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Abstract. In this work we study the static shape of charged drops of a conducting fluid placed
over a solid substrate, surrounded by a gas, and in absence of gravitational forces. The problem
can be posed, since Gauss, in a variational setting consisting of obtaining the configurations of
a given mass of fluid that minimize (or in general make extremal) a certain energy involving
the areas of the solid-liquid interface and of the liquid-gas interface, as well as the electric
capacity of the drop. In [6] we have found, as a function of two parameters, Young’s angle
θY and the potential at the drop’s surface V0, the axisymmetric minimizers of the energy. In
the same article we have also described their shape and showed the existence of symmetry-
breaking bifurcations such that, for given values of θY and V0, configurations for which the
axial symmetry is lost are energetically more favorable than axially symmetric configurations.
We have proved the existence of such bifurcations in the limits of very flat and almost spherical
equilibrium shapes. In this work we study all other cases numerically. When dealing with
radially perturbed equilibrium shapes we lose the axially symmetric properties and need to do
a full three-dimensional approximation in order to compute area and capacity and hence the
energy. We use a boundary element method that we have already implemented in [3] to compute
the surface charge density. From the surface charge density we can obtain the capacity of the
body. One conclusion of this study is that axisymmetric drops cannot spread indefinitely by
introducing sufficient amount of electric charges, but can reach only a limiting (saturation) size,
after which the axial symmetry would be lost and finger-like shapes energetically preferred.

1. Introduction
The determination of the stationary shapes of liquid drops surrounded by a vapor phase and
in contact with a solid surface can be posed, since Gauss, in a variational setting consisting of
obtaining the configurations of a given mass of fluid that minimize (or in general make extremal)
an energy defined by

E = γlvAlv − (γsv − γsl)Asl + EF , (1)

where γlv, γsv, and γsl denote the liquid-vapor, solid-vapor, and solid-liquid surface tensions,
respectively; Alv and Asl denote the area of the liquid-vapor and solid-liquid interfaces,
respectively (see Figure 1). EF is the contribution of external forces to the total energy. If
the drop is affected by gravity, then EF =

∫
Ω g · xdx, where g is the gravitational force and Ω

the domain occupied by the fluid. In absence of external forces, the configurations that minimize
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Figure 1. Sketch of the problem.

the energy (1) are spherical caps such that the contact angle θY , called Young’s angle, between
the liquid-vapor and solid-liquid interfaces satisfies

cos θY =
γsv − γsl

γlv
. (2)

When the volume of fluid under consideration is sufficiently small, the contribution of
gravitational forces to the energy is negligible in comparison with interfacial energies. A
consistent approximation is then to ignore gravity in (1), as it is done systematically in the
study of multiphase flows in microfluidic applications, for instance (see [15]). It is precisely
in connection with such microfluidic applications that electric fields are incorporated with the
purpose of controlling the shape and motion of small masses of fluid. This is the case, for
instance, of electrowetting applications in which the shape of a mass of electrically conducting
fluid is controlled via the addition of electric charges and application of external electric fields
(see [10] and the references therein).

The simplest situation corresponds to a drop of perfectly conducting fluid with a total charge
Q. In this case, the energy would be given (cf. [10]) by

E = γlv [Alv − (cos θY )Asl]− 1
2
ε0

∫

R3\Ω
|E|2 dx, (3)

where E = −∇V is the electric field (V is the electric potential) created by the charges,
concentrated in ∂Ω with a density σ = −ε0

∂V
∂n in a perfect conductor. ε0 is the dielectric

constant of the medium surrounding the drop. The potential V at the surface of a conductor
is constant and, in absence of charges in R3 \ Ω, is harmonic in the exterior of Ω. Hence, V is
solution of the boundary value problem

∆V = 0 at R3 \ Ω, (4)
V = V0 at ∂Ω, (5)

V = O(|r|−1) as |r| → ∞. (6)

The electrical energy term in (3) can be written, after integration by parts, in the equivalent
forms

1
2
ε0

∫

R3\Ω
|E|2 dx =

1
2
ε0

∫

∂Ω
V

∂V

∂n
dS =

1
2

∫

∂Ω
V0σdS =

1
2
QV0 =

1
2
CV 2

0 , (7)

where C is the capacity of Ω defined as

C = − ε0

V0

∫

Ω

∂V

∂n
dS. (8)

The determination of the capacity of a given set is, in general, a difficult problem. There are
explicit expressions for only a few configurations, such as spheres and discs (see [8]). The best
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source concerning estimation of the capacity of arbitrary sets is [12] and the related article [13].
More complex configurations, such as spherical caps, have a capacity that can be estimated
from above and below but no explicit formulae. This is the main difficulty in the deduction of
minimizers of (3).

By computing the first variation of the functional (3) one arrives at the following equation:

γκ− σ2

2ε0
= −p, (9)

where γ = γlv, κ is the mean curvature (sum of the principal curvatures) of the liquid-vapor
interface at a point x, σ = −ε0

∂V
∂n is the surface charge density at the same point x, and p

is a constant to be determined through the constraint that the drop has a given volume. In
the fluid dynamics context, p is the difference of pressure across the interface. Equation (9)
has to be complemented with the boundary condition stating that the normal vector to the
interface forms a constant angle with the normal to the solid substrate at any point of the
contact line Γ, the set where the liquid-vapor and the solid-liquid interfaces meet. This angle
has to be, exactly, θY (cf. [11]). Finally, we introduce characteristic length (Vol.)

1
3 , where Vol. is

the volume of the drop, characteristic potential (Vol.)
1
6 (γε−1

0 )
1
2 , characteristic surface charge

density (Vol.)−
1
6 (γε0)

1
2 , and characteristic pressure γ(Vol.)−

1
3 . Accordingly, we change variables

and unknowns in the form x → (Vol.)
1
3 x, V → (Vol.)

1
6 (γε−1

0 )
1
2 V , σ → (Vol.)−

1
6 (γε0)

1
2 σ,

p → γ(Vol.)−
1
3 p so that space coordinates, potential, surface charge density, and pressure are

now dimensionless. We end up with the following dimensionless version of (9):

κ− σ2

2
= −p, (10)

and the variational problem associated to the functional

E = [Alv − (cos θY )Asl]− 1
2
CV 2

0 , (11)

where C = − 1
V0

∫
Ω

∂V
∂n dS, V being the solution to (4)–(6), and Ω is now a domain of unit volume.

One important motivation for this work is its relation with the phenomenon of electrowetting.
This consists in the control of the wetting properties of fluids by means of electric fields. The
simplest situation is that of a drop of conducting fluid connected to a battery and, therefore,
kept at a given difference of potential with respect to an electrode placed at some distance below
the solid substrate. In the situation studied in the present paper, such an electrode would be
placed at infinity, so that we establish a given potential on the drop’s surface and assume the
potential to decay at infinity. The simplest theories on electrowetting follow the original ideas
of Lippmann, who developed a formula (cf. [9]) that predicts an unlimited spreading of droplets
through application of sufficiently strong electrostatic potentials. Nevertheless, the physical
observation is that drops do not spread infinitely but reach a saturation regime such that an
increase of the potential does not produce any additional spreading but rather the appearance
of instabilities at the contact line with subsequent emission of a varying number of satellite
filaments (see [10] and the references therein). The demonstration of such facts, also appearing
when the electrode is at a fixed distance to the drop, requires a somewhat different analysis and
will be published elsewhere.

In a previous paper ([6]) we have studied, as a function θY and V0, the equilibrium
configurations. In [6] we have obtained formulae for the geometry of axially symmetric profiles
in certain limits of θY and V0. We have also deduced constraints to indefinite spreading: the first
one due to the fact that static solutions develop dewetted cores with the fluid concentrated in a
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rim around these cores and the second constraint related to stability. By analyzing the energy
functional (11) we have concluded that axially symmetric solutions must become unstable under
nonaxisymmetric perturbations with n undulations (n = 2, 3, . . .), provided V0 is large enough.
In this paper we shall describe the numerical method we have used in [6] to determine for what
values of V0 such instabilities do develop as a function of θY .

The paper is organized as follows. In section 2 we study the stability of the radially symmetric
solutions under symmetry-breaking perturbations. In this study, we focus the theoretical
discussion in the limiting cases of almost spherical and flat drops. In section 3 we explain
the numerical method we have implemented in order to get results for all the intermediate cases.
Finally, section 4 includes the numerical results and some conclusions.

2. Symmetry-breaking instabilities for limiting values of V0 and θY

We begin identifying values of the potential at which nonaxisymmetric solutions are energetically
more favorable than the axially symmetric configurations r = a(z) (r and z are, respectively,
the radial coordinate and the axis coordinate in a cylindrical coordinate system about the axis
of symmetry). We perturb the profiles radially in the form

r(θ, z) =
a(z)√
1 + ε2

2

(1 + ε cos(nθ)); z ∈ [0,H] , θ ∈ [0, 2π) . (12)

The volume of the drop does not change, since

Vol. =
∫ H

0
z




∫ 2π

0




∫ a(z)√
1+ ε2

2

(1+ε cos(nθ))

0
rdr


 dθ


 dz

=
∫ H

0
z

[
1
2

∫ 2π

0

a2(z)
1 + ε2

2

(1 + ε cos(nθ))2dθ

]
dz = π

∫ H

0
za2(z)dz.

The lateral area (area of the liquid-vapor interface) has a value (see [7])

Alv(ε) =
∫ H

0

∫ 2π

0

√
r2 + r2

θ + r2r2
zdθdz

=
∫ H

0

∫ 2π

0
r
√

1 + r2
z


1 +

r−2r2
θ√

1 + r2
z +

√
1 + r−2r2

θ + r2
z


 dθdz

=
∫ H

0

∫ 2π

0
r
√

1 + r2
z


 1 + r−2r2

θ√
1 + r2

z +
√

1 + r−2r2
θ + r2

z


 dθdz +

∫ H

0

∫ 2π

0
r
√

1 + r2
zdθdz

= I1 + I2 ,

where

I1 =
∫ H

0

∫ 2π

0
r
√

1 + r2
z


 1 + r−2r2

θ√
1 + r2

z +
√

1 + r−2r2
θ + r2

z


 dθdz

≤
∫ H

0

∫ 2π

0

r

2
n2ε2 sin2(nθ)dθdz = n2ε2 π

2

∫ H

0
a(z)dz = c1n

2ε2 ,
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and

I2 =
∫ H

0

∫ 2π

0
r
√

1 + r2
zdθdz

=
∫ H

0

∫ 2π

0
a
√

1 + a2
z

[
1− ε2

4
+

ε2

2
a2

z

1 + a2
z

− ε2

4
a4

z

(1 + a2
z)

2 + O(ε3)
]

dθdz

=
∫ H

0

∫ 2π

0
a
√

1 + a2
z

[
1− ε2

4
1

(1 + a2
z)

2 + O(ε3)
]

dθdz = Alv(0) + c2ε
2 + O(ε3),

while the area of the solid-liquid interface remains unchanged. Hence, we can estimate the
variation of the energy under a radial perturbation:

δE = δAlv − cos θY δAsl − 1
2
δCV 2

0

= ε2

[
(c1n

2 + c2)− 1
2

(
δC/ε2

)
V 2

0

]
+ O(ε3).

Since δC/ε2 is always positive and O(1) for n > 2, as we have proved in [6], one should always
have, for

V0 > V0,n =

√
2(c1n2 + c2)

(δC/ε2)
, (13)

instabilities with a given n. For profiles close to a sphere V0,n is increasing with n, but this is not
the case for profiles close to a disc. Given the strict monotonicity of the capacity with n (even
for profiles that are close to discs), again as we have proven in [6], and given the fact that c1 and
c2 can be made arbitrarily small for sufficiently flat profiles (when H ¿ 1), we can make the
combination

[
(c1n

2 + c2) − 1
2

(
δC/ε2

)
V 2

0

]
to decrease monotonically with n for configurations

close to a disc. This would imply that perturbations with large n are more unstable than
perturbations with a small n. Hence, one can expect the boundary to destabilize first with
multiple oscillations. In the next section we implement a numerical method to compute the
energy of radially perturbed equilibrium shapes and determine, for given θY , the values of the
radius of the solid-liquid interface and V0 for which instabilities with various n appear.

3. Numerical method
When dealing with radially perturbed equilibrium shapes we lose the axially symmetric
properties and need to do a full three-dimensional (3D) approximation in order to compute
area and capacity and hence the energy given in (11). We use a boundary element method to
compute the surface charge density by solving the integral equation associated with (4), (5) and
(6) in the profiles given by (12) with a unit potential at the boundary. From the surface charge
density we can obtain the total charge integrating over the surface and that will be the capacity
of the body.

The integral equation for the charge density at the points rp = (xp, yp, zp) of the drop’s
surface is

V (rp) =
1

4πε0

∫

∂Ω(t)

σ(r)
|r− rp|dS(r) (14)

or, since V (rp) is constant (V (rp) = 1), σ is therefore solution to

1 =
1

4πε

∫

∂Ω(t)

σ(r)
|r− rp|dS(r). (15)
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We approximate the boundary, ∂Ω, with a triangular mesh. The mesh is made up of N
vertices and M (triangular) faces. On each face, we approximate the surface charge density
with elementwise constant functions over a “virtual” element centered in each node with an
area equal to 1/3 of the total area of the elements that share the node (see [16]).

We obtain the charge density from equation (15):

4πε0 = C1 =
∫

∂Ω(t)
σ(r)

1
|r− ri|ds(r) i = 1, . . . ,M, (16)

where ri is the barycenter of the mesh element i and M is the number of mesh elements.
We approximate the integral that appears in (16) as follows:

∫

∂Ω(t)
σ(r)

1
|r− ri|ds(r) ≈

M∑

j=1

λijσj , with λij =
∫

Tj

1
|r− ri|ds(r) and σj = σ(rj). (17)

Two cases are considered when calculating λij :
(i) Potential created by one element onto himself, i = j.

λii can be calculated exactly dividing the element Ti in six subelements as it is shown in
figure 2 (left):

λii =
∫

Ti

ds(r)
|r− ri| =

∫ ∫

Ti

1
ρ
ρdρdθ =

6∑

k=1

∫ ∫

Tik

dρdθ =
6∑

k=1

ak ln(sec(αk) + tan(αk)). (18)

Ti1
Ti6

Ti2

Ti3

α2

α3

α1

Ti4

Ti5
α2

α6

α4

a1 a2=

a5 a6
a4a3 ==

Tjk
bjk

Figure 2. On the left: subdivision of the element Ti in six subelements for calculating the
potential created by one element onto himself. On the right: subdivision of element Tj in a
variable number of subelements for calculating the potential created by element j onto element
i

(ii) Potential created by element j onto element i, i 6= j. In this case we subdivide the element
Tj in a variable number of subelements as it is shown in figure 2 (right). If we suppose that
all the charge of an element is concentrated in its center of gravity: λij =

∑Ns
k=1 λij,k with

λij,k =
ATjk

|bi−bjk| , where ATjk
= area of subelement Tjk, bjk = barycenter of subelement Tjk,

bi = barycenter of element i and Ns = total number of subelements Tjk of Tj .
Once all the coefficients λij are known, we calculate σ solving the system

M∑

j=1

λijσj = C1 i = 1, . . . , M, (19)

If we integrate σ over the surface of the liquid drop we will get the total charge of the drop
that will coincide with the capacity of the drop because we have used V0 = 1. Once the capacity
is known we approximate numerically Alv and Asl and we get the energy of the liquid drop as
a function of θy and V0 using (11).
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Figure 3. Capacity versus zenithal angle in an axisymmetric drop.

Figure 4. Two 3D meshes of a spherical cap (a = 0.7, β = 0.7754). On the left, mesh 1
(541 nodes and 1016 elements), and on the right, mesh 2 (2097 nodes and 4064 elements).

4. Numerical results and conclusions
Validation In order to validate the numerical method described above we have done two tests:

1. Comparison with the exact capacity of a perfectly conducting thin spherical shell. The
exact capacity can be obtained through

C = 4a(sinβ + β), (20)

where a is the radius of the sphere and β is the zenithal angle of the shell; see [1].
We have compared in Figure 3 the capacity obtained numerically for values of β from 0 up

to π/2 (a hemispherical shell) and with two different meshes (mesh 1 and mesh 2; see Figure 4),
with the exact capacity. We found with mesh 1 a maximum relative error of 0.011 and with
mesh 2 a maximum relative error of 0.0058. In both cases, the relative error is below 2%.

2. Comparison with the exact capacity of a hemisphere (a spherical cap with β = π/2 and a
lower tap representing the liquid-solid interface). The exact capacity of a hemisphere of radius
a is (see [8])

4πa

(
1− 1√

3

)
. (21)

In this case we compare again the results obtained with meshes 1 and 2. We obtained a
relative error of 0.00997 with mesh 1 and a relative error of 0.00253 with mesh 2.
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Figure 5. Shape of a radially symmetric droplet with a bottom tap of radius a = 1.16 under a
potential V = 0.6 (top left). The same drop perturbed radially with n = 2 (top right), n = 3
(middle left), n = 4 (middle right), n = 10 (bottom left) and n = 20 (bottom right).

Results and discussion We have used the numerical method described above to compute the
energy of profiles perturbed in the form (12) and compare it with the energy of the axisymmetric
profile a(z). We use mesh 2 for the numerical simulations. In Figure 5 we show the perturbed
drops with n = 0, 2, 3, and 4 for the case corresponding to V = 0.6 and a = 1.16.

In Figure 6 we represent, together with the curves of θY as a function of a for all axisymmetric
profiles at a given potential (see [6]), the approximate “bifurcation curves” for n = 2, 3, and 4.
Each of these curves, with a given value of n, delimits the regions where the configurations
of the type (12) with ε ¿ 1 (that we took equal to 0.025 for our numerical computations)
are energetically more favorable than configurations with smaller value of n (including the
axisymmetric profiles). Notice the tendency of the curves to intersect for large values of a.
This is in agreement with the discussion on profiles close to a disc in the previous section.

From Figure 6 we can obtain two important conclusions:

(i) Drops cannot be spread indefinitely by increasing the potential V0. If we trace a horizontal
line in Figure 6 for a given value of θY , we find that a increases with the potential in a
superlinear manner, but only up to some limiting value where we meet the first bifurcation
curve n = 2. At this point, an axisymmetric drop is no longer the most favorable
configuration, and drops with elliptic cross sections will be preferred. A further increase of
V0 leads to an intersection with the curves n = 3, 4, . . . and configurations with a higher
number of undulations would be more favorable energetically. The intersection with the
first bifurcation curve takes place for relatively small values of a (in comparison with the
maximum values that a may take from the constraint established in [6]. In Figure 7 we
represent the axisymmetric profiles at the n = 2 bifurcation curve for different values of
θY . Observe that all the profiles are concave. Hence, the profiles changing concavity,
like those represented in [6], are probably not observable in nature since nonaxisymmetric
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Figure 6. Bifurcation branches in the a−θY plane. The bifurcations with n = 2 are represented
with dashed line, n = 3 with dotted line, and n = 4 with dash-dot line.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

Figure 7. Axisymmetric profiles at the bifurcation curve n = 2 for θY = 1.55, 1.26, 1.03, 0.81,
0.59, 0.43.

perturbations lead to configurations which are energetically more favorable. Once a
bifurcation curve has been crossed, axisymmetric drops should destabilize. This provides
an explanation to the saturation effect in electrowetting.

(ii) For a given value of θY , the transition between bifurcation curves occurs relatively fast:
if we take, for instance, θY = π

4 , we can see that a only changes approximately from 1.4
to 1.6 while crossing the bifurcation curves n = 2, 3, and 4. This fast transition is more
remarkable the smaller θY is, and for sufficiently small values of θY the transition takes place
for very flat shapes; for those shapes (see the previous section) the first bifurcation curve we
cross when increasing a may correspond to n > 2. The quick transition between bifurcation
curves provides an explanation of the characteristic multiple-finger patterns observed in
electrowetting once saturation is reached and potential is slowly increased.
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