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Abstract—Despite having well-defined characteristics, software 
agents do not have a developed set of measures defining their 
quality. Attempts at evaluating software agent quality have 
focused on some agent aspects, like the development process, 
whereas others focusing on the agent as a software product 
have basically adopted measures associated with other 
software paradigms, like procedural and object-oriented 
concepts. Here we propose a set of measures for evaluating 
software agent pro-activity, the software agent’s goal-driven 
behavioral ability to take the initiative and satisfy its goals. 

Keywords: Agents quality; pro-activity; software quality 

I. INTRODUCTION 
Some research has been conducted on adapting 

procedural and object-oriented measures to evaluate agent-
oriented software [1], [2], [3]. However, few studies have 
focused on developing measures exclusively targeting agent-
oriented software [3], [4]. In actual fact, there has been no 
investigation to set up a quality model considering the 
specific characteristics of a software agent. 

The work presented here is part of a line of research 
focusing on evaluating the overall quality of a software agent 
as an autonomous entity interacting with other agents and 
users. Early results measuring software agent social ability 
and autonomy characteristics were presented in [5], and [6], 
respectively. 

This paper presents a set of measures for evaluating a 
software agent’s pro-activity, considering its associated 
attributes. Agent pro-activity means the agent’s ability to 
exhibit goal-driven behavior by taking the initiative in order 
to achieve its goals [7]. 

The paper is structured as follows. Section 2 presents 
some related work on the development of agent software-
related measures. In Section 3 we discuss agent pro-activity 
and its attributes. Section 4 suggests measures for agent pro-
activity. Section 5 summarizes the process of calculating 
pro-activity and its application to a case study. The last 
section includes some concluding remarks and future 
research. 

II. RELATED WORK 
We have found very little relevant research on quality 

measures related to agent pro-activity. Of the few examples, 
Lin and Carley addressed the issue of proactive and reactive 
agent style from a theoretical perspective. They proposed 

evaluating the effect of agent style and found that it depends 
on how the agent is trained and the internal condition under 
which it operates [8].  

Considering whether or not the agent dynamically 
assumes the different goals and whether it is possible to 
model goals, Cernuzzi and Rossi [9] evaluated software 
agent pro-activity using discrete values. 

Shin measured agent pro-activity by evaluating its 
frequency of knowledge discovery [10]. This measure is the 
result of calculating the number of messages that the agent 
uses to discover knowledge.  

So and Sonenberg [11] described an alternative approach 
of interpreting proactive behavior in software agency, closely 
related to the underpinning cognitive process. To 
demonstrate a practical use of their model, they outlined a 
meta-level control strategy that focuses agent attention on the 
key aspects of its environment at runtime. 

To the best of our knowledge, there is no more literature 
related to measuring the characteristic of software agent 
pro-activity. This is the focus of this research. 

III. PRO-ACTIVITY AND ITS ATTRIBUTES 
Following on from other studies of software quality [1], 

[3], we divide quality into characteristics, subcharacteristics 
(or attributes) and measures of the attributes. As a result, the 
quality of the software agent will be evaluated by the set of 
measures of the attributes, associated with each of the 
characteristics. 

It is well-known that the characteristics defining the 
behavior of the software agent are social ability, autonomy, 
pro-activity, reactivity, adaptability, intelligence and 
mobility [4], [5], [12], [13]. 

As regards the characteristic of software agent pro-
activity, we propose, based on our experience with software 
agents [5], [6] and the existing research [7], [14], that it 
should be identified by three attributes: 

• Initiative is the agent’s ability to take an action with 
the aim of achieving its goals [13], [15]. Also, it is 
the ability to satisfy its goals by means of goal-
driven behavior [7].  

• Interaction is the agent’s ability to interact with 
other agents, the user and its environment [14]. This 
is important when a group of agents interact with 
each other to solve a problem that is beyond the 
ability and knowledge of each individual agent [16]. 
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Agent interactions are important for the efficiency, 
performance and overall quality of multi-agent 
applications [17]. 

• Reaction is the ability to react to a stimulus from the 
environment, according to stimulus/response 
behavior [18]. Agents react appropriately according 
to the context in which they operate [19].  

IV. PRO-ACTIVITY MEASURES 
First let us make some points about the measures and 

then present the proposed measures for pro-activity 
attributes. 

A. Considerations about measures 
Fig. 1 shows the formulae and their associated curves 

that are used to normalize the pro-activity measures. 
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Figure 1.  Formula types used in the measures 

We interviewed several agent-oriented software experts 
about how each pro-activity measure should behave. This 
way we were able to determine which the best curves for the 
measures were. They are illustrated in Fig. 1. 

The measures should be evaluated in a controlled 
environment, called the benchmark. The benchmark 
specifies the conditions in which the system under evaluation 
should be run for each dynamic measure. This assures that 
the evaluated measures are repeatable and comparable [20].  

The measure for each attribute is a function of one or 
more parameters. The results of each measure are normalized 
in the interval [0, 1] (where 0 is a poor result and 1 is a good 
result for the measure). 

Curve (a) indicates that the value of the measure is 
constant at 1 (optimum measure value) until x reaches a 
value k (k indicates the point at which the value of the 
measure should no longer be considered to be optimum). As 
x grows, the value of the measure gradually descends to zero, 
describing an exponential curve. Curve (b) indicates that the 
measure grows, describing a parabola, as x increases up to a 
value defined by the parameter k. At this point, 
independently of the increasing value of x, the measure 
reaches the maximum value 1. Curve (c) indicates that the 
value of the measure grows rapidly, as x increases. Curve (d) 
indicates that the measure grows, rapidly at first, and, as it 
progresses, its value increases until it reaches the value 1 
when x reaches the value k. 

The formulae depend on the argument x, where x is a 
value defined for each measure. The constant k is a 
parameter that the software engineer can configure to fine 
tune formula performance for each particular case.  

B. Proposed measures for pro-activity attributes 
The proposed measures for evaluating the attributes 

defined for the software agent characteristic of pro-activity 
are as follows. The measures that we have defined are based 
on research on the agent paradigm, other measures selected 
from other paradigms (procedural, object-oriented, etc.) and 
adapted to agent-oriented software, and new measures 
proposed here.  

Initiative: this attribute can be measured using the following 
measures. 

• Number of roles (NOR): NOR measures the number 
of potential roles that agents perform. Roles are 
defined in the system design phase and may be 
allocated dynamically or change in the course of the 
agent execution, requiring the implementation of 
additional functions to satisfy the needs of the 
different roles. A new function does not necessarily 
need to be implemented for each new role, but some 
complex roles have to achieve more goals, calling 
for the implementation of more functions [10]. Let 
us define the number of agent roles as NR. The NOR 
measure describes curve (a) in Fig. 1, where x is the 
value NR. If NR < k, NOR is optimal, because agent 
initiative is greater if the agent assumes fewer roles, 
as it has sufficient abilities to take the necessary 
actions and achieve the goals defined for these roles 
during execution. But, the agent starts to lose 
initiative above the value k, because, as a result of 
having to perform more roles, the number of 
activities that the agent has to execute to achieve the 
goals defined for the above roles increases, and there 
is no guarantee that it will be able to achieve all the 
goals during execution. The software engineer 
should define the value of parameter k based on 
experience and depending on the application, 
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estimating the mean number of roles that each agent 
should be capable of performing without loss of 
initiative. 

• Number of goals (NOG): NOG measures the number 
of goals achieved by the agent during execution with 
respect to the number of allocated goals. Let us 
define the number of goals achieved by the agent 
during execution as NG. The NOG measure 
describes curve (d) in Fig. 1, where x is the value 
NG. The value of parameter k is the number of goals 
to be achieved by the agent. A lower number of 
attained goals than allocated goals indicate that agent 
initiative is low. This could be due to the agent not 
performing all the actions necessary to achieve the 
goals. As NG increases, agent initiative grows until 
NG reaches k, when the agent achieves all of its 
goals. 

• Messages to achieve the goals (MAG): MAG 
measures the agent’s initiative to achieve its goals by 
communicating with other system agents. Let us 
define MG as the fraction of the total number of 
executive messages to the total number of messages 
that are sent during agent execution, divided by the 
total number of goals achieved. If EM is the total 
number of executive messages, TM is the total 
number of messages and n is the total number of 
goals achieved, then let us define MG as (1). The 
MAG measure describes curve (b) in Fig. 1, where x 
is the value MG. As the value of MG increases, 
agent decision-making or problem-solving initiative 
increases, enabling the agent to attain its goals 
during execution. When MG ≥ k, this measure is 
optimal, and agent initiative increases because more 
messages aimed at achieving its goals are sent. 

 
n

MG TM
EM

=
.
 (1) 

We suggest that the software engineer should 
define the value of parameter k based on 
experience and depending on the application by 
setting an agent-dependent parameter value that 
identifies the optimum or least number of messages 
to be exchanged to maximize initiative. 

Interaction: this attribute can be measured using the 
following measures. 

• Methods per class (MC): MC measures the number 
of the methods implemented within the agent 
enabling it to achieve its goals (number of 
implemented public methods or offered services, 
not including internal methods). If the agent has 
many different methods for achieving a goal, it will 
be able to interact better and will have a better 
chance of acting pro-actively to achieve its goals 
[10]. MC is a static measure and does not account 

for the calling of the methods. Let us define m as 
the number of methods implemented within the 
class (assuming that m ≥ 1). The measure MC 
describes curve (c) in Fig. 1, where x is the value of 
m. It holds that the more different methods the 
agent has, the greater the agent interaction is, as the 
agent can take advantage of these methods and the 
services they offer to achieve its goals, thereby 
increasing agent pro-activity. 

• Number of message types (NMT): NMT measures 
the number of different types of agent messages 
that the agent can process. This increases the 
agent’s ability to interact with the user and other 
agents in the environment, thereby increasing its 
pro-activity. We will comply with FIPA standards 
for the agent message type [21]. The more message 
types an agent can handle, the better developed its 
interaction capability will be, because the agent has 
more options of communicating with the user and 
system agents [10]. If IM and OM are the number 
of unique incoming and outgoing message types, 
respectively, then we define MT as (2). 

 ΜΤ = ΙΜ + ΟΜ (2) 

The NMT measure describes curve (b) in Fig. 1, 
where x is the value MT. If MT < k, agent 
interaction with users and environment agents is 
low, as there are few existing alternatives for 
communication with the agent. If MT ≥ k, the rate 
of agent communication with the environment 
improves, thereby improving interaction with other 
system agents and users, since they have a better 
chance of contacting the agent. We suggest that the 
software engineer should determine parameter k 
considering the minimum number of message types 
enabling environment communication with the 
agent. 

Reaction: this attribute can be measured using the following 
measures. 

• Number of processed requests (NPR): NPR 
measures the agent’s ability to react to the number 
of received and resolved requests during execution. 
Let us define the number of received requests 
(requiring an action to be taken in response) during 
execution as MN. The measure for NPR describes 
curve (a) in Fig. 1, where x is the value MN. The 
fewer requests the agent receives, the greater its 
ability to react because it has more time to process 
and attain its goals, thereby increasing its pro-
activity. As the number of received requests 
increases, the value of NPR falls, because the 
agent’s ability to respond during execution 
decreases. We consider that the software engineer 
should determine parameter k based on experience 
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and depending on the application ensuring that a 
suitable number of processed requirements is 
estimated for the agent to react properly. The 
message types associated with the requests made 
by the agent considered by this measure are as 
proposed in the FIPA standard [21]. 
o Call for Proposal (action of calling for 

proposals to perform a given action) 
o Propose (action of submitting a proposal to 

perform a certain action, given certain 
preconditions) 

o Request (the sender requests the receiver to 
perform some action) 

o Request When (the sender wants the receiver 
to perform some action when some given 
proposition becomes true) 

o Request Whenever (the sender wants the 
receiver to perform some action as soon as 
some proposition becomes true and thereafter 
each time the proposition becomes true again). 

• Agent operations complexity (AOC): AOC 
measures the mean complexity of the operations to 
be performed by the agent to achieve its goals. The 
more complex the operations to be performed are, 
the less able the agent is to react and pro-actively 
achieve its goals and vice versa. We consider that, 
to evaluate this measure, the software engineer 
might use any complexity regarded as suitable for 
achieving a good result, such as, for example, 
cyclomatic complexity [22] or similar. If Ci is the 
complexity of the operations associated with the ith 
goal and n is the number of agent goals, then the 
mean complexity per goal is defined by PC (3). 
The measure for AOC describes curve (a) of Fig. 1, 
where x is the value PC. The value of AOC is 
optimal as long as the complexity of the operations 
to be performed to achieve agent goals is low. This 
increases its pro-active ability to react until it 
reaches the parameter k, as of when the value of 
AOC decreases because the agent is less able to 
react to achieve its goals. The value of parameter k 
will depend on the complexity used to evaluate the 
operations. With respect to cyclomatic complexity, 
there are several studies that propose different 
ranges for the upper bound of module-associated 
risk. A value proposed after several studies is 11 
[22], [23], [24], which is a possible baseline value 
for the software engineer to use to set parameter k. 

 
n

C
PC

n

i
i∑

== 1  (3) 

V. CASE STUDY 

A. Measures and Evaluation 
We have to calculate a single value for each attribute 

from the attribute measures assessed in a normalized range 
between 0 and 1, and then use these attribute values to 
calculate a single value for the pro-activity characteristic. 

To determine a single value for each attribute, we will 
have to take the value of each measure weighted as follows 
[2]: 

 , (4) ∑=
i

k
i

Y
i

k YY ω

where Yk is the name of attribute k, k
iY  represents the value of 

the ith measure of this attribute and Y
iω  is the weight 

(between 0 and 1) of the measure ith within attribute Yk. The 
sum of all the applicable weighted measures must be 1 for 
every Yk ∈ [0, 1]. 

After outputting the values associated with each attribute, 
we proceed similarly to determine a single value associated 
with the characteristic (in this case pro-activity) using the 
following weighting: 

 ∑=
k

kC
k YC ω , (5) 

where C is the characteristic, Yk is the value of each attribute 
used to assess this characteristic, and C

kω is the weight of 
attribute k within characteristic C. Applying his or her 
experience in the application environments, the value of the 
different weights used in the calculations will have to 
defined by a specialist following a procedure designed for 
the purpose. Some of most commonly used procedures are:  
• Direct estimation: assign weights directly, based on 

subjective opinions, and then they are standardized. 
• The Method of the Relative Units: use binary 

comparisons of sub-groups of criteria to sharpen 
provisional estimates and improve internal consistency 
[25]. 

• The Method of Entropy: relate a criterion’s relative 
importance directly to the average intrinsic information 
generated by the set of alternatives with respect to this 
criterion and by the subjective allocation of the 
importance that it is afforded by the decision maker [26]. 

• The Analytic Hierarchy Process: a multi-criteria 
decision-making technique where the attributes are 
organized hierarchically, using pair-wise comparison 
matrices in order to fully evaluate the characteristic in 
question [27]. 
Taking the results of each measure associated with the 

system agents and considering the importance of these 
agents within the system under study, which is defined by 
the system development engineer, the measure of full system 
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pro-activity is calculated by aggregating the values for each 
agent. 

B. Case Study 
As a case study we have used an intelligent agent 

marketplace. This marketplace includes several kinds of 
buyer and seller agents that cooperate and compete to 
process sales transactions for their owners. There is also a 
facilitator agent that acts as a manager of the marketplace 
[28]. 

There are three types of buyers and sellers: Basic, 
Intermediate and Advanced. They share the same negotiation 
capacities, but differ as to how sophisticated the techniques 
used to implement their negotiation strategies are, ranging 
from simple, hard-coded logic to forward-chaining rule 
inference. The agent pro-activity in this system should be 
greater if agents have better strategies for buying and selling. 

Table I shows the measures associated with the attributes 
of the pro-activity characteristic and the values for each 
weight, associated with each attribute measure. We used the 
Analytic Hierarchy Process (AHP) [27] to evaluate the 
weights, where the attributes were organized according expert 
opinions on these measures. They considered that the number 
of goals (NOG) was more important to initiative, followed 
by messages to achieve the goals (MAG), and then the 
number of roles (NOR). Also, they considered that methods 
per class (MC), was more important to interaction than 
number of message types (NMT), whereas agent operations 
complexity (AOC) was much more important to reaction 
than number of processed requests (NPR). 

Table II shows the values of the weights of the pro-
activity attributes. We also used the AHP to evaluate the 
attribute weights. In this case, the experts considered that 
initiative is much more important than the interaction, and 
reaction is more important than interaction. 

Using Equation (4), Table III shows the values of the 
measure for each attribute, calculated by aggregating the 
measures output from the values of Table I. The last row of 
Table III contains the value of the pro-activity characteristic, 
calculated by aggregating the measures for all the attributes 
using Equation (5).  

Fig. 2 is a bar chart with the value of the system 
measures, calculated by aggregating the values of the 
attribute measures for all the agents using the values from 
Table II. The bottom bar in Fig. 2 shows the value of the 
system measures, calculated by aggregating the values of the 
attribute measures for all the agents. 

TABLE I.  PRO-ACTIVITY MEASURES WEIGHTS 

Initiative Interaction Reaction 
NOR 0.25 MC 0.56 NPR 0.38 
NOG 0.45 NMT 0.44 AOC 0.62 
MAG 0.30     

TABLE II.  PRO-ACTIVITY ATTRIBUTE WEIGHTS 

Attributes Weights 
Initiative 0.66 

Interaction 0.11 
Reaction 0.23 

TABLE III.  PRO-ACTIVITY ATTRIBUTE VALUES 

 Basic 
Buyer 

Better 
Buyer 

Best 
Buyer 

Basic 
Seller 

Better 
Seller 

Best 
Seller 

Initiative 0.82 0.88 0.81 0.82 0.80 0.89 
Interaction 0.88 0.92 0.94 0.91 0.88 0.86 

Reaction 0.94 0.99 0.99 1.00 1.00 1.00 
Total Pro-

Activity 0.85 0.91 0.87 0.87 0.85 0.91 

70% 80% 90% 100%

 System

 Reaction

 Interaction

 Initiative

 
Figure 2.  System pro-activity attribute values 

From Table III we find that Basic Buyer and Best Buyer 
agents are less pro-active than the Better Buyer, because they 
have different buying strategies, and their ability to react is 
greater than their ability to interact with the agents in the 
system. The Best Seller agent has a greater pro-activity value 
(91%) than the Basic Seller (87%) and Better Seller (85%), 
because it has a better strategy for achieving its goals, 
although, as for the Buyer agents, the evaluated measures 
indicate that the Seller agents’ ability to react is greater than 
their ability to interact with the agents in the system. 

From Fig. 2, we conclude, with respect to the attributes, 
that the system scores highest on reaction, at 99%, followed 
by interaction, at 90%, and, finally, initiative, at 84%. 
Initiative is influenced by the fact that the agents do not 
achieve all their goals through cooperation due to the rules 
that they each apply to achieve their objectives. 

Finally, the system’s pro-activity value is 88%, that is, 
the pro-activity of the system agents as a whole is quite high. 
The weights fine tune the system results, which are more in 
line with the software engineer’s idea of pro-activity 

VI. CONCLUSIONS AND FUTURE WORK 
We presented a first approximation to a set of measures 

of agent-oriented software considering the pro-activity 
characteristic. This characteristic has been decomposed into 
different measurable attributes, considering initiative, 
interaction and reaction, and we show the measures 
considered for its evaluation. 

We developed a standard case study to evaluate the 
attributes associated with this characteristic on each of the 
participating agents. The values are aggregated using the 
weights associated with each attribute measure. The 
designed agents exhibit a high level of pro-activity (88%). 
The reaction attribute ranks top, whereas initiative scores the 
lowest values.  

Pro-activity measures are different from the measures of 
the other characteristics. Further research is required to 
examine whether there is a possible correlation between the 
defined agent characteristics. For example, intuitively, agent 
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initiative could quite conceivably have an influence on 
autonomy, and therefore we need to look at whether any 
such relationship exists. 

In the future we intend to conduct a comprehensive study 
of the agent-based system, analyzing the measures of each 
characteristic of each agent type present in the system and 
their contribution to the measure of system quality. To do 
this, we propose to build a quality evaluation model, and 
evaluate this model on several software agent applications, 
considering the different characteristics, and their attributes, 
present in agents. Additionally, as a future line of research, 
we intend to review the attributes (and their measures), with 
the aim of identifying other alternative and complementary 
attributes. 

Finally, we intend to run a comparative study using other 
published works (like research published in [9] or [10]). The 
aim of this study is to establish whether or not there is any 
type of correlation among different sets of pro-activity 
measures or whether the measures proposed here are 
compatible with, or complementary or supplementary to, 
other authors’ measures. In a preliminary review, we have 
found that Cernuzzi and Rossi [9] provide a framework for 
evaluating agent modeling methods rather than actual 
measures, whereas Shin [10] provides just one measure of 
pro-activity based on the frequency of knowledge discovery. 
It is commonly accepted that there is no figure of merit (a 
single measure is unlikely to cover all aspects of one quality 
characteristic [29]). 
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