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Abstract—Information Reconciliation is a mechanism that to reconcile the two sets. In [6] it was analyzed the use of a
allows to weed out the discrepancies between two correlated discrete number of Low-Density Parity-Check (LDPC) codes
variables. It is an essential component in every key agreement optimized for the binary symmetric channel. As a consegeenc
protocol where the key has to be transmitted through a noisy . . . . S
channel. The typical case is in the satellite scenario described bythe eﬁ'c'enc}’ e_Xh'b'ted an staircase-like behaviour: amdte )
Maurer in the early 90's. Recently the need has arisen in relation Was used within a range of error rates and the reconciliation
with Quantum Key Distribution (QKD) protocols, where it is  efficiency was maximized only in the region close to the cede’
very important not to reveal unnecessary information in order threshold.
to maximize the shared key length. In this work, we develop the idea of using LDPC codes op-

In this paper we present an information reconciliation protocol .. . . .
based on a rate compatible construction of Low Density Parity timized for the binary symmetric channel. We take these sode

Check codes. Our protocol improves the efficiency of the reconc @S an starting point and develop a rate compatible infoonati
liation for the whole range of error rates in the discrete variable reconciliation protocol with an efficiency close to optimkd
QKD context. Its adaptability together with its low interactivity  particular, the proposed protocol builds codes that minémi

me}t:jse;thrpr?wcialgevc\;,g:cfllij;t?:nfcl)évsggn;?tflopn:;iiltist::%rgck (LDPO) the exchanged information for error probabilities betwegn

il - - 1 . . .

codes, punctusring, shortening, rate-compatible. gnléJIDl()% t,ert:e expected values in real implementations of
systems.

This solution addresses the rate adaptation problem (open
problem 2) from the recent review paper of Matsumoto [8] in
The general scenario for information reconciliation is onghich he lists the problems that an LDPC solution should
in which two parties have two sets of correlated data wiibvercome in order to compare advantageously to current
some discrepancies between them. The situation is eqoivalgteractive reconciliation solutions.
to transmit the data from one party to the other through anois The paper is organised as follows: In Section Il the main
channel, akin in the satellite scenario described by Mgdier ideas are discussed. A new Information Reconciliationd?rot
In a Quantum Key Distribution (QKD) protocol, errors aresol able to adapt to different channel parameters is predent
generated in the communications channel either by thesieterand its asymptotic behavior discussed. In Section Il tiselte
tion of the quantum information carrier with the environrhenof a practical implementation of the protocol are shown. In
by imperfections in the QKD device or by an eavesdroppegjarticular we have analyzed the rate compared to the optimal
The two parties participating in the communication, Alicgalue and the reconciliation efficiency.
and Bob, thus have two sets of correlated data from which
a common set must be extracted. This problem has beeld- RATE COMPATIBLE INFORMATION RECONCILIATION

previously subject to consideration [2], [3], [4], [5], [6F iS  Information Reconciliation

a process known as key distillation, that requires a disonss Let X andY be two of correlated variables belonging to
carried over an authenticated classical channel. It isantae Alice and Bob, andk andy their outcome strings, Informa-
in the sense that it needs communications through the chanrt}gn Reconcilia,ltion [2] is a mechanism that a||0\’NS them to
Since it can also be listened by an eavesdropper, it is impbrteliminate the discrepancies betweerandy and agree on a
to minimize the amount of information that have to be transs-,[ring S(x) —with possiblyS(x) = x

mitted in the reconciliation process. Any extra informatio The problem of information recoﬁciliation can be seen as
limits the performance of the QKD implementation. In theor}/he source coding problem with side information (see Fig
one could minimize the information leakage using a highl ). Thus, as shown by Slepian and Wolf [9], the minimum.
interactive protocol, but in practical applications thisud : ' '

- e information I that Alice would have to send to Bob in order
lead to a prohibitively large communication overhead tigiou to help him reconciley” and X is I,,, — H(X|Y). Takin
the network, limiting also the effective keyrate. P opt "~ ' 9

. : - . into account that real reconciliation will not be optimale w
Itis in this scenario where modern Forward Error Correction P 4

(FEC) i.S an interesting solution. The idea i_s to make use Ofitne maximum error thresholds for extracting an absolute s&esein a
FEC's inherent advantage of requiring a single channel uQgD protocol is11% [7].

I. INTRODUCTION
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Fig. 1. Source coding with side information.
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I A —— Shortened
use a parametef > 1 as a quality figure for the reconciliation e s cs s
efficiency:
Fig. 2. Example of puncturing and shortening applied to a cegeesented

1 by a Tanner graph. The rate of the original codeRis= (n — m)/n =
@) (8 —4)/8 = 1/2. After puncturing two symbol nodes (indicated in the graph
. . . . with dashed lines) the new rate is increasedte= (8 —4)/(8 —2) = 2/3.

Here we will concentrate on binary variables, which applghortening one symbol of the original code (indicated witiskisolid lines)
to discrete variable QKD, although the ideas are directlgads to a new rate o = ((8 — 1) — 4)/(8 — 1) = 3/7. Puncturing
applicable to other scenarios. two symbols and shortening one the original code leads toeaghfz =

. . . .. (B=1)—4)/(8—2—-1)=3/5.

The most widely used protocol for information reconcilia-

Irear = fH(X|Y) > IOPt

tion in QKD is Cascade[2], because of its simplicity and Ajice Bob
good efficiency.Cascadeis a highly interactive protocol that ‘ % y o
runs for a certain number of passes. In each pass, Alice andP — BSC ——>

Bob both perform the same permutation on their respective

strings, divide them in blocks of the same size and exchange 3 m(y), pos(y) Step 2:

the parities of the blocks. Whenever there is a mismatch th8&tep 3:
perform a dichotomic search to find an error, finding ong- — m(x)w;m(w
usually means discovering more errors left in previous gmss

. . . . . . .. X+:g(xvﬂ-p*70p*)
The main handicap ofCascadeis its high interactivity.

p*, s(xt)

. _— s(x*):H.XJF >
Buttler et al [10] proposed Winnow, a reconciliation praibc Step 4:
where instead of exchanging block parities, Alice and Bob +
. . Kk k y g(Y7 71—p"vo—p*)
exchange the syndrome of a Hamming code. Their protocol ack/nac N
< x = Decode(y ™, p*)

succeeded in reducing the interactivity but, in the errogea
of interest for QKD, the efficiency was worse than that of
Cascade

There has been further work on improving the efficiency of

Cascadédike protocols. In [11] the block size is optimized,means deleting a predefined setpafymbols from each word,
while in [12] the emphasis is put on minimizing the informagonverting a[n, k] code into ajn — p, k] code. Shortening
tion sent to correct one error on each pass. means deleting a set efsymbols from the encoding process,
converting a[n, k] code into a[n — s,k — s] code. Both

) ) |processes allow to modulate the rate of the code as:
LDPC codes were introduced by Gallager in the early

60's [13]. They are linear codes with a sparse parity check
matrix.

A family of LDPC codes is defined by twgenerating
polynomials[14], A(x) and p(z):

Fig. 3. Protocol sequence diagram.

Definitions

Ry — k—
R— 0 g _ S
l-m—0 n—p-—s

(4)

wheren and o represent the ratios of information punctured
and shortened respectively, atit) is the rate of the initial
S code (see Fig. 2 for an example).

d d
Mz)= > X p@)= Y pet @D 1he protocol
i=2 =2

) o Standard puncturing and shortening need an a priori knowl-
where A(z) and p(z) define degree distributions\; and i g4ge about the channel in order to adapt the rate. The Bit

indicate the proportion (normalized‘ﬂc) of edges connected grror Rate (BER) in the case of QKD protocols is an a priori
to symbol and check nodes of degreeespectively. The rate \n.nown value, hence it is important to be able to construct
Ry of the family of LDPC codes is defined as: codes that can adapt to the varying BER values that might
S /i appear during a QKD transmission. In order to cope with this,
Ry=1- 217/ (3) we propose an inverse puncturing and shortening protdeat, t
iPill is performed after the distribution of the correlated Vales.
Two common strategies to adapt the rate to the channelThe protocol assumes the existence of a shared pool of
parameters are puncturing and shortening [15]. Puncturiogdes of lengthn, adjusted for different rates. Depending

Smax



on the range of crossover probabilities to be corrected, a
parametep is chosen to set the proportion of bits to be either o
shortened ) or punctured £; § = 7 + o). § defines the
achievable ratesk, through: I — 1

Ry—9 Ry

5 SBs1—5 ®) .
with Ry being the rate of the code selected from the pool. Fal-
an [n, k] code this would mean - = bits puncturedn - o bits
shortened ana - (1 — 0) bits transmitted over the BSC (see
Fig. 4). The number of symbols not to be sentlis- |§ - n].

The protocol goes through the following steps:

Step 1: Alice sends to Bob a message an instance of 1-0
variable X, of size/ = n — d through a BSC of crossover
probability p (or a black box behaving as such). Bob receives
the correlated messagg,

Step 2:Bob chooses randombybits of y, m(y), and sends Fig. 4. Channel model. The protocol described can be integras a

plom prmgay

S[OQUIAS 1108 WOpURY]

them and their positiongios(y), to Alice. communication through three channels with different prolitas: a noiseless
Step 3: Using pos(y), Alice extractsm(x) and estimates channel with probabilityr, a BEQ1) with probability =, and a BSCp) with
the crossover probability: probability 1 — 4.
Pt = M (6) been designed with a ratB = 1 — £(0.08)h(0.08) = 1 —
(1.12)(0.402) = 0.55. Then she obtains = 2.25 x 10°, and

Once Alice has estimategt, she knows the theoretical rate. 975 % 10°
for a punctured and shortened code able to correct the StriﬁgIn the case in which the protocol is used to reconcile secret

Now she. must decide what is the OP“”Ta' rate Cgrresgo_ndngys, several modifications have to be done. In step 1 the size
to the efficiency of the code she is using:= 1 f(p")h(»"); * gnould be increased by ¢ — n— d-+¢. In step 2, Bob should
Wher?rhblsl th_le_:hbmaE/ entrogy 'funcrt]lon apﬁ tlhe Iefﬁm;ancdy discard from his stringx, thet bits that have been published.
(E_‘\'g' ab. I). Then she can derive the optimal valuesstan Finally, in step 3, Alice should also discard thepublished

p: bits from hers.

s = [(Ro — R(1—d/n)) - n] Performange arllalysis . | .
(7) We are first interested in the range of rates in which the
protocol can be used and the expected efficiency if the codes

Alice creates now a string* = g(x, op+, mp+) Of sizen. are long enough. The threshold value is calculated using the

The functiong defines then — d positions are going to have density evolution algorithm [14], and in particular we have

the values of stringx, the p positions that are going to beimplemented the discretized version of Chung et al [16]. The

assigned random values, and thepositions that are going equation used to track the evolution of the density functson

to have values known by Alice and Bob. The setrof d

positions, the set op positions and the set of positions P = p(puy * A(pD)) (8)

and their values come from a synchronized pseudo—randor‘ﬂ D) is th babili f . h bol
generator. She then sengds™), the syndrome ok*, to Bop WNEr€pu 1S the probability mass function at the symbols

as well as the estimated crossover probabjlity during iteration!, and p,, is the initial message density

Step 4:Bob can reproduce Alice’s estimation of the optimaﬁ“StribUtion’ which in our case is:
rate R, the positions of the punctured bits, and the positions
and values of thes stlorten(ed bits, an)d then he creates the Puy () = (1 — 5)p5§<:($> +70o(z) + 0A(z)  (9)
corresponding string™ = g(y, op*, Tp+). BSC/ A
Bob should now be able to decode Alice’s codeword with"€"€Pus (2) = PA—tog 2 (2) + (1 = P)A_jo 120 (w), and
high probability, as the rate has been adapted to the chanfef) = dairac(z — 1).

crossover probability. He finally sends an acknowledge to©" Fig- 5 we track the evolution of the threshold for
Alice to indicate if he successfully recovered . the code with rate one half in [6], it can be observed how

Example: Calculation ofs andp for step 3. Alice and Bob different yalues of§ offer a _tr_adeoff between the range of
use a[10%,5 x 10°] code,d = 107, and they have found out "at€s achievable and the efficiency. _ 3
that the efficiency of their reconciliation behaves fg) = In [14] it is presented a condition for decoding stability:
1.1 4+ |p — 0.1]. When Alice estimates the discrepancy, she 1
finds thatp* = 0.08. If the code were optimal, it would have N(0)p'(1) <

p=d—s

(10)
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0.55 ‘
wheree™" is defined as:
0.54 -
e " = / Dug (x)e_””/zdx (12)
. 7 053 |-
operating: § Omn
1 0.52 + O m™o0=0.1
A2 < (12) L 2 T80=0.25
2 1-p)(1-96 (1 '
(2v/pT=p)(1 = 8) +m)p'(1) I DR
which imposes a limitation when choosing a code: it has to L Shannon limit
be stable for the whole range of rates in which it will be used. 05 S R S
A code with A\, close to the stability limit forR, can become 0.06 0.07 0.08 0.09 0.1 0.11
unstable for for high values of. BER
I1l. SIMULATION RESULTS Fig. 7. Enlarged figure of the portion marked with a dashed ilnEig. 6.

In order to understand the behavior of the protocol desdribe
in section I, we analyze the rate compared to the optimal
value. d € {0.1,0.25,0.5}, and it is compared with the rate achieved

The family of LDPC codes used in our simulations havBy the code in the case that it were only punctured and
been obtained from [6] and the Tanner graphs have bé@ﬁh the Shannon limit. These results hlghllght that, oroe t
constructed using a modified Progressive Edge-Growth (PE@¥onciliation problem has been characterized and it isvkno
algorithm [17]. This improved PEG construction is based dfe range of possible error ratesshould be chosen as small
the original [18], but it also takes into accoustr), the check @s possible. If5 is found to be too big, then it should be
distribution polynomial. We have used a single code of lengEonsidered enlarging the pool with codes that cover differe
n = 200.000, a reasonable lower bound of the expected lengtftes. This behaviour can be more clearly seen in the enlarge
in QKD transmission. Biggen values would improve the figure (Fig. 7) displaying the rate range frafihv= 0.5 to 0.55.
performance of the protoc0| (by increasing the reconwi’at The minimum Value 05 that a.”OWS to cover the entil‘e interval
efﬁciency)_ The rate is one ha'f, that allows to cover a”gan is § = 0.1. For this value the deCOding performance is similar
of expected BERs. Simulations have been done with an LDB@[6]. However, with this protocol we are able to reconcile a
decoder based on belief propagation, with a maximum numkﬁg‘ntinuum of crossover prObab”itieS. For the other valags
of 2000 iterations per simulation. The LDPC decoder has beénthe performance is worse, however it should be noted that
modified to work with puncturing and shortening, adding twéarefully choosing which symbols should be punctured and
new log-likelihood ratios for the initialization of puncturing, Which ones shortened could improve on these results [19],
~, = 0, and shorteningy, = oo, respectively. The points in [20], [21].
the different figures havey; < 1076, Looking at Table | we can see the effect of the protocol on

In Fig. 6 we present the maximum BER reached overthe efficiency of the reconciliation. When close enoughkip
BSC with the rates going fronR = 0.5 to 0.7 using different it is close to one, and for small enoughvalues it remains
values of thed parameter to regulate the puncturing andlose to one for the whole set of rates, which is not the case
shortening. The strong dependence of the rate with paramdte the higherd values as expected by the thresholds found in
0 is clearly seen. This figure shows the rate achievable fBig. 5.



125 =T REFERENCES
AN \~\ [1] U. M. Maurer, “Secret key agreement by public discussiamf common
12 s A ] information,” Information Theory, IEEE Transactions ,oxol. 39, pp.
[ ) ~~eo threshold i+ 0 = 0.5 733-742, 1993.
1 150 N SR LT B [2] G. Brassard and L. Salvail, “Secret-key reconciliatioyp public dis-
o 5\ cussion,” inEurocrypt'93, Workshop on the theory and application of
2 L threshold %, cryptographic techniques on Advances in cryptolasyr. Lecture Notes
E 11 m+ro=025 ] in Computer Science, vol. 765. Springer-Verlag, 1994, p©—423.
W= . [3] S. Watanabe, R. Matsumoto, T. Uyematsu, and Y. Kawano, “Kdg
OoTm SNee L of quantum key distribution with hashed two-way classicaiemuni-
105 o mo=01 = TTTmmmsmemaaool ] cation,” in Information Theory, IEEE International Symposium dan.
[ A THG=0.25 2007, pp. 2601-2605.
L : threshold m+ 0 =0.1 [4] S. Watanabe, R. Matsumoto, and T. Uyematsu, “Tomographegases
1 L ! ! ! ! ! ‘ ! key rates of quantum-key-distribution protocolBhys. Rev. Avol. 78,
0.05 0.06 0.07 0.08 0.09 0.1 no. 4, p. 042316, 2008.
BER [5] A. Leverrier, R. Alltaume, J. Boutros, G.é&mor, and P. Grangier,
“Multidimensional reconciliation for continuous-variguantum key
: e - distribution,” Phys. Rev. Avol. 77, no. 4, pp. 042 325—+, Apr. 2008.
Fig- 8. Reconciliation efficiency calculated from Eq. 1. [6] D. Elkouss, A. Leverrier, R. Alleaume, and J. J. BoutroEffitient
reconciliation protocol for discrete-variable quantuny kdistribution,”
TABLE | in Information Theory, 2009 IEEE International Symposium dal.
EFFICIENCY CALCULATED FROMEQ. 1. 2009, pp. 1879-1883.
[7] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantucnyptogra-
5=0.1 5 =0.25 5=05 phy,” Rev. of Mod. Physvol. 74, no. 1, pp. 145-195, Mar. 2002.
R2 BERP fe BER f BER f [8] R. Matsumoto, “Problems in application of Idpc codes tooinfiation
051 00945 1.0855 0.0885 1.1356 0.0756 1.2675 reconciliation in quantum key distribution protocols,” @) [Online].
0.52 0092 1.0836 0.0868 11276 0.0739 1.262 Available: arXiv.org:0908.2042 _ o
053 0.0885 1.0892 0.0834 1.1355 0.0696 1.2895 [9] D. Slepian and J. Wolf, “Noiseless coding of correlatedormation
054 00851 1.0957 0.0808 1.136 0.067 1.2966 sources,Information Theory, IEEE Transactions ovol. 19, no. 4, pp.
0.55 0.0834 1.0877 00773 1.1457 0.0645 1.3048 471-480, Jul. 1973. _
0.56 0.0756 1.1382 0.0619 1.314 [10] W. Buttler, S. Lamoreaux, J. Torgerson, G. Nickel, C. Bone, and
057 0.0722 1.1496 0.0584 1.3386 C. Peterson, “Fast, efficient error reconciliation for guam cryptogra-
0.58 0.0705 1.1423 0.0559 1.3513 phy,” Phys. Rev. Avol. 67, no. 5, pp. 052 303—+, May 2003.
0.59 0.067 1.1557 0.0541 1.3659 [11] T. Sugimoto and K. Yamazaki, “A study on secret key rechaiidn
0.6 0.0645 1.1598 0.0516 1.3651 protocol cascadeEICE Trans. Fundamentalsol. E83-A, no. 10, pp.
0.61 0.0627 1.1531 1987-1991, Oct. 2000.
0.62 0.0584 1.183 [12] S. Liu, H. C. V. Tilborg, and M. V. Dijk, “A practical praicol
0.63 0.0567 1.1772 for advantage distillation and information reconciliatioles. Codes
0.64 0.055 1.1715 Cryptography vol. 30, no. 1, pp. 39-62, 2003.
0.65 0.0516 1.1945 [13] R. G. Gallager,Low-density parity-check codes MIT Press, Cam-

aRate after puncturing and shortening.
bMaximum bit error rate corrected.
CCorresponding efficiency for random puncturing and shamtgn

IV. CONCLUSION

(14]

(15]

(16]

We have demonstrated how to adapt an LDPC code f b

bridge,, 1963.

T. Richardson, M. Shokrollahi, and R. Urbanke, “Desigfncapacity-
approaching irregular low-density parity-check codésfbrmation The-
ory, IEEE Transactions grvol. 47, no. 2, pp. 619-637, Feb. 2001.
T. Tian and C. R. Jones, “Construction of rate-compatildpc codes
utilizing information shortening and parity puncturingURASIP J.
Wirel. Commun. Netwyvol. 2005, no. 5, pp. 789-795, 2005.

S.-Y. Chung, J. Forney, G.D., T. Richardson, and R. dkaa “On
the design of low-density parity-check codes within 0.0@#bof the
shannon limit,”Communications Letters, |IEEKoI. 5, no. 2, pp. 58-60,
Feb. 2001.

J. Martinez, D. Elkouss, D. Lancho, and V. Martin, “Ansgaand

rate compatibility. The capability to adapt to differentaer improved progressive edge growth constructiohy'be published else-
where

rates while minimizing the amount of published informatien ) ]
18] X.-Y. Hu, E. Eleftheriou, and D. Arnold, “Regular andegular progres-

an important feature for QKD ke_y reconciliation. Th_e p_ret_selLl sive edge-growth tanner graphbyformation Theory, IEEE Transactions
protocol alows to reach efficiencies close to one while limgit on, vol. 51, no. 1, pp. 386-398, Jan. 2005.

the information leakage and having the important practicéf] j- Ha‘i J. Ki_rtn, agd E Mdcl-sUfghlin,{fRaﬁhcomp?lt_:igg guﬂduotf_ low-
advantage Of |OW interactiVity. ensity parity-check code Aformation eory, ransactions on

vol. 50, no. 11, pp. 2824-2836, Nov. 2004.
Future work will concentrate on the optimization of th€20] G. Richter, S. Stiglmayr, and M. Bossert, “Optimized asytip punc-
i i turing distributions for different Idpc code constructighin Information
puncturing and Shortemng processes, now done randomly’ Theory, |IEEE International Symposium,aiul. 2006, pp. 831-835.

[21] D. Klinc, J. Ha, and S. McLaughlin, “Optimized punctugiand short-
ening distributions for nonbinary ldpc codes over the binarasure
channel,” inCommunication, Control, and Computing, 2008 46th Annual
Allerton Conference grSep. 2008, pp. 1053-1058.

ACKNOWLEDGMENT

This work has been partially supported by grant UPM/CAM
Q061005127.

The authors acknowledge the computer resources and as-
sistance provided by Centro de Supercompdtagi Visual-
izacion de Madrid (CeSViMa).



