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Abstract

An experimental and numerical study has been carried out of the region around
the tip of a methane-air premixed flame attached to a circular laminar jet burner.
On the experimental side, photographic records and PIV have been used to mea-
sure the shape of the reaction layer and the velocity of the gas around the tip
of the flame. The numerical part of the study includes simulations of station-
ary axisymmetric flames with infinitely high activation energy reactions. The
experimental and numerical results compare well with each other and allow to
determine the curvature of the reaction layer at the tip and the velocity and
strain rate of the fresh gas flow along the axis of the burner. These data,
together with the planar flame velocity determined by extrapolating the veloc-
ity of the flame at the tip to the limit of zero stretch, are used to assess the
well-known linear flame-velocity/flame-stretch relationship originally proposed
by Markstein and later derived in the asymptotic limit of weakly curved and
strained flames [1, 2], as well as the phenomenological modification proposed
more recently by Mungal and coworkers [3, 4].

1. Introduction

The Bunsen flame is a classical example of an axisymmetric concave flame
configuration displaying an increase of local burning velocity due to flame com-
pression (negative stretch), specially at the flame tip. The curvature of the
flame and the strain rate of the flow, which exist at any point along the flame,
cause separate changes of the local burning velocity of the flame with respect
to the burning velocity of a planar flame. By assuming that these changes
are proportional to the magnitudes of curvature and strain rate, the reactive
mixture is characterized by two proportionality factors, which are known as
Markstein lengths. In quasi planar configurations, the two Markstein lengths
are equal and the two effects add up into a single term: the so-called flame
stretch. The Markstein lengths can be determined experimentally by simulta-
neously measuring the curvature of the flame, the strain rate of the flow and
the local burning velocity of the flame. To achieve this goal, we have set up a
laminar jet burner and used a PIV system to measure the gas flow velocity in
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Figure 1: Velocity of the flame at the tip versus flame stretch for φ = 1.49 and different flame
heights.

a vertical cross-section through the axis of a methane-air Bunsen flame. The
PIV system is composed by a double Nd-YAG pulse laser (New Wave 120XT)
with a light sheet forming emission optics, a double-shuttered camera (PCO,
1392 × 1040 pixels) and a pulse generator (ILA). To track the flow, the fresh
gas is seeded with oil droplets formed by evaporation-condensation in a seeding
chamber inserted in the air line. The laser light dispersed by the oil droplets
before they evaporate in the flame preheating region is captured by the camera
at two closely spaced instants of time, and the velocity of the gas is determined
from these images using the ViDPIV cross-correlation software. In addition,
the long exposure picture of each PIV couple receives enough radiation from
the flame, in the laser wavelength that goes through the narrow band filter set
in front of the camera, to clearly display the outline of the reactive front, which
allows to measure its position and curvature.

2. Results and discussion

The stretch at the tip of a Bunsen flame is

S = U
L
C +

∂u

∂x
, (1)

where C = 2/R is the curvature of the reaction layer at the tip, with R the radius
of curvature of the meridional section of the reaction layer, U

L
is the velocity of

the planar flame, and x and u are the vertical distance and the velocity of the
fresh gas on the axis of the burner. Markstein’s proposal is that the velocity Un

of the flame at the tip, defined as the velocity of the fresh gas extrapolated to
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Figure 2: Contributions of the curvature (K) and the strain rate (G) to the dimensionless
stretch σ in Eq. (3).

the reaction layer, should satisfy

Un = U
L

+ LS, (2)

where L is the Markstein length of the flame.
Values of the three magnitudes Un, R and ∂u/∂x have been measured for

different flames with an equivalence ratio φ = 1.49 and different values of the
height h of the tip above the burner’s nozzle, which amount to different values
of the injection velocity U0. Figure 1 shows Un versus S computed from these
experimental data and the planar flame velocity UL ≈ 222 mm/s, which is
determined as explained below.

The contributions K and G of the flame curvature and flow strain rate to
the dimensionless stretch

σ =
LS
U

L

=
2L
R

+
L
UL

∂u

∂x
= K +G (3)

are shown in Fig. 2. As can be seen, the contribution of the curvature dominates
that of the strain rate for all but the shortest flames, with h = 3.1 mm. Data for
these very weakly curved flames show considerable scatter and suggest a trend
different from that of the other flames in our experiments. Such short flames
will not be discussed here.

According to Eq. (2), the velocity of the planar flame and the Markstein
length can be determined from the experimental data by fitting a straight line
to the data in the (S, U

L
) plane. This is illustrated in Fig. 3, where only data for

the four heights h = 6.2, 6.9, 9.5 and 11 millimeters have been used. It should
be noted that the fitting process requires iteration, because U

L
appears in the

expression (1) of the stretch. The Markstein length determined from this fitting
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Figure 3: Determination of the planar flame velocity UL and the Markstein length L by fitting
a straight line to the experimental data for four different flame heights.

is L = 0.489 mm, which is in reasonable agreement with other experimental
values and with the theoretical value of Ref. [5]. The velocity of the planar
flame, given by the intercept of the straight line in Fig. 3, is U

L
≈ 222 mm/s,

as was mentioned before.
Figure 4 shows that the data for all the available flame heights collapse

reasonably well in the plane of the dimensionless variables σ and (Un/UL
− 1)

when the values of U
L

and L obtained above are used. According to Markstein’s
linear relation (2) and (3), the data should fall on the diagonal Un/UL

− 1 = σ.
The results in Fig. 4 reveal that (a) the linear relation between flame velocity
and stretch is accurate up to remarkably high values of Un/UL

− 1, of the order
of 0.5, and (b) the velocity of the curved flame shows an apparent divergence
for a value of the dimensionless stretch σ which is about 0.6–0.7.

Mungal and coworkers [3, 4] have argued that a modified definition of stretch
should be used, with the local velocity of the curved and strained flame Un

replacing U
L

in (1), and have proposed the modified velocity-stretch relation

Un

U
L

− 1 = σ
T

(4)

with
σ

T
=
L
U

L

S
T

and S
T

= UnC +
∂u

∂x
, (5)

which amounts to Un/UL
−1 = σ/(1−σ+G). Figure 5 shows our experimental

data replotted in terms of the modified variables (see also the blue curve in
Fig. 4). As can be seen, the data do not fully agree with the modified relation
(4), but undeniably they follow it better than the original Markstein relation
Un/UL

− 1 = σ for moderate and large values of the stretch.
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Figure 4: Left- and right-hand sides of Markstein’s relation Un/UL − 1 = σ evaluated with
the experimental data for different flame heights. The blue curve shows Mungal’s modified
relation (4) and the yellow curve is a nonlinear fit to the experimental results.

Figure 5: Left- and right-hand sides of the modified velocity-stretch relation (4) evaluated
with the experimental data for different flame heights.
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Figure 6: Left- and right-hand sides of Eq. (4) evaluated with the numerical data for γ = 3
(4), 5 (5), 6 (◦), and 7 (�), and with the experimental data for φ = 1.49 (γ ≈ 6, l).

Some comparisons with the numerical results are shown in Fig. 6, where the
measured fractional change of the flame velocity relative to the planar flame
velocity is plotted as a function the measured modified stretch (in brackets in
the horizontal axis), for an equivalence ratio φ = 1.49 and different dilutions,
measured by the ratio γ of the adiabatic flame temperature to the temperature
of the fresh gas. Here δ

L
= αu/UL

is a reference flame thickness, with αu the
thermal diffusivity of the fresh gas, and Ma = L/δ

L
is the Markstein number,

evaluated from the theoretical results of Clavin and Garcia-Ybarra [5] as a
function of γ for Lewis number equal to the unity. The factor Un/UL

multiplying
the curvature of the front is the modification of the flame stretch introduced
by Mungal and coworkers. This factor tends to the unity in the limit of zero
stretch, in which the data tend to the diagonal of the figure, in agreement
with asymptotic theory. The data stay near the diagonal for moderately large
values of the stretch when the factor Un/UL

is included, which again shows the
usefulness of the phenomenological modification, but they finally depart from
the diagonal and seem to suggest a square root relation between flame velocity
and modified stretch for large values of the latter. The numerical results show
that this transition is connected to a transition between rounded tips, with
curvature radii of the order of the thickness of the preheated region of the
flame, and slender tips, with curvature radii small compared to the thickness of
the preheated region.

Asymptotic analysis for large values of the thermal expansion γ and of the
velocity ratio U = Un/UL

shows that the results of Buckmaster and Crowley [6]
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for slender flames are applicable when U � γ, leading to a curvature radius of
the reaction layer at the tip smaller than the thickness of a planar flame by a
factor of O(γ/U). When 1 � U � γ, the flame consists of two slender regions
followed by a rounded cap, where the curvature radius of the reaction layer
(rb) is effectively of the order of the thickness of a planar flame. The cold gas
enters this cap as a narrow stream tube of radius of O(rb/U1/2) and expands
and deflects significantly upon being heated.

3. Conclusions

The flow and the shape of the reaction layer around the tip of a methane-air
Bunsen flame have been measured using PIV and photographic records. The
results compare well with numerical simulations carried out with an infinite
activation energy reaction. When the injection velocity of the fresh gas increases,
the tip is predicted to evolve from a rounded cap, with a curvature radius of
the order of the thickness of the conduction region of the flame, to a slender
structure with larger curvature. The numerical and experimental results confirm
that the modified definition of flame stretch introduced by Echekki and Mungal
and Poinsot et al. allows to extend the linear relation between flame velocity and
stretch to non-small values of the stretch. However, the linear relation becomes
less accurate when the stretch is very large, and it is predicted to break down
when the tip becomes slender.
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