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Abstract— Due to the random characteristics of the indoor 
propagation channel, received signal strength-based 
localization systems usually need to be manually calibrated 
once and again to guarantee their best performance. 
Calibration processes are costly in terms of time and 
resources, so they should be eliminated or reduced to a 
mínimum. In this direction, this paper presents an 
optimization algorithm to automatically calíbrate a 
propagation channel model by using a Least Mean Squares 
technique: RSS samples gathered in a number of reference 
points (with known positions) are used by a LMS algorithm 
to calcúlate those valúes for the channel model's constants 
that minimize the error computed by a hyperbolic 
triangulation positioning algorithm. Preliminary results on 
simulated and real data show that the localization error in 
distance is effectively reduced after a number of training 
samples. The LMS algorithm's simplicity and its low 
computational and memory costs make it adequate to be 
used in real systems. 

Keywords — Indoor positioning, localization, calibration, 
optimization, LMS. 

I. INTRODUCTION 

The majority of indoor localization systems work with 
received signal strength (RSS) measurements gathered 
from different wireless technologies (WiFi, Bluetooth, 
ZigBee, etc.)- The RSS signal random nature makes these 
systems (using either map-based or channel model based 
techniques for positioning) need an off-line calibration 
phase - at least when starting the system for the first time. 

The first objective of calibration is to characterize the 
noisy wireless channel, affected by multipath and fading 
effects. Secondly, calibration is also needed to detect (and 
handle) the temporal propagation dynamics originated by 
unstable environmental conditions (such as humidity), 
space reorganization (e.g. furniture re-colocation or open-
closed doors) and people's movement (temporal flow, 
human clusters around the mobile target, etc.). For 
example, [1] analyzes how the average position accuracy 
of a fingerprint-based system (offering 2.13m. of 
accuracy in standard conditions - no-blocking people, 
close-all-doors and 40% humidity level) is deteriorated in 
a 43.7% when the humidity level increases until 70%, in 
a 236.6% if the configuration changes to all-open-doors 
and in a 85.9% when people clusters are present. With 
respect to the last issue, Chan et al. [2] shows the effects 
of human clustering: a group of people walking around 
the target user can créate strong interferences, which 

make the positioning accuracy and precisión deteriórate. 
Finally, calibration processes are usually required when 
new hardware is integrated in a localization system, as 
the variable characteristics of transceivers chipsets, 
antennas and packaging of mobile devices commonly 
degrades the performance of the localization solution [3]. 

In this paper, a strategy for dynamic calibration of 
channel model-based localization systems is presented. 
We assume that the propagation channel adjust to a 
theoretical lognormal model, which needs to be 
dynamically adapted to fit the real conditions of 
operation. The proposed technique is based on the 
existence of several (position-known) reference points, on 
which it is possible to opportunistically take signal 
strength measurements (thanks to the interaction with 
mobile users or to a beacon-organized infrastructure). 
Afterwards, an algorithm iteratively calculares the valúes 
for the constants of the propagation channel model using 
real-time measurements. The adaptive algorithm works to 
minimize the error between the estimated position and the 
real one. As it is iterative - just handling data of the 
previous temporal instant - and simple in its formulation, 
the algorithm has minimum computational and memory 
needs; this means that it can be integrated in real-time 
localization systems without requiring significant 
resources and without introducing serious operational 
delays. 

The remainder of the paper is organized as foliows. 
Section II reviews some previous proposals to automate 
calibration procedures for indoor localization systems. In 
Section III, our localization scenario is fully described. 
Section IV gathers the theoretic foundations of the 
proposed algorithm. The feasibility of the algorithm is 
shown in Section V through a number of experiments in a 
real environment. Finally, Section VI concludes the work. 

II. RELATED WORK 

Information about received signal strength is inherent 
to every wireless communication technology so, when 
facing the development of localization systems, RSS has 
been the traditional basis to work with. In brief, RSS 
indoor positioning systems usually rely on an off-line 
calibration phase, which aims at characterizing the 
electromagnetic environment by: 1) calibrating a 
theoretical propagation model with real RSS 
measurements or 2) building a RSS fingerprint (or radio 



map) of the localization área (see e.g. [4] for a review on 
indoor localization systems and techniques). 

Calibration processes are costly and inefficient, so a 
line of research in indoor localization is devoted to 
propose solutions with zero or limited initial calibration 
and on-line recalibration. 

For example, in the calibration phase, Gwon and Jain 
[5] use inter-anchor RSS measurements to genérate, for 
each anchor, múltiple linear functions representing the 
relationship between RSS and distance. During the on-
line phase, a target client uses the mapping functions of 
the anchor with strongest RSS (Ai) to calcúlate its 
position to the rest of anchors (A2...An), and the mapping 
function for the second anchor (A2) with strongest RSS to 
calcúlate the position to Aj. A similar strategy is foliowed 
by Barsocchi et al. [6]; they propose a calibration strategy 
by which each anchor in the infrastructure broadcast a 
beacon that is afterwards used by other anchors to 
measure the reciprocal RSS. Next the localization server 
calibrates the propagation model parameters using these 
data and some information about the space's geometry, 
adaptively calculating the attenuation factor introduced 
by the walls. 

Lim et al. [7] takes as input the on-line measurements 
of RSS between (WiFi) anchors, and between a client and 
its neighboring anchors, to créate a mapping between the 
RSS measurement and the actual geographical distance 
basing on the truncated singular valué decomposition 
technique. The algorithm does not rely on a specific 
propagation model, but on exploiting the fact that the 
RSS is inversely proportional to the distance to the power 
of a path loss exponent. Authors claim that the only 
calibration process this system requires is five minutes of 
measurements between pairs of anchor nodes. 

Apart from stationary emitters (anchors), Krishnan et 
al. [8] include sniffers in their RF deployment. Sniffers 
are wireless transmitters that listen for all 
Communications from wireless clients and anchors. 
Authors use a spline interpolation technique on these data 
to build a RSS fingerprint. During the on-line localization 
phase, when at least one sniffer observes a significant 
deviation on the RSS from any emitter, the floor model is 
recalculated. Moraes and Nunes [9] also propose a 
sniífer-based technique to build a propagation map, in 
which each grid position is associated to a probability 
distribution. The map is rebuilt every T seconds or when 
significant variations in the RSSI occur. 

In order to compénsate the environmental dynamics, 
Yin et al. [10] suggest temporally adapting the static RSS 
fingerprint. RF receivers are distributed over the space as 
reference points. On the signal strength valúes received 
both by the reference points and the mobile target, a 
múltiple regression analysis is used to build a corrected 
radio map. Information about the location of the reference 
points is not needed; the system works to learn the 
predictive relationship of signal-strength valúes between 
the reference points and the mobile device. 

A multi-fingerprint solution to the problem of 
environmental dynamics is proposed by Chen et al. [1]. 
Information from several sensors (passive RFID, 

humidity sensors, smart cards and short-range Bluetooth) 
serve to characterize the environmental situation in terms 
of humidity, open/closed doors and people and to feed an 
online calibration process which allows building múltiple 
context-aware radio maps. Following, the adaptive 
localization phase selects the context-aware radio map 
that best matches the current environmental condition 
state (calculated from the information coming from 
environmental sensors). 

Zheng et al. [11] propose to automate the calibration 
process of an RF deployment with a time-based 
localization technology covering selected áreas: 
ultrasound trilateration is used to label RF measurements 
in the calibration phase. This approach may be feasible 
when different types of localization granularities are 
needed, but in most of cases will require a redundant 
infrastructure. 

The LANDMARC system is based on deploying 
passive RFID reference tags to increase the accuracy of 
their active RFID localization strategy [12]. As described 
in the next Section, our general approach shares this basic 
idea, but applies it to the calibration problem: we propose 
to complete the localization infrastructure with an 
auxiliary structure of easily deployable and maintainable 
reference points, with known positions, which will serve 
to capture real-time RSS data which will train a 
propagation model by using a Least Mean Square (LMS) 
algorithm. As far as we know, this optimization technique 
has not been applied to the integration of on-line RSS 
measurements in propagation models, and may result in a 
robust and time-efficient way of performing calibration. 

III. FUNDAMENTALS: LOCALIZATION SCENARIO AND 

SERVICE REQUIREMENTS 

Let us consider an indoor space covered by a network 
of anchor nodes (e.g. WiFi or Bluetooth access points, or 
Zigbee motes), deployed to measure the RSS of mobile 
targets in order to localize them. Our localization system 
is based on using a propagation channel model to 
compute each mobile-anchor node distance and perform 
hyperbolic triangulation. 

The most popular channel model for RSS-based 
localization is the lognormal model [13]: 

PRX(dBm) = A-10r¡\og—+N(0,a) (1) 
d0 

where PRX is the received power (at the receiving nodes, 
respectively), d is the distance between transmitter and 
receiver, A and r¡ are the parameters of the channel model 
and TV is a zero-mean Gaussian random variable with 
standard deviation a. A depends on the antenna gain, the 
transmission power and the power loss for a reference 
distance d0, and needs to be experimentally adjusted. The 
path loss exponent r¡ has to be experimentally determined 
too. For example, in 2.4GHz IEEE 802.15.4 propagation, 
A may range between -50 and -85, while r¡ may be 
between 1.9 and 3.5 [15]. 

Using eq. 1, given^ and r¡, the system estimates the 
distances d from the received PRX (in practice the RSS), at 



least to three anchor nodes. Next, the target's position is 
calculated by performing hyperbolic triangulation. The 
hyperbolic positioning algorithm may be solved with a 
least squares estimator (detailed formulation is available 
in e.g. [13]), for which the estimated coordinates (x,y) 
are obtained by calculating: 

x 

y. 

where 

= (HTH)-1HTb 
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being (x¿,y¿) the known coordinates of the i=l..N 
anchors, dt the distance from the target to each anchor 
with the origin of coordinates in the anchor node i=l, and 
RSSk the received signal strength to/from each anchor 
node. 

As said before, in practice, both A and r¡ need to be 
experimentally determined off-line and continually 
updated or calibrated (slightly biased estimations of A 
and r¡ may result in significant localization errors [13]). In 
this context, our objective is to avoid any off-line 
experimental determination of A and r¡ 1) to minimize the 
complexity of the calibration tasks when getting the 
location system to work for the first time and 2) to adapt 
the system's performance to real time environmental 
variations. To do so, we define a number of beacon or 
reference points located in fixed geographic locations. 
These reference points, easy to deploy, may be situated in 
waypoints (e.g. doors), attached to static objects (e.g. a 
printer in an office), or deployed as part of the 
Communications infrastructure (i.e. an anchor node could 
serve as reference point). 

The anchor nodes will measure the RSS coming from 
these reference points when possible (e.g. when a user 
with a suitable device is detected on a reference point) 
and use the algorithm presented in the next section to 
compute A and n in real time. 

Of course, this approach has many practical 
implementation details that are not directly addressed in 
this paper. For example, the number of reference points 
needs to be minimized, even if a technologically hybrid, 
low-cost and non-intrusive strategy to set them up is 
feasible. For example, in [12], one reference tag is needed 
for each square meter to provide an error distance 
between one and two meters; this high-density 
deployment is probably unrealistic in most part of 
common localization scenarios. Apart from that, the 
physical distribution of the reference points needs to be 
flexible, as it is not always easy to place new elements in 
daily-living environments. Additionally, reference points 
should be easily maintainable and admit dynamic 
reconfiguration. Assuming that a suitable deployment is 
feasible (as it is), the optimization algorithm used to 
calibrate the system is described in the next Section. 

IV. THE LEAST MEAN SQUARES (LMS) ADAPTIVE 

CALIBRATION ALGORITHM 

Least Mean Squares is a well-known gradient-based 
technique to find in a computationally efficient way the 
valúes of the parameters of a function of data that 
approximates or estimates a set of reference valúes. It is 
based on approximating the trae gradient of the squared 
error of a function by its instantaneous estímate [14]. 

In this case, we propose to use it to set up an adaptive 
filter to minimize the localization error (eq. 5) by 
recursively adapting the constant parameters of the 
lognormal propagation model, A and n. 

(x, y) -

RSS! 

RSSj 

RSSM 

A(n), n(n) 

i 

ái 

du 

F(n) 
Hyperbolic 
localization 

function 

/' 0 \ 

! 

(*.y) 

e(ri) 

Figure 1. Adaptive filter to minimize the error in location estimation by 
adapting Aandt|. 

Figure 1 represents how the adaptive filter works: the 
LMS algorithm uses the M RSS measurements taken 
from the calibration/reference points to iteratively 
calcúlate the optimal valúes of A and r¡ in each instant 
(iteration) n, to minimize the error between the estimated 
(x,y) and the (known) real position of the /' reference 
points (x¿,y¿). The error to be adaptively minimized is 
formulated as: 

5(n)-- Xi(n)-xt(n)\ +\yi{n)-yi{n)\ (5) 

In Figure 1, F(n) represents the hyperbolic 
localization function (eqs. 1-4) which allows calculating 
(x,y) wúhA(n-l) and r¡(n-l); these estimated coordinates 
will serve to calcúlate A(n) and r¡(n) as shown in eqs. 6-7. 

Assuming that a single channel model is used to 
characterize the propagation behavior from each anchor 
node, the Least Mean Square algorithm is formulated as: 

A, A, ,N 1 dE\£2(n)] .. ,. . sde(n) 
A(n) = A(n-l)--juÁ

 L ^ >^A{n-\)-jLiA£{n)-^>- ( f ) ) 

r¡{n) = r¡{n-X)-iie{n) 
de(n) 

where //s are the filter step sizes that condition and 
control the speed and stability of convergence (as shown 
in Section V). 

After detailed calculations (basically derivations and 
simplifications) on the formulas of hyperbolic 
triangulation (see [13]) the following expressions for A(n) 
and r¡(n) are obtained: 

A(n)=A(n-l)-,,A-

i¡(n)=J¡(n-\)-^-

where: 

x{n) - "x{n)\ • ¿ J ¿ h « ) • loga" («) -d}(n) • logd, (n)\ + 

j>W-iwl-¿D,K(»)-logi («)-¿)(«)-logí (»)] 

(7) 
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It is important to remark that the recursive valúes for 
A and r¡ aim at minimizing the distance error; in general, 
we do not seek convergence to any 'nominal' A and r¡ 
valúes. 

V. VALIDATION AND RESULTS 

The formulation above has been implemented in 
Matlab for validation and testing. Following, the LMS 
algorithm performance is shown by using both simulated 
and empirical data in a real scenario. 

A. Simulation results 

The objective of our simulation analysis has been to 
test the convergence of the LMS algorithm in a noisy 
environment. Figure 2 shows our simulation scenario, 
which is composed by 8 anchor nodes (serving as 
Communications infrastructure) and 20 reference nodes. 
Actually, this deployment exists in our lab and has been 
used for empirical validation too (see Section V.B). 

Figure 2. Scenario for simulation: 4 rooms, 8 anchor nodes (o) and 20 
reference (beacon) points (x). 

The reference points have been randomly chosen, 
trying to get enough spatial diversity in each room with a 
modérate number of beacons (5 per room, located near 
the corners and the center), in order to work on a 
simulated but feasible scenario. In reality, these reference 
points should be related to objects or waypoints capable 
of generating 'measurement events'. For example, a door 
with automatic access control can serve as reference 
point: when a user is detected to be opening the door 
(e.g. by processing data from a RFID reader placed in the 
entonce), the localization infrastructure may trigger a 
'measurement event' to request the user's mobile phone 
to send the (WiFi) RSS received from the nearby access 
points. In our simulation, 'measurement events' are 
generated in each reference point: 200 data arrays 
gathering RSS measurements from every anchor node 
have been simulated by using eq. 1, with PTx-Sim

 = 0 dBm, 
d0-Sim=lm, Aim=-60 dB, nsnn=2.3 and osim=2.5 (possible 

valúes for a 'standard' indoor propagation model in this 
geometry, as shown in [15]). 

In the first iteration, the hyperbolic localization 
algorithm (eq. 2) has been then initialized with some 
given initial valúes (A0 and r¡0) and fed by a simulated 
RSS array corresponding to the set of received signal 
strengths from a randomly chosen reference point to each 
anchor node. Then, we have obtained the first location 
estimation and its error - calculated as the mean of the 
error obtained in each reference point. Afterwards, the 
obtained valúes have served as input for eq. 6, to 
calcúlate the valúes for A and r¡ minimizing the distance 
error. Those valúes are to be used by the hyperbolic 
localization algorithm in the next iteration. 

Figure 3. Evolution of the error (m.) in distance using a LMS filter 
with T|o=3, UA=0. 1, u^=0.01 and two different valúes for A: a) A>= -65 

dB, b) A0= -75 dB. 

Fig. 3 shows how the LMS algorithm is able to reduce 
the location/estimation error by adaptively adjusting A 
and n. The case represented in Fig. 3a. starts with a valué 
for A0 just differing 5 dBs from the valué used to 
simúlate the RSS measurements (Asim). In this case, 
approximately 100 samples are needed to calibrate the 
model (5 samples per reference point). When the 
difference between Asim and A0 is 15 dBs (Fig. 3b), 
around 600 samples are needed to stabilize the error 
valué. In the worst case, when Asim and A0 differ in 25 
dBs, approximately 4000 samples are needed (in average, 
200 samples per reference point). 

The limit for the distance error variance is 
theoretically imposed by the noise parameter a that has 
been used to genérate the simulated samples (also 
depends on r¡). 

A significant factor for the LMS algorithm is the filter 
step sizes (//s), which control the pace to convergence but 
also the stability of the estimation. For our experiments, 
the step sizes have been empirically chosen among those 
that where offering a reasonable convergence time (in 



terms of needed number of RSS tupies) while providing a 
reasonably stable convergence valué for A and n. 
Although there are other valúes which may be effectively 
used, Figure 3 shows how the convergence works for the 
distance error when the filter step sizes have been set to 
uA=0.1, uT]=0.01. As shown in Figure 4, higher valúes of 
H may accelerate the convergence (fewer samples are 
needed to reach the possible minimum error in distance), 
but may also provide a less stable convergence. 

Mean error e\ol 

1000 1500 2000 2500 3000 
no. samples/window size 

Figure 4. Effects of the valué of the LMS filter coefficients <uA, Hn> 
on the mean error evolution (in m.). LMS initialization: A0= -75, T|0=3. 

Simulated samples are generated with A=-60 and T|=2.3. The mean 
valué is calculated with a sliding window of 50 samples over the error 

in distance. 

Figure 5 shows how A and n evolve for several 
combinations of step sizes. At the beginning, all the 
curves have a similar behavior towards a convergence 
valué. Afterwards, the convergence stability is affected 
by the non-linear interactions between the two 
parameters. 
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Figure 5. Effects of the valué of the LMS filter coefficients (yiA, ftq) on 
the A and IJ iteratively estimated valúes. LMS initialization: An= -75 dB, 

T|0=3. Simulated samples are generated with A=-60 dB and T|=2.3 dB. 
The mean valué is calculated with a sliding window of 50 samples over 

the error in distance. 

Figure 6 shows how the algorithm converges when 
only A is calculated with the LMS, while r¡ remains 
invariable. As .4 is relevant term in eq. 1, it prevails over 

r¡, assuring convergence (although not to the simulation 
valué) even with biased (non real) valúes of r¡. 
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Figure 6. Evolution of A and the mean distance error when r¡ is 
invariable and set to a) 3 or b) 2.1. A0= -65 dB and the LMS step sizes 
are uA=0.1, m=0.01. Simulated samples have been generated with A=-

60 dB and T|=2.3. The mean valué is calculated with a sliding window of 
50 samples over the error in distance. 

B. Empirical validation 

The scenario for empirical validation has the same 
geometry that the simulated one. It is covered by a 
wireless sensor network working at 2.4 GHz, composed 
by MicaZ motes (an IEEE 802.15.1 compliant hardware 
platform [16]) as anchor nodes. 

With respect to the reference points, 24 beacons have 
been opportunistically located depending on the furniture 
and waypoints (doors) of the área (Fig. 7). The 
distribution seeks to accommodate the 'spatial diversity' 
and 'reasonable number of reference points' criteria used 
in the simulated environment, while considering the 
practica! feasibility of the deployment. 
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Figure 7. Scenario for empirical validation: 4 rooms, 8 anchor nodes 
(in blue color) and 24 reference points (in red color). In iteration, a 

reference point is randomly selected to deliver its RSS 8-tuple. 

At each reference point, a variable number of RSS 
measurements from each anchor node have been gathered 
to build a 8-tuple <RSSa, ,RSS„, (these 8-
tuples are prepared to feed the LMS algorithm). Figure 8 
represents the RSS measurements gathered from the 8th 
anchor node at the different ID distances of 24 reference 
points. The curve is the fitting of eq. 1 to these 
experimental data. 
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Figure 8. Propagation model with real data for the 8* anchor node 
calculated on 24 reference points. RSS is measured in dBm, and the 

propagation model parameters are A=-58.50 dB and T|=2.68. 

In a real scenario, an RSS 'measurement event' may 
be randomly generated in any of the available beacon 
points (depending on the people flow and activity), or 
may be generated in a periodic mode (if the reference 
point is conceived as part of the static infrastructure). For 
example, a user with a wireless equipped mobile device 
will deliver calibration measurements when passing on a 
reference point (the accurate detection of the user in the 
reference point may be done e.g. by using RFID-NFC 
landmarks). Additionally, infrastructure fixed reference 
points (e.g. a computer with a wireless adapter) will 
genérate periodic tupies. So, with the obtained dataset, we 
have simulated the real process of calibration by feeding 
the LMS algorithm with tupies from randomly chosen 
reference points. 

The performance of the algorithm is shown in Figure 
9, under the same initial conditions that in the simulated 
scenario of the previous section, with (xA=0.1, u^O.Ol. 

Mean error e\ol 

500 1000 1500 2O00 25O0 3000 3500 40O0 4500 5O00 55O0 
no samples/window size 

Mean error e\ol 

2000 3O00 4000 
no. samples/wncfow size 

1000 20O0 3000 4000 5000 60O0 7000 8000 9000 10000 
no samples/wndow size 

Figure 9. Evolution of the mean error (m) in distance using a LMS 
filter with T|o=3, UA=0.1, U^=0.01 and different initial valúes for A0: a) -

65 dB, b) -75 dB, c) -85. The mean valué is calculated with a sliding 
window of 50 samples over the error in distance. 

The mean error in distance shows a decreasing trend in 
every case in Figure 9; this behavior may be clearly 
identified for low valúes of A and long-term training of 
the LMS algorithm. The number of samples needed to 
have a visible error reduction depends on the initial valué 
of the LMS algorithm: 1300 samples when^0= -75 dB, 
and 4000 samples when^0= -85 dB (approximately 166 
samples per reference points are needed). For^0= -65 dB, 
the error reduction is not so observable, although after 
processing approximately 800 samples, the average error 
is below 2.2 meters. 

Figure 10 shows the real system's sensitivity to A (by 
giving r¡ a fixed valué). When.4 is variable and r¡ set to 3, 
the convergence valué for.4 is cióse to -65 dB. So, in the 
case in Figure 9, where A0= -65 dB, the error reduction is 
not perceived as the best configuration for the 
propagation model coincides with the initial valué given 
toA. 

Apart from that, Figure 10 shows that^ can 'converge' 
with very different valúes of r¡, although with different 
stability and error reduction. As said before, A is the 
dominant parameter in the lognormal propagation model 
(eq. 1), and it is affected by a step size one order of 
magnitude above the //,. 
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Figure 10. a) Evolution ofA and mean distance error when //is 
invariable and set to a) 3, b) 2.1; A0= -85 dB. The LMS step sizes are 

HA=0.1, ^=0.01. 



VI. CONCLUSIONS AND FURTHER WORK REFERENCES 

Preliminary results in Section V and VI show that our 
LMS strategy for calibration is feasible and promising. 
The algorithm is capable to adapt the parameters of a 
lognormal propagation model to provide minimized 
errors in distance when using a hyperbolic localization 
technique. 

The proposed algorithm is simple and lightweight in 
terms of computational needs and memory requirements: 
it performs iteratively on real-time data and the 
estimation obtained in the previous instant. For this 
reason, we find it especially attractive to assist 
localization systems in their calibration tasks, and also to 
embedded it in resource-constrained hardware (such as 
MicaZ motes) to perform distributed calibration. 

In order to enhance the algorithm accuracy, we are 
currently testing the effect of handling various 
propagation models (one per anchor node, one per anchor 
node and room) and additional information about the 
physical structure of the environment (e.g. walls) to 
demónstrate if additional complexity in channel modeling 
may benefit the algorithm performance. Another idea we 
are working on is about sequencing the estimation of A 
and n, instead of doing joint computation. In the same 
line, we are also considering its integration with other 
localization algorithms (circular and weighted hyperbolic 
and circular). 

From a practical viewpoint, an in-depth analysis about 
the relationship between the number of reference points, 
their geometrical distribution and the LMS algorithm 
accuracy is needed. It is also necessary to study the 
processing time the algorithm needs, in order to adjust the 
LMS step sizes to effectively work in real environments. 

Together with the algorithm enhancement, it is 
necessary to explore how to easily deploy 
technologically-hybrid, unobtrasive and reconfigurable 
reference points in real environments, which guarantee 
the interaction with potential users to acquire sufficient 
calibration data in real-time operation. 

As the reader will notice, there is still a way to go to 
have a fully operative solution. In summary, further work 
is focused on demonstrating the stability of the proposal 
in real time operation, to show that the system can 
effectively adapt its behavior to real dynamic changes in 
the localization environment. 
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