
Measuring the Pro-Activity of Software Agents

Fernando Alonso, José L. Fuertes, Loïc Martínez
Facultad de Informática,

Universidad Politécnica de Madrid
28660 – Boadilla del Monte

Madrid, Spain
e-mail: {falonso, jfuertes, loic}@fi.upm.es

Héctor Soza
Escuela de Ingeniería,

Universidad Católica del Norte
Larrondo 1281

Coquimbo, Chile
e-mail: hsoza@ucn.cl

Abstract—Despite having well-defined characteristics, software
agents do not have a developed set of measures defining their
quality. Attempts at evaluating software agent quality have
focused on some agent aspects, like the development process,
whereas others focusing on the agent as a software product
have basically adopted measures associated with other
software paradigms, like procedural and object-oriented
concepts. Here we propose a set of measures for evaluating
software agent pro-activity, the software agent’s goal-driven
behavioral ability to take the initiative and satisfy its goals.

Keywords: Agents quality; pro-activity; software quality

I. INTRODUCTION
Some research has been conducted on adapting

procedural and object-oriented measures to evaluate agent-
oriented software [1], [2], [3]. However, few studies have
focused on developing measures exclusively targeting agent-
oriented software [3], [4]. In actual fact, there has been no
investigation to set up a quality model considering the
specific characteristics of a software agent.

The work presented here is part of a line of research
focusing on evaluating the overall quality of a software agent
as an autonomous entity interacting with other agents and
users. Early results measuring software agent social ability
and autonomy characteristics were presented in [5], and [6],
respectively.

This paper presents a set of measures for evaluating a
software agent’s pro-activity, considering its associated
attributes. Agent pro-activity means the agent’s ability to
exhibit goal-driven behavior by taking the initiative in order
to achieve its goals [7].

The paper is structured as follows. Section 2 presents
some related work on the development of agent software-
related measures. In Section 3 we discuss agent pro-activity
and its attributes. Section 4 suggests measures for agent pro-
activity. Section 5 summarizes the process of calculating
pro-activity and its application to a case study. The last
section includes some concluding remarks and future
research.

II. RELATED WORK
We have found very little relevant research on quality

measures related to agent pro-activity. Of the few examples,
Lin and Carley addressed the issue of proactive and reactive
agent style from a theoretical perspective. They proposed

evaluating the effect of agent style and found that it depends
on how the agent is trained and the internal condition under
which it operates [8].

Considering whether or not the agent dynamically
assumes the different goals and whether it is possible to
model goals, Cernuzzi and Rossi [9] evaluated software
agent pro-activity using discrete values.

Shin measured agent pro-activity by evaluating its
frequency of knowledge discovery [10]. This measure is the
result of calculating the number of messages that the agent
uses to discover knowledge.

So and Sonenberg [11] described an alternative approach
of interpreting proactive behavior in software agency, closely
related to the underpinning cognitive process. To
demonstrate a practical use of their model, they outlined a
meta-level control strategy that focuses agent attention on the
key aspects of its environment at runtime.

To the best of our knowledge, there is no more literature
related to measuring the characteristic of software agent
pro-activity. This is the focus of this research.

III. PRO-ACTIVITY AND ITS ATTRIBUTES
Following on from other studies of software quality [1],

[3], we divide quality into characteristics, subcharacteristics
(or attributes) and measures of the attributes. As a result, the
quality of the software agent will be evaluated by the set of
measures of the attributes, associated with each of the
characteristics.

It is well-known that the characteristics defining the
behavior of the software agent are social ability, autonomy,
pro-activity, reactivity, adaptability, intelligence and
mobility [4], [5], [12], [13].

As regards the characteristic of software agent pro-
activity, we propose, based on our experience with software
agents [5], [6] and the existing research [7], [14], that it
should be identified by three attributes:

• Initiative is the agent’s ability to take an action with
the aim of achieving its goals [13], [15]. Also, it is
the ability to satisfy its goals by means of goal-
driven behavior [7].

• Interaction is the agent’s ability to interact with
other agents, the user and its environment [14]. This
is important when a group of agents interact with
each other to solve a problem that is beyond the
ability and knowledge of each individual agent [16].

2010 Fifth International Conference on Software Engineering Advances

978-0-7695-4144-0/10 $26.00 © 2010 IEEE
DOI 10.1109/ICSEA.2010.55

319

2010 Fifth International Conference on Software Engineering Advances

978-0-7695-4144-0/10 $26.00 © 2010 IEEE
DOI 10.1109/ICSEA.2010.55

319

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148657555?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Agent interactions are important for the efficiency,
performance and overall quality of multi-agent
applications [17].

• Reaction is the ability to react to a stimulus from the
environment, according to stimulus/response
behavior [18]. Agents react appropriately according
to the context in which they operate [19].

IV. PRO-ACTIVITY MEASURES
First let us make some points about the measures and

then present the proposed measures for pro-activity
attributes.

A. Considerations about measures
Fig. 1 shows the formulae and their associated curves

that are used to normalize the pro-activity measures.

k

⎪⎩

⎪
⎨
⎧

>

−
≤≤

−

kxk
kx

e

kx
a

2

2)(
01

)(

⎪⎩

⎪
⎨
⎧

>

≤≤⎟
⎠
⎞

⎜
⎝
⎛−

kx

kx
k
x

k
x

b
1

02
)(

2

1 11)(≥
⎩
⎨
⎧ − x

x
c

0

1

0.5

k

kxxd k ≤≤++ 0)1(log)(1

Figure 1. Formula types used in the measures

We interviewed several agent-oriented software experts
about how each pro-activity measure should behave. This
way we were able to determine which the best curves for the
measures were. They are illustrated in Fig. 1.

The measures should be evaluated in a controlled
environment, called the benchmark. The benchmark
specifies the conditions in which the system under evaluation
should be run for each dynamic measure. This assures that
the evaluated measures are repeatable and comparable [20].

The measure for each attribute is a function of one or
more parameters. The results of each measure are normalized
in the interval [0, 1] (where 0 is a poor result and 1 is a good
result for the measure).

Curve (a) indicates that the value of the measure is
constant at 1 (optimum measure value) until x reaches a
value k (k indicates the point at which the value of the
measure should no longer be considered to be optimum). As
x grows, the value of the measure gradually descends to zero,
describing an exponential curve. Curve (b) indicates that the
measure grows, describing a parabola, as x increases up to a
value defined by the parameter k. At this point,
independently of the increasing value of x, the measure
reaches the maximum value 1. Curve (c) indicates that the
value of the measure grows rapidly, as x increases. Curve (d)
indicates that the measure grows, rapidly at first, and, as it
progresses, its value increases until it reaches the value 1
when x reaches the value k.

The formulae depend on the argument x, where x is a
value defined for each measure. The constant k is a
parameter that the software engineer can configure to fine
tune formula performance for each particular case.

B. Proposed measures for pro-activity attributes
The proposed measures for evaluating the attributes

defined for the software agent characteristic of pro-activity
are as follows. The measures that we have defined are based
on research on the agent paradigm, other measures selected
from other paradigms (procedural, object-oriented, etc.) and
adapted to agent-oriented software, and new measures
proposed here.

Initiative: this attribute can be measured using the following
measures.

• Number of roles (NOR): NOR measures the number
of potential roles that agents perform. Roles are
defined in the system design phase and may be
allocated dynamically or change in the course of the
agent execution, requiring the implementation of
additional functions to satisfy the needs of the
different roles. A new function does not necessarily
need to be implemented for each new role, but some
complex roles have to achieve more goals, calling
for the implementation of more functions [10]. Let
us define the number of agent roles as NR. The NOR
measure describes curve (a) in Fig. 1, where x is the
value NR. If NR < k, NOR is optimal, because agent
initiative is greater if the agent assumes fewer roles,
as it has sufficient abilities to take the necessary
actions and achieve the goals defined for these roles
during execution. But, the agent starts to lose
initiative above the value k, because, as a result of
having to perform more roles, the number of
activities that the agent has to execute to achieve the
goals defined for the above roles increases, and there
is no guarantee that it will be able to achieve all the
goals during execution. The software engineer
should define the value of parameter k based on
experience and depending on the application,

320320

estimating the mean number of roles that each agent
should be capable of performing without loss of
initiative.

• Number of goals (NOG): NOG measures the number
of goals achieved by the agent during execution with
respect to the number of allocated goals. Let us
define the number of goals achieved by the agent
during execution as NG. The NOG measure
describes curve (d) in Fig. 1, where x is the value
NG. The value of parameter k is the number of goals
to be achieved by the agent. A lower number of
attained goals than allocated goals indicate that agent
initiative is low. This could be due to the agent not
performing all the actions necessary to achieve the
goals. As NG increases, agent initiative grows until
NG reaches k, when the agent achieves all of its
goals.

• Messages to achieve the goals (MAG): MAG
measures the agent’s initiative to achieve its goals by
communicating with other system agents. Let us
define MG as the fraction of the total number of
executive messages to the total number of messages
that are sent during agent execution, divided by the
total number of goals achieved. If EM is the total
number of executive messages, TM is the total
number of messages and n is the total number of
goals achieved, then let us define MG as (1). The
MAG measure describes curve (b) in Fig. 1, where x
is the value MG. As the value of MG increases,
agent decision-making or problem-solving initiative
increases, enabling the agent to attain its goals
during execution. When MG ≥ k, this measure is
optimal, and agent initiative increases because more
messages aimed at achieving its goals are sent.

n

MG TM
EM

=
.
 (1)

We suggest that the software engineer should
define the value of parameter k based on
experience and depending on the application by
setting an agent-dependent parameter value that
identifies the optimum or least number of messages
to be exchanged to maximize initiative.

Interaction: this attribute can be measured using the
following measures.

• Methods per class (MC): MC measures the number
of the methods implemented within the agent
enabling it to achieve its goals (number of
implemented public methods or offered services,
not including internal methods). If the agent has
many different methods for achieving a goal, it will
be able to interact better and will have a better
chance of acting pro-actively to achieve its goals
[10]. MC is a static measure and does not account

for the calling of the methods. Let us define m as
the number of methods implemented within the
class (assuming that m ≥ 1). The measure MC
describes curve (c) in Fig. 1, where x is the value of
m. It holds that the more different methods the
agent has, the greater the agent interaction is, as the
agent can take advantage of these methods and the
services they offer to achieve its goals, thereby
increasing agent pro-activity.

• Number of message types (NMT): NMT measures
the number of different types of agent messages
that the agent can process. This increases the
agent’s ability to interact with the user and other
agents in the environment, thereby increasing its
pro-activity. We will comply with FIPA standards
for the agent message type [21]. The more message
types an agent can handle, the better developed its
interaction capability will be, because the agent has
more options of communicating with the user and
system agents [10]. If IM and OM are the number
of unique incoming and outgoing message types,
respectively, then we define MT as (2).

 ΜΤ = ΙΜ + ΟΜ (2)

The NMT measure describes curve (b) in Fig. 1,
where x is the value MT. If MT < k, agent
interaction with users and environment agents is
low, as there are few existing alternatives for
communication with the agent. If MT ≥ k, the rate
of agent communication with the environment
improves, thereby improving interaction with other
system agents and users, since they have a better
chance of contacting the agent. We suggest that the
software engineer should determine parameter k
considering the minimum number of message types
enabling environment communication with the
agent.

Reaction: this attribute can be measured using the following
measures.

• Number of processed requests (NPR): NPR
measures the agent’s ability to react to the number
of received and resolved requests during execution.
Let us define the number of received requests
(requiring an action to be taken in response) during
execution as MN. The measure for NPR describes
curve (a) in Fig. 1, where x is the value MN. The
fewer requests the agent receives, the greater its
ability to react because it has more time to process
and attain its goals, thereby increasing its pro-
activity. As the number of received requests
increases, the value of NPR falls, because the
agent’s ability to respond during execution
decreases. We consider that the software engineer
should determine parameter k based on experience

321321

and depending on the application ensuring that a
suitable number of processed requirements is
estimated for the agent to react properly. The
message types associated with the requests made
by the agent considered by this measure are as
proposed in the FIPA standard [21].
o Call for Proposal (action of calling for

proposals to perform a given action)
o Propose (action of submitting a proposal to

perform a certain action, given certain
preconditions)

o Request (the sender requests the receiver to
perform some action)

o Request When (the sender wants the receiver
to perform some action when some given
proposition becomes true)

o Request Whenever (the sender wants the
receiver to perform some action as soon as
some proposition becomes true and thereafter
each time the proposition becomes true again).

• Agent operations complexity (AOC): AOC
measures the mean complexity of the operations to
be performed by the agent to achieve its goals. The
more complex the operations to be performed are,
the less able the agent is to react and pro-actively
achieve its goals and vice versa. We consider that,
to evaluate this measure, the software engineer
might use any complexity regarded as suitable for
achieving a good result, such as, for example,
cyclomatic complexity [22] or similar. If Ci is the
complexity of the operations associated with the ith
goal and n is the number of agent goals, then the
mean complexity per goal is defined by PC (3).
The measure for AOC describes curve (a) of Fig. 1,
where x is the value PC. The value of AOC is
optimal as long as the complexity of the operations
to be performed to achieve agent goals is low. This
increases its pro-active ability to react until it
reaches the parameter k, as of when the value of
AOC decreases because the agent is less able to
react to achieve its goals. The value of parameter k
will depend on the complexity used to evaluate the
operations. With respect to cyclomatic complexity,
there are several studies that propose different
ranges for the upper bound of module-associated
risk. A value proposed after several studies is 11
[22], [23], [24], which is a possible baseline value
for the software engineer to use to set parameter k.

n

C
PC

n

i
i∑

== 1 (3)

V. CASE STUDY

A. Measures and Evaluation
We have to calculate a single value for each attribute

from the attribute measures assessed in a normalized range
between 0 and 1, and then use these attribute values to
calculate a single value for the pro-activity characteristic.

To determine a single value for each attribute, we will
have to take the value of each measure weighted as follows
[2]:

 , (4) ∑=
i

k
i

Y
i

k YY ω

where Yk is the name of attribute k, k
iY represents the value of

the ith measure of this attribute and Y
iω is the weight

(between 0 and 1) of the measure ith within attribute Yk. The
sum of all the applicable weighted measures must be 1 for
every Yk ∈ [0, 1].

After outputting the values associated with each attribute,
we proceed similarly to determine a single value associated
with the characteristic (in this case pro-activity) using the
following weighting:

 ∑=
k

kC
k YC ω , (5)

where C is the characteristic, Yk is the value of each attribute
used to assess this characteristic, and C

kω is the weight of
attribute k within characteristic C. Applying his or her
experience in the application environments, the value of the
different weights used in the calculations will have to
defined by a specialist following a procedure designed for
the purpose. Some of most commonly used procedures are:
• Direct estimation: assign weights directly, based on

subjective opinions, and then they are standardized.
• The Method of the Relative Units: use binary

comparisons of sub-groups of criteria to sharpen
provisional estimates and improve internal consistency
[25].

• The Method of Entropy: relate a criterion’s relative
importance directly to the average intrinsic information
generated by the set of alternatives with respect to this
criterion and by the subjective allocation of the
importance that it is afforded by the decision maker [26].

• The Analytic Hierarchy Process: a multi-criteria
decision-making technique where the attributes are
organized hierarchically, using pair-wise comparison
matrices in order to fully evaluate the characteristic in
question [27].
Taking the results of each measure associated with the

system agents and considering the importance of these
agents within the system under study, which is defined by
the system development engineer, the measure of full system

322322

pro-activity is calculated by aggregating the values for each
agent.

B. Case Study
As a case study we have used an intelligent agent

marketplace. This marketplace includes several kinds of
buyer and seller agents that cooperate and compete to
process sales transactions for their owners. There is also a
facilitator agent that acts as a manager of the marketplace
[28].

There are three types of buyers and sellers: Basic,
Intermediate and Advanced. They share the same negotiation
capacities, but differ as to how sophisticated the techniques
used to implement their negotiation strategies are, ranging
from simple, hard-coded logic to forward-chaining rule
inference. The agent pro-activity in this system should be
greater if agents have better strategies for buying and selling.

Table I shows the measures associated with the attributes
of the pro-activity characteristic and the values for each
weight, associated with each attribute measure. We used the
Analytic Hierarchy Process (AHP) [27] to evaluate the
weights, where the attributes were organized according expert
opinions on these measures. They considered that the number
of goals (NOG) was more important to initiative, followed
by messages to achieve the goals (MAG), and then the
number of roles (NOR). Also, they considered that methods
per class (MC), was more important to interaction than
number of message types (NMT), whereas agent operations
complexity (AOC) was much more important to reaction
than number of processed requests (NPR).

Table II shows the values of the weights of the pro-
activity attributes. We also used the AHP to evaluate the
attribute weights. In this case, the experts considered that
initiative is much more important than the interaction, and
reaction is more important than interaction.

Using Equation (4), Table III shows the values of the
measure for each attribute, calculated by aggregating the
measures output from the values of Table I. The last row of
Table III contains the value of the pro-activity characteristic,
calculated by aggregating the measures for all the attributes
using Equation (5).

Fig. 2 is a bar chart with the value of the system
measures, calculated by aggregating the values of the
attribute measures for all the agents using the values from
Table II. The bottom bar in Fig. 2 shows the value of the
system measures, calculated by aggregating the values of the
attribute measures for all the agents.

TABLE I. PRO-ACTIVITY MEASURES WEIGHTS

Initiative Interaction Reaction
NOR 0.25 MC 0.56 NPR 0.38
NOG 0.45 NMT 0.44 AOC 0.62
MAG 0.30

TABLE II. PRO-ACTIVITY ATTRIBUTE WEIGHTS

Attributes Weights
Initiative 0.66

Interaction 0.11
Reaction 0.23

TABLE III. PRO-ACTIVITY ATTRIBUTE VALUES

 Basic
Buyer

Better
Buyer

Best
Buyer

Basic
Seller

Better
Seller

Best
Seller

Initiative 0.82 0.88 0.81 0.82 0.80 0.89
Interaction 0.88 0.92 0.94 0.91 0.88 0.86

Reaction 0.94 0.99 0.99 1.00 1.00 1.00
Total Pro-

Activity 0.85 0.91 0.87 0.87 0.85 0.91

70% 80% 90% 100%

 System

 Reaction

 Interaction

 Initiative

Figure 2. System pro-activity attribute values

From Table III we find that Basic Buyer and Best Buyer
agents are less pro-active than the Better Buyer, because they
have different buying strategies, and their ability to react is
greater than their ability to interact with the agents in the
system. The Best Seller agent has a greater pro-activity value
(91%) than the Basic Seller (87%) and Better Seller (85%),
because it has a better strategy for achieving its goals,
although, as for the Buyer agents, the evaluated measures
indicate that the Seller agents’ ability to react is greater than
their ability to interact with the agents in the system.

From Fig. 2, we conclude, with respect to the attributes,
that the system scores highest on reaction, at 99%, followed
by interaction, at 90%, and, finally, initiative, at 84%.
Initiative is influenced by the fact that the agents do not
achieve all their goals through cooperation due to the rules
that they each apply to achieve their objectives.

Finally, the system’s pro-activity value is 88%, that is,
the pro-activity of the system agents as a whole is quite high.
The weights fine tune the system results, which are more in
line with the software engineer’s idea of pro-activity

VI. CONCLUSIONS AND FUTURE WORK
We presented a first approximation to a set of measures

of agent-oriented software considering the pro-activity
characteristic. This characteristic has been decomposed into
different measurable attributes, considering initiative,
interaction and reaction, and we show the measures
considered for its evaluation.

We developed a standard case study to evaluate the
attributes associated with this characteristic on each of the
participating agents. The values are aggregated using the
weights associated with each attribute measure. The
designed agents exhibit a high level of pro-activity (88%).
The reaction attribute ranks top, whereas initiative scores the
lowest values.

Pro-activity measures are different from the measures of
the other characteristics. Further research is required to
examine whether there is a possible correlation between the
defined agent characteristics. For example, intuitively, agent

323323

initiative could quite conceivably have an influence on
autonomy, and therefore we need to look at whether any
such relationship exists.

In the future we intend to conduct a comprehensive study
of the agent-based system, analyzing the measures of each
characteristic of each agent type present in the system and
their contribution to the measure of system quality. To do
this, we propose to build a quality evaluation model, and
evaluate this model on several software agent applications,
considering the different characteristics, and their attributes,
present in agents. Additionally, as a future line of research,
we intend to review the attributes (and their measures), with
the aim of identifying other alternative and complementary
attributes.

Finally, we intend to run a comparative study using other
published works (like research published in [9] or [10]). The
aim of this study is to establish whether or not there is any
type of correlation among different sets of pro-activity
measures or whether the measures proposed here are
compatible with, or complementary or supplementary to,
other authors’ measures. In a preliminary review, we have
found that Cernuzzi and Rossi [9] provide a framework for
evaluating agent modeling methods rather than actual
measures, whereas Shin [10] provides just one measure of
pro-activity based on the frequency of knowledge discovery.
It is commonly accepted that there is no figure of merit (a
single measure is unlikely to cover all aspects of one quality
characteristic [29]).

REFERENCES
[1] J. A. McCall, “An Introduction to Software Quality Metrics,” J. D.

Cooper and M. J. Fisher, (eds.) Software Quality Management,
Petrocelly Books, New York (1979), pp. 127–142.

[2] J. L. Fuertes, “Modelo de Calidad para el Software Orientado a
Objetos,” PhD thesis. Facultad de Informática, Universidad
Politécnica de Madrid, Madrid (2003).

[3] ISO/IEC, “Software engineering - Product quality – Part 1: Quality
model,” International Standard ISO/IEC 9126-1:2001 (2001).

[4] R. Dumke, R. Koeppe, and C. Wille, “Software Agent Measurement
and Self-Measuring Agent-Based Systems,” Preprint No 11. Fakultät
für Informatik, Otto-von-Guericke-Universität, Magdeburg (2000).

[5] F. Alonso, J. L. Fuertes, L. Martínez, and H. Soza, “Measuring the
Social Ability of Software Agents,” Proc. of the Sixth International
Conference on Software Engineering Research, Management and
Applications, Prague, Czech Republic (2008), pp. 3–10.

[6] F. Alonso, J. L. Fuertes, L. Martínez, and H. Soza, “Towards a Set of
Measures for Evaluating Software Agent Autonomy,” Proc. of the 7th
Joint Meeting of the European Software Engineering Conference and
ACM SIGSOFT Symposium on the Foundations of Software
Engineering, Amsterdam, Netherlands (2009).

[7] M. Wooldridge, “An Introduction to Multiagent Systems,” John
Wiley Ltd., Chichester (2002).

[8] Z. Lin and K. Carley, “Proactive or Reactive: An Analysis of the
Effect of Agent Style on Organizational Decision-making
Performance,” Intelligent Systems in Accounting, Finance and
Management, Vol. 2 (1993), pp. 271–287.

[9] L. Cernuzzi and G. Rossi, “On The Evaluation Of Agent Oriented
Methodologies,” Proc. of the Conference on Object-Oriented

Programming, Systems, Languages & Applications - Workshop on
Agent-Oriented Methodologies, Seattle, USA (2002), pp. 21–30.

[10] K. Shin, “Software Agents Metrics. A Preliminary Study &
Development of a Metric Analyzer,” Project Report No. H98010.
Dept. Computer Science, School of Computing, National University
of Singapore (2003/2004).

[11] R. So and L. Sonenberg, “Situation Awareness in Intelligent Agents:
Foundations for a Theory of Proactive Agent Behavior,” Proc. of the
IEEE/WIC/ACM International Conference on Intelligent Agent
Technology (2004), pp. 86–92.

[12] C. Wille, R. Dumke, and S. Stojanov, “Quality Assurance in Agent-
Based Systems Current State and Open Problems,” Preprint No. 4.
Fakultät für Informatik, Universität Magdeburg (2002).

[13] H. S. Nwana, “Software Agents: An Overview,” Knowledge
Engineering Review 11(3), (1996), pp. 1–40.

[14] S. Covey, “The Seven Habits of Highly Effective People,” 15th
anniversary edition. Free Press, Old Tappan, NJ (2004).

[15] D. Rousseau and B. Moulin, “Mixed initiative in interactions between
software agents,” Proc. of the 1997 Spring Symposium on Computer
Models for Mixed Initiative Interaction. AAAI Press, Menlo Park
(1997).

[16] B. Far and T. Wanyama, “Metrics For Agent-Based Software
Development,” Proc. of the EEE Canadian Conference on Electrical
and Computer Engineering, Montréal, Canada (2003), pp. 1297–
1300.

[17] B. Far, “A collective view and methodologies for software agents’
interaction,” Proc. of the Canadian Conference on Electrical and
Computer Engineering, Volume 3, Issue 2-5 (2004), pp. 1249–1252.

[18] A. Orro, M. Saba, and E. Vargiu, “Using a Personalized, Adaptive
and Cooperative Multi Agent System to Predict Protein Secondary
Structure,” Proc. of the First International Workshop on Multi-Agent
Systems for Medicine, Computational Biology, and Bioinformatics,
Utrecht, The Netherlands (2005), pp. 170–183.

[19] B. Qiao, K. Liu, and C. Guy, “A Multi-Agent System for Building
Control,” Proc. of the IEEE/WIC/ACM International Conference on
Intelligent Agent Technology (2006), pp. 653–659.

[20] ISO/IEC, “Software engineering- Product quality- Part 4: Quality in
use metrics,” International Standard ISO/IEC TR 9126-4:2004
(2004).

[21] Foundation for Intelligent Physical Agents, “FIPA Communicative
Act Library Specification,” Geneva, Switzerland (2002).

[22] T. J. McCabe, “A Complexity Measure,” IEEE Transactions on
Software Engineering (1976), pp. 308–320.

[23] M. Dixon, “An objective measure of code quality,” Technical report,
Energy Group, Beverly, Massachusetts (2008).

[24] J. Ferrer, F. Chicano, and E. Alba, “On the Correlation between Static
Measures and Code Coverage using Evolutionary Test Case
Generation,” Proc. of Decision-Making in Software Engineering, Vol.
3, No. 1 (2009).

[25] C. Churchman, R. Ackoff, and E. Arnoff, “Introduction to Operations
Research,” Wiley (1957).

[26] M. Zeleny, “Linear Multiobjective Programming,” Springer Verlag,
New York (1974).

[27] T. L. Saaty, “How to Make a Decision: The Analytic Hierarchy
Process”, European Journal of Operational Research, 48 (1990), pp.
9–26.

[28] J. Bigus and J. Bigus, Constructing Intelligent Agents using Java, 2nd
edition. John Wiley & Sons, New York, NY (2001)

[29] V. R. Basili and D. H. Hutchens, “An Empirical Study of a Syntactic
Complexity Family,” IEEE Transactions on Software Engineering,
9(6), (1983), pp. 664-672.

324324

	ICSEA-Proactivity- Proceedings.pdf

