gsfc.nasa,
gov/SeaWiFs/
http://retm.ev/
htip:/fwww.cdinoaa gov/
data/gridded/data.node.
woafd il
hep:/fgetm.eu;
hep:/foceancolor.gsfc.nasa,
gov/SeaWiFs/
http://retm.ev/

hetp:/feusoils jrceceuropa.
eu/

http:/faparjre.ec.europa.cu

But the main disappointment with the use of such models lies
often in the excessive detail of their description of chemical fate,
compared with the actual knowledge of both chemical emissions and
the fundamental physico-chemical properties of substances in the
environment. Indeed, predicted environmental concentrations are
highly correlated in space to emissions, which may explain a very
large portion of the variance (see e.g. the discussion in Hollander et al.,
this issue). Unfortunately, however, emissions are seldom known in
orders of magnitude, and almost never in spatial patterns for most
chemicals. Therefore, the use of these models should be limited to
detailed studies on pollutants.

2.4. The issue of model evaluation

[n the literature, there are numerous examples of spatially explicit
models used at local or regional scale, with different degrees of success
in simulation and prediction. Any review of this material is beyond the
scope of this work. It is interesting, on the other hand, to notice that not
many models have been fully evaluated for prediction of chemical fate at
the continental or global scale. A recent example by Lamon et al. (2009),
investigating implications of climate change on the fate of pollutants,

shows that the spatially explicit mulamedia model BETR Global
{Macleod et al, 2005) predicts correct orders of magnitude, and
captures general spatial trends, of air concentrations of PCB congeners
28 and 153. However, the assessment is referred to 16 measurement
points, included in @ out of 288 cells in the model domain in the
Northern Hemisphere. The information used for validation represents
the best available knowledge on these chemicals, and gives an idea of
the current difficulties in obtaining well-tested model simulations.
Given this difficulcy of evaluation, it is not surprising that one of the
main uses of spatially explicit models is in the development and testing
of hypotheses on global transport mechanisms. Examples are provided
by the study of the global fate of European PAHs by Sehili and Lammel
{2007). using a complex ADE-based transport model; the study of
Armitage et al. {2006}, on PFOA, using a multiple box model; the
assessment of persistence and long range transport potential of
chemicals performed by Leip and Lammel {2004), highlighting the
importance of exploring global variations in chemical concentration
using realistic spatially explicic models. However, studies with similar
aims have been conducted also with far simpler models (e.g. Scheringer
et al., 2004a,b), and the advantage of using global transport models
based on the ADE, with high computational burden and a higher number


http://www.ecmwf.int/
http://www.cru.uea.ac.uk/
http://modis.gsfc.nasa.gov/
http://envisatesa.int/
http://www.phys.uu.nl/
http://remsad.saintl.com/
http://www.cmaq-model
http://www.bafg.de/GRDC/
http://oceancolor.gsfc.nasa
http://getm.eu/
http://www.cdc.noaa.gov/
http://getm.eu/
http://oceancolor.gsfc.nasa
http://getm.eu/
http://eusoils.jrc.ec.europa
http://fapar.jrc.ec.europa.eu
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Fig. 3. Example of data assimilation between (A) remote sensing-derived PM10 concentrations in the ambient air in the region of Lombardy, N. Italy; (B} PM10 concentrations derived from the REMSAD atmospheric fate model for aerosol. The
two data models are fused using a Kalman-fiiter based algorithim that optimizes the assimilation procedure assigning variable weights to the 2 data sources across the domain (C). The final, optimized result is given in map {D).




of parameters affecting the results (with clear consequences on
sensitivity assessment and error tracking) is still to be clearly proven
in the absence of full model validation. We will return on the issue of
muodel evaluation later in this paper.

3. Strategies of simplification

This practical experience with models has fostered the development
of alternative strategies seeking a balance between realism in the spacial
distribution of chemicals on one side, and practicity and cost of use on
the other. [n the literature, there are some examples of models
developed in an attempt to simplify the ones based on the ADE, at the
same time keeping a relatively very fine spatial resolution. For instance,
Bachmann (2006), developed a classic multiple box model with boxes of
1 km resolution for all processes on land in Europe, while keeping a
coarser resolution in the atmosphere, described in tum through a
trajectory-based approach. However, the very fine resolution on land
does not correspond to knowledge detailed enough, e.g. concerning soil
properties or the representation of hydraulic geometries determining
water residence times. Moreover, the numerical complexity of calcula-
tions does not correspond to the realism in simulation one may expect,
given the simplistic first-order representation of many environmental
processes. Therefore, this type of approach promises to lead to little
improvement with respect to classical multi-box models with coarser
resolution, at the same time approaching the computational burdens of
ADE-based models.

3.1. Multimedia models or cascades of media-specific models?

A first relevant step forward in spatially explicit multimedia
chemical fate modeling has come instead from the consideration that,
once a chemical is emitted to one environmental compartment, it can be
transported to other compartments, but its feedback fluxes from other
compartments to the one of emission are very rarely relevant in
quantitative terms {Margni et al., 2004). Therefore, for most applica-
tions, it is sufficient to treat one compartment at a time (i.e. set up a
single-medium chemical face model}, and treactransport to other media
as “losses™; then these losses can be used as input to other single-
medium moedels of different compartments. There are a number of
models that can be applied to each single medium, or to a combination
of two. Examples of spatially explicit chemical fate models that can be
applied to model large regions for different single {or coupled)
environmental media include GREAT-ER {Feijtel et al., 1997), a
stochastic simulator based on a plug-flow equation model of rivers,
that predicts concentrations of chemicals from wastewater and other
sources in inland waters and has been used in the context of water
management; SWAT {Neitsch ecal,, 2002), amodel including catcchment
hydrology, soil processes, stream processes, with the resolution of a sub-
catchment, used for the simulation of nutrients and pesticides over large
domains; and LOTOS-EURGS (Schaap et al, 2008), an atmospheric
transport model for continental Europe.

A cascade of off-the-shelf single-medium models combined together
may be a practical option, but often a single one of these models is in
itself already rather complex, and their combination may result in a still
very complex model.

3.2. Meta-models

An increasingly followed strategy to simplify models is to build
meta-models {e.g. Pifieros Garcet et al., 200G). A meta-model can be
described as a model that allows estimating chemical concentrations as
a function of physico-chemical properties, emission rates and a set of
pre-calculated concentration fields corresponding to reference chemi-
cals. Usually such model is obtained through some form of linear or non
linear regression analysis {e.g. Tiktak et al., 2006), artificial neural
networks (e.g. El Tabach et al., 2007) or other similar technigques. Pre-

calculated concentration fields are generated by making emissions and
physico-chemical properties vary over appropriate and representative
ranges of values, usually following random sampling logics (Pifieros
Garcet et al., 2006). An extensive meta-modeling activity has been
developed in Europe for pesticides, using the PEARL model { Leistra et al.,
2001) within the HAIR project {http://www.rivin.nl/rvs/risbeoor/
Modellen/HAIR. jsp) and the MACRO model {Larsson and Jarvis, 1999)
within the FOCTPRINT project ( http://www.eu-footprint.org).

Once pre-calculated fields are available, the calculation of concentra-
tions is extremely fast and generally very accurate with respect to the
original model. Therefore, meta-modeling is a feasible technique to
generalize complex numerical models to cases not yet analyzed. The main
problem with this approach is that sometimes the pre-calculation of
concentration fields is very time-consuming, and the benefits of pre-
calculation can be observed only when frequent and varied routine
application of the underlying model is foreseen. [f this is not the case,
developing pre-calculated fields may be less convenient than just running
the underlying model in different case studies. Moreover, meta-models
rely strictly on the underlying model assumptions and parameterization.
It is not infrequent that an even well established model undergoes
important modifications in time. [n such cases, adaptations to the meta-
model to reflect modifications simply require re-running the model.

A special case of meta-model is the construction of source-receptor
relationships for advective-dispersive media such as the atmosphere or
oceans. [n such cases, the ADE for a conservative contaminant is always
linear. Moreover, in such case the only relevant fate process is. by
definition, dilution {advection and dispersion). Roemer et al. {2005, have
developed a meta-model that they called ADEPT, which describes the
concentration from emissions in each European country, distributed in
space like population density, by running the LOTOS model {Builtjes et al.,
2003) with appropriate assumptions. Their meta-model takes the form of
maps of spatially explicit source-receptor relationships, i.e. concentrations
at a given location {receptor) from emission at another (sources). Source—
receptor model approaches have been extensively adopted in long range
atmospheric modeling within global or continental decision support
systems such as GAINS (http://gains.iasa.ac.at/gains/).

3.3. Analytic elements

Besides meta-modeling, in recent years actention has been focused
on the possibilicy of describing even irregular, complex patterns using
simple fundamental mathematical relationships in place of complex
numerical methods. This path has been followed first in the domain of
groundwater modeling, where a technique, called of the “analytic
elements” {Strack. 1989; Haitjema, 1995), has been developed which
consists of a superposition of simple analytical solutions to the ADE,
corresponding to individual features such as sources/sinks, disconti-
nuities in flow properties, boundaries, etc. Each solution is infinite in
space, and appropriate consistency conditions are specified in order to
solve the system of these solutions. [n this way, realistic, complex flow
patterns can be reproduced by superimposing simple models.

4. GIS-based modeling

With the development of computational geography {eg. Openshaw
and Abrahart, 2000) and the proposal of systematizing geographic
information system {GIS) practice into a more structured “geographic
information science” (Goodchild, 1992), GIS functions have started
being studied not just as software functionalities, but rather as
“methods” to be used for broad classes of geographic modeling
problems. This has fostered the inclusion in GIS of generic operators
enabling the construction of simulation models of environmental
processes, without the need to code separate numerical models to be
eventually coupled with GIS. Examples of this approach, also enabling
time-dependent simulation, are provided by the GIS package PCRaster
{Van Deursen, 1995: Karssenberg, 2002) which has been also used to
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build a pan-European hydrologic model (De Roo et al., 2000). Another
example is the functionality provided by popular ESRI products
Arclnfo®© and, more recently, ArcGIS©, to perform simple groundwater
contaminant modeling by combining flow path analysis and time-
dependent dispersion {see Tauxe, 1994, for further details).

We focus here on an approach, conceptually similar to the analytic
elements, proposed in the field of chemical fate modeling, grounding on
simple standard GlS-analytical operations, including local drainage
delineation and map algebra, to describe the spatial patterns of
contaminants (Pistocchi, 2005, 2008b). The basic idea of this approach
is to replace the numerical solution to the ADE with a superposition of
local analytical solutions: in most cases the spatial distribution of
chemicals in the environment can be described as a reasonable first
approximation using very simple conceptual schemes, and particularly
the elementary flow schemes traditionally applied in compartmental
analysis: besides the already mentioned box model, or “continuous
stirred tank reactor” {CSTR), the plug-flow (PF) and Gaussian plume
(GP) models usually represent well most of the typical environmental
distributions.

4.1. The plug-fiow model

For instance, a PF model is often the elective tool for simulation of
river quality {e.g. Chapra, 1997). In this case, concentration of a
chemical substance along the stream network downstream of an
emission of intensity E is described by the analytical solution:

_ E -3
Cigy = me {13

where w is the stream velocity, x the curvilinear abscissa along the
stream line I originating from the emission point, with origin £ =0 at
the location of emission, af§) is the stream cross sectional area
{which can be represented as in Pistocchi and Pennington, 2006), and
k is the first-order decay constant of the chemical.

When w and/or k are not constang but depend on &, the exponential in
Eq. (1) needs to be replaced by ¢~ Jo ¥ _The formula can be computed
practically as explained by Pistocchi {2005). The curvilinear abscissa € can
always be converted to geographic coordinates (xy) given the position of
the stream network.

4.2. The Gaussian plume model

The GP model is used for screening level modeling of air emissions
{e.g. Turner, 1994), groundwater pollution {e.g. Domenico and Schwarz,
1998), and ocean or lake dispersion problems {Csanady, 1973). In this
case, concentration downstream or downwind of an emission, within a
field of wind or water current of constant intensity w and direction
parallel to the p-axis. is:

2

Ee_ (#) kP
Cp.q) oW {ap”}e : {2}
ap Is a parameter representing dilution near the source and is
conceptually similar to a mixing depth/height, as discussed in Pistocchi
and Galmarini (in press), while g and b represent empirical parameters
of plume dispersion. It is clear that the Gaussian plume scheme cannot
be used when variations in wind or current direction and intensity are
relevant, as in the case of continental scale modeling. However, with
reference to atmospheric dispersion in the European context, ithas been
shown that Eq. {2) can be replaced with the following:

Cn,) = = 5 e )
0

with £ ={p® 4+ ¢°)%°, which proves valid over long distances, irrespec-
tive of wind, w {Pistocchi and Galmarini, in press). Also, those authors
suggest acceptable values of parameters o, b and w generally applicable
in Europe for screening level modeling.

4.3, The continuous stirred tank reactor

For the CSTR model, concentration is:

tpty= — |4 = (3}

E [ B(E)
a, E[Ek+ w

where £ is the side length of the CSTR. e represents the mixing height
or depth of the CSTR, W is the average wind or water current speed
within the CSTR, and &(% ) is the integral of the Dirac delta function over
the CSTR, equal to 1 for £ <£ and 0 for £ £ Eq. {3) can be used only to
predict the concentration at the emission location, but not outside of
it. This scheme can then be used when dilution outside of the emission
location is so high that concentrations become negligible, as is the
case of small emissions to the ocean compartment, or when k
dominates over apw, i.e. advection is negligible.

4.4. Generalization for GIS-based modeling

Using these simple flow schemes allows the prediction of the local
pattern of concentration by assuming a priori the mathematical shape
of the patterns of concentration arising from a given source, The three
simple models of Eqgs. {1), {2') and {3) can be used to compute con-
centrations everywhere in space arising from a single emission at a
given location. Their characteristic is that they are just algebraic com-
binations of functions of spatially distributed parameters and an
appropriate distance from emissions, in the form:

E

C= ER (4}

where E is the emission value, and D and R are maps representing the
“dilution function” D and the “removal function” R, and can be
represented as maps as a function of an appropriate distance § from
the source of emission. Table 1 summarizes the meaning of terms R, D
and the type of distance £ to be used in Eq. {4) for the cases discussed
above.

For a spatial distribution of emissions, the linearity of the ADE
considered here allows to simply superimpose the results from the
different emissions. The most trivial case is for Eq. (3); in this case, one
may consider a map of emissions E and maps of k, o and W values,
and the overall results is just the algebraic combination of these maps.
For the case of Eq. {1), it is possible to use specific superimposition
functions known as “flow accumulation” {Burrough and McDonnell,
1998; Pistocchi, 2005). An example of this type of calculation is shown
in Fig. 1. For Eq. (27}, one calculation for each emission location is
required, and then results for all emission points need to be summed
together. This may become very impractical for a large number of
emissions, but it is still very convenient for a limited number of
sources {of the order of 10%), compared with running complex
numerical models (Vizcaino and Pistocchi, in preparation). An
example of this calculation is shown in Fig. 2. Calculations conducted
in this way are usually much quicker than the corresponding
numerical models. Also, the model resolution is not as strongly
limiting as in the case of numerical methods, because it is not related
to the order of a system of equations to be solved, as in the case of
models based on the ADE.

The use of these simplified models, implemented directly using
GIS-analytical capabilities, allows obtaining reasonably realistic
spatial distributions of chemical concentrations, through extremely
simple calculations. This has been shown with reference to the
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continental distribution of PCBs and dioXins in Europe (Pistocchi,
2008b): to the fate of pyrethroid insecticides in Europe {Pistocchi et
al., 2009); to the distribution of lindane in Europe (Vizcaino et al., in
preparation); and industrial emissions from the European Pollution
Emission Register (EPER) (Pistocchi and Galmarini, in press).

5. Relevant landscape and climate parameters for spatially explicit
chemical fate models

5.1. Data availability on the Digital Earth

An aspect of utmost importance in the use of spatially explicit
chemical fate models is the choice of landscape and climate pa-
rameters. There is now an unprecedented availability of spatial in-
formation covering the whole globe, and more in detail specific
regions such as the US or, more recently, Europe. In the years from the
first theoretical discussions on the “Digital Earth” concept {Wikipedia,
not dated) in the early 1990s, to the implementation of Google Earth
and similar tools in mid 2000s, all human activities, and particularly
scientific investigation, have seen their geographic dimension
enormously empowered and made explicit. In Europe, the adoption
of a directive on an infrastructure for spatial information {EC of the
Directive, 2007) promises to consolidate a scenario where landscape
and climate parameters no longer represent a problem for fate and
transport modeling: similar conditions occur in other parts of the
world. Fate and transport models require a potentially endless list of
landscape and climate variables, of which the most common are
summarized in Table 2. It is not uncommon that new mechanisms,
and consequently new environmental parameters required for their
representation. come to the attention of researchers. For instance:

— In recent times, studies on the effects of intermittent rainfall have
suggested the utility of the number of dry days per month as a
proxy in fate and transport medeling {Jolliet and Hauschild, 2005);

— The importance of sinking fluxes associated with organic matter
has suggested the use of chlorophyll in seawater (Dachs et al.,
2002): and

— Studies on the sorption of chemicals to suspended matter in air or
water support the adoption of more complex parameterization of
these variables (Gotz et al., 2007).

A relevant impulse to the development of spatial data sets has
been given by increasingly available remote sensing products, more
and more used also in the field of chemical fate modeling {e.g.
Vijayaghavan et al., 2008; Jurado et al, 2004; Montzka et al., 2008;
Boschetti et al.,, 2006).

5.2. Data assimilation

In particular, data assimilation techniques bringing together remote
sensing datasets with deterministic modeling results bear great potential
for improving further the realism of environmental characterization
provided by the respective models. This can be of particular importance
when assessing the link between environmental pressure and human
health risk (Sarigiannis et al, 2002, 2004). A good example of the
usefulness of data assimilation in this regard is given by the study of
particulate matter pollution in the ambient air at the regional scale. At
this scale several problems with the spatial and temporal coverage of the
environmental monitoring networks hamper the efficacy of pollution
pattern determination. Lack of accuracy in key input parameters,
including emission inventories, constrain the applicability of complex
atmospheric models. Assimilation of particulate matter data from
ground-based measurements with optical indicators of pollution such
as turbidity as measured by the optical depth of atmospheric aerosol can
enhance both the spatial extent and validicy of the air pollution data in a
spatially resolved manner. This allows the generation of a model for
translating optical indices into pollutant concentrations with the aid of

ancillary models and data sets such as meteorological and landscape
information {Fig. 3{A)). Further fusion of this model with results from
deterministic atmospheric fate modeling using decision-theory based
algorithms to optimize the assimilation of the underlying data on the
basis of self~estimates of uncertainty {e.g. using the well known Kalman
filcer] resules in a meta-modeling system, which optimizes the
uncertainty profiles across the computational domain (Fig. 3(B)). The
model fusion algorithm assigns automatically variable weights to the
different data sources (e.g. the atmospheric fate models, see Fig. 3{C))
depending on the determination of the minimal residual error of the
method across the computational domain. The final result is an improved
map of the horizontal profile of PM10 concentrations, characterized by
optimal use of all relevant datasets and models (Fig. 3{D)).

5.3, Types of variability in landscape and climate data, and their relevance
in spatial predictions

It should be stressed that the required detail in the description of the
environment depends on the purpose of modeling. Some parameters
are intrinsically so highly variable, that an explicit account of their
spatial distribution increases the variabilicy of predicted chemical
concentrations, but does not provide any better insight on the spatial
trends, hot spots etc., which are dominated by the interplay between
emissions and environmental parameters. As an example, let's consider
the case of a random emission to soil ata number of locations (Fig. 4{A)),
for a chemical subject to degradation only (ie.. all other removal
mechanisms are negligible ). Let's also assume that degradation follows a
strong exponential trend with temperature, increasing with location
number. The distribution of predicted mass, i.e. ratio of emission to
degradation rate, will follow an exponential decrease consistent with
the trend in degradation {Fig. 4(B)). The oscillations of mass across the
trend depend on the variabilicy of emissions. Let's now assume that
degradation rates are distributed randomly, following a Gaussian
distribution with the same mean and standard deviation as the
temperature-dependent rates. We have then a distribution of predicted
masses as in Fig. 4{C). If we eventually replace the random-varying rate
of Fig. 4{C) with the average of removal rates, we obtain the distribution
of predicted masses of Fig. 4{D). In Fig. 4{C), inclusion of the spatial
variability of the degradation rate increases significantly the variabilicy
of mass, but does not allow detecting trends. Therefore, it is appropriate
to include the variabilicy of the degradation rate if one is interested in
extremes, but not if one wants to highlight hotspots or geographical
trends.

In reality, the different parameters used in models may or may not
show a spatial trend. Fig. 5 shows examples of such parameters, which
appear to have different evidence of spatial trends. An objective way
to detect spatial trend. as is well known. is to draw the variogram of a
spatially distributed variable, i.e. the plot of the variance of data points
at a given spatial distance, as a function of the distance itself {see e.g.
Clark, 1979), as is common practice in the geostatistical analysis of
data.

6. The evaluation of spatially explicit models

An issue of key importance in any modeling exercise is the
evaluation of models with observations. [n the specific case of spatially
explicit fate models of chemicals, evaluation poses a number of issues.
First of all, chemicals are typically measured in the environment at trace
levels, the collection of sufficiently representative samples may be
extremely difficult and, sometimes, analytical procedures are not
sufficiently consolidated. and do not provide sufficient quality assurance
{eg. Lepom et al, 2009; Quevauviller et al., 2007).

Even when good sampling and analytical procedures exist, the
costs of sample collection and analysis often make data generally
rather rare and sparse; especially for substances of high variability in
time and space, it is extremely difficulc to build a data set of samples



well representing the “true” spatial distribution. More often, samples
only reflect the statistics of environmental concentrations, and not
values that can be considered stable point-wise, hence used for the
point-wise assessment of models. For this purpose, only observational
data should be used that were originally conceived and developed as
“spatial™; these data are increasingly available for large regions or the
globe, e.g. from monitoring of lipids from commercial milk products
(Kalantzi et al., 2001; Weiss et al., 2005; Malisch and Dilara, 2007), air
passive samplers (Gioia et al, 2007; Jaward et al, 2004), and
systematic spatial sampling of a given environmental medium (Mejier
et al, 2003; Loos et al., 2009).

For these reasons, with spatial predictions we do not necessarily
seek to match monitoring data to an extreme accuracy: modeling
exercises have been judged successful or useful even when highlight-
ing orders-of-magnitude discrepancies with observations; models
may happen to be considered acceptable when matching orders of
magnitude with no or weak correlation with observations in space,
and such correlation has been demonstrated to be sufficiently high
only in a few cases. When selecting the level of computational
complexity of fate models, the fact that model evaluation is at least
troublesome and sometimes impossible with the given data available
cannot be ignored. Therefore, on the one hand using comprehensive
models describing detailed mechanisms of transport in the environ-
ment may be useful in order to provide a benchmark; on the other
hand, considering that no model represents the truth and even highly
physics-based models introduce at some point semi-empirical
parameterizations and arbitrary assumptions, complex models may
tend to lack transparency and hide some of their assumptions behind
their own complexity, thus making the tracking of model errors a
difficult task: moreover, their realistic-looking output based on great
computational capabilities tends to define a virtual reality obeying the
rules included in the model, and thus pushing simpler models to
mimic their output rather than observations, in turn scarce and
difficult to retrieve. This basically obliterates the lines of research not
included in the development of the complex models used as
benchmark.

7. Conclusions and perspectives: GIS-supported revival of
simple models?

7.1. Models and observations in hypothesis testing

In the last decades, voices have been raised against the
development of overly complex models, especially in such fields as
hydrology, where terrific computational developments have eventu-
ally shown that little further progress can come from modeling, and
relevant steps forward are necessarily related to developments in
measurement techniques {e.g. Beven, 2001). On the contrary, a very
strong movement has grown in parallel, aimed at fostering the use of
models as tools for hypothesis testing rather than accurate simulators
of reality (e.g. Beven, 2006). This has brought researchers and
practitioners to reconsider simple models not just as remainders
from the times when computation was expensive, but rather as
parsimonious ways to interpret the complex reality in the presence of
limited experimental information, hence preferable according to the
Ockham's razor principle. The same considerations apply to chemical
fate assessment, an area where hardly any further development is
expected on the computational side, if not paralleled by substantial
advances on observations.

7.2. The crucial role of chemical emission nraps

Current limitations in the development of chemical face models are
identified mainly in the lack of information on chemical emissions to
the environment; therefore, developing complex and computation-
intensive models, which involve a high effort in development, is likely

to bring no better results than much simpler calculations that can be
crudely summarized as estimates of chemical masses by algebraic
combination of maps of emissions and dilution or removal factors
(Eq. (4)). This is true in general, but particularly so for spatially
explicit models, where emissions explain usually a very large amount
of the variance in environmental concentrations of a given chemical.
In chis case, the most critical piece of information, and the most
relevant area of research, seems to be about emission inventorying
(e.g. Pistocchi and Bidoglio, in preparation; Hollander et al, in
preparation; Pistocchi and Loos, 2009).

7.3. Way forward: maps and simple calculations for hypothesis testing

In this paper, we have discussed a few aspects related to the
development and use of spatially explicic models for the prediction of
chemical fate at the scale of the European continent and similarly large
regions. A shift in model use from process simulation to hypothesis
testing is under progress, in which explaining the discrepancies
between observed and computed chemical concentrations in the
environment takes importance over prediction per se.

This shift may take advantage of using simple models with residual
uses of complex models for detailed studies, under conditions of high
uncertainty concerning emissions and environmental processes such
as phase partitioning and degradation. ln addition, GIS technology and
methods invite to developing models by reasoning in terms of maps,
keeping the model structure extremely simple (as to be implemented
with map algebra) and capitalize on spatial data to refine the spatial
representation of environmental drivers such as landscape and
climate variables, and better emission estimates.

The problem. in this perspective, becomes one of producing
appropriate maps of emissions, on the one hand, and removal rates,
on the other hand; the latter capitalize on available spatial data sets of
landscape and climate parameters such as air temperature, vegeta-
tion, precipitation, soil organic carbon content, runoff, etc., which are
increasingly available for large regions also as a consequence of
developments in remote sensing of the earth system. Such simple
calculations based on a wealth of spatial information on environmen-
tal variables maintain an ease of tracking errors, visualizing
intermediate results and discussing in a quick and productive way
the orders of magnitude of phenomena of which the interplay results
in the environmental concentration of chemicals. At the same time,
this approach lends itself to reducing the error of the overall
environmental fate assessment across the spatial domain of study.
This can be achieved by the application of model fusion techniques
employing decision-theory approaches and information filcers (such
as the Kalman filter) to optimize the relative importance of different
superimposed modeling results on the basis of a weight-of-evidence
approach. This approach, which so far has been successfully
implemented in atmospheric pollution problems for integrating
satellite-based remote sensing with atmospheric models and
ground-based air quality monitoring data, could be a viable
advancement towards the enhanced utilization of GIS-based envi-
ronmental fate models at the continental and regional scale.

[t can be stated, in summary, that the problem is not “how to compute”
{given the wealth of available numerical methods. spatial/temporal model
ressolution, quantitative uncertainty and sensitivity analysis techniques,
etc.) but “what to compute™, as often our knowledge of emissions and
environmental processes, and our chemical monitoring systems limit the
application of even very simple models.
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