XV Congreso Peruano de Geología. Resúmenes Extendidos. Sociedad Geológica del Perú, Pub. Esp. N° 9 (2010), Cusco p. 87-90

HIGH PRESSURE METAMORPHIC CONDITIONS IN GARNET AMPHIBOLITE FROM A COLLISIONAL SHEAR ZONE RELATED TO THE TAPO ULTRAMAFIC BODY, EASTERN CORDILLERA OF CENTRAL PERU

Arne P. Willner⁽¹⁾, Ricardo Castroviejo⁽²⁾, José F. Rodrigues⁽³⁾, Jorge Acosta⁽⁴⁾, Miguel Rivera⁽⁵⁾

⁽¹⁾ Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität, 44780 Bochum, Germany, <u>arne.willner@rub.de</u>; ⁽²⁾ Universidad Politécnica de Madrid, ETSI Minas, c/ Ríos Rosas, 21, 28003_Madrid, ricardo.castroviejo@upm.es ; ⁽³⁾ Fac. Engenharia Univ. Porto (FEUP), r. Dr. Roberto Frias s/n 4200-465 Porto, Portugal, *felic@fe.up.pt*; ⁽⁴⁾ INGEMMET, Dirección de Recursos Minerales y Energéticos. Av. Canadá 1470. Lima 41- Perú. jacosta@ingemmet.gob.pe; ⁽⁵⁾ Miguel Rivera Feijóo, Av. Dos de Mayo 1312-503, Lima 27; mrivera@mineral-r.com.

INTRODUCTION AND SETTING

A discontinuos belt of elongated ultramafic rock bodies (mostly serpentinites) occurs in the Eastern Cordillera of the central Peruvian Andes. One of the main occurrences is the Tapo Massif, a lense-shaped serpentinite body, \sim 2 km x 5 km, comprising small podiform chromitite deposits (Castroviejo et al., 2009) and bands or lenses of garnet-amphibolite, both strongly sheared and thrust upon the upper Paleozoic sediments of the Ambo Group (Fig. 1). Metabasite geochemistry suggests a mid-ocean ridge or an ocean island protolith. The whole sequence can be interpreted as a disrupted ophiolitic complex (Castroviejo et al., 2010). The geological setting of the Tapo occurrence is described by J.F. Rodrigues et al. (2010). To get information about its geotectonic setting we applied new geothermobarometric techniques to the garnet amphibolite. Finding representative samples with an adequate mineralogy to apply these techniques is in this case a difficult task. A common problem is the almost ubiquitous overprinting by serpentinisation or retrograde metamorphism and, locally, by metasomatism or alteration enhanced by deformation, producing a variety of rock types, as rodingites, birbirites and listvaenites. Nevertheless, careful sampling followed by petrographic examination of the rocks allowed to identify some samples in which useful assemblages are present.

ASSEMBLAGES AND MINERAL CHEMISTRY

We selected three garnet amphibolite samples¹ ($090606-2$, $090606-3$ and $270607-7$, Fig. 1) which contain the assemblage garnet-Ca-amphibole-epidote-chlorite-albite-quartz-titanite-ilmenite. Additionally clinopyroxene is present in sample 090606-3. This assemblage points to conditions of the albite-epidote amphibolite facies.

Garnet is essentially an almandine-grossular solid solution (almandine $_{0.46-0.62}$ grossular $_{0.25-0.45}$ pyrope $_{0.01}$. $_{0.18}$ spessartite_{0.02-0.11}). Almandine and pyrope contents increase from core to rim, whereas spessartite decreases and grossular contents show little variations. Amphibole compositions vary strongly between samples: in sample 090606-3 amphibole is actinolite to magnesiohornblende (Na 0.10-0.66 apfu, Na_A 0.0-0.66 apfu, X_{Mg} 0.42-0.68), in sample 270607-7 magnesiohornblende to tschermakite (Na 0.58-1.03 apfu, Na_A 0.36-0.82 apfu, X_{Mg} 0.25-0.46) and in sample 090606-2 tschermakitic hornblende to tschermakite (Na 0.05-0.80 apfu, Na_A 0.3-0.5 apfu, X_{Mg} 0.41-0.58). Epidote composition within all samples varies strongly $(X_{\text{pistactic}}=0.4-0.9)$ contrasting that of chlorite (Si 5.3-5.7 apfu; X_{Mg} 0.35-0.51). Clinopyroxene composition is diopside_{0.56-0.58} hedenbergite_{0.20-0.30}acmite_{0.07-0.10}orthopy roxene_{0.02-0.05}tschermak component_{0.02-0.07}. Plagioclase is invariably albite.

GEOTHERMOBAROMETRY

We calculated pseudosections for the three metabasite samples using the PERPLE X software package (Connolly 2005). The thermodynamic data set of Holland & Powell (1998, updated 2002) for minerals and aqueous fluid was used. Calculations were performed using the following solid-solution models: for epidote, garnet, plagioclase, clinopyroxene, omphacite, amphibole and chlorite by Holland

& Powell (2003) and Powell & Holland (1999). For the calculation of the pseudosections the major element compositions analysed by XRF were simplified to a 9-component system $(SiO_2-TiO_2-Al_2O_3$ -FeO-MgO-CaO-Na₂O-H₂O-O₂) normalized to 100% (Table 1). Water contents were augmented to excess water conditions that are considered to have prevailed during peak PT-conditions. Oxygen contents were arbitrarily chosen to account for epidote and $Fe³⁺$ -rich clinopy roxene present in the samples. Calculated compositions of minerals provide good coincidence with measured ones (Table 2) except partly for amphibole, because solid solution models for amphibole are still not optimal.

restricted for sample 090606-2 at 12-13 kbar, 530-540°C. Chlorite, albite and ilmenite are considered as retrograde phases in sample 090606-3, as albite, quartz and titanite in sample 270607-7 and albite in sample 090606-2.

Fig.2 Stability fields of minerals deduced from PTpseudosections calculated from whole rock compositions (Table 1) in the system SiO2-TiO2-Al2O3-FeO-MgO-CaO-Na2O-H2O-O2. Grey fields represent the stability field of the assemblages in the respective samples which represent peak PT-conditions. Abbreviations: Ab-albite, Am-Ca-amphibole, Chl-chlorite, Cpx-clinopyroxene, Ep-epidote, Gt-garnet, Imilmenite, Lw-lawsonite, Mt-magnetite, Pl-plagioclase, Rtrutile, Tt-titanite.

Fig.1. Geological map of the Tapo Ultramafic Complex with indications of the sample localities.

We simplified the pseudosections to present mere stability fields in the PT-range 400-600°C, 6-15 kbar in Fig.2. Garnet appears in the metabasite at conditions exceeding 8 kbar and 520°C. Whereas chlorite, epidote and Caamphibole are mostly stable in the considered PT-range, titanite is replaced at temperatures $>520^{\circ}$ C by ilmenite or rutile (>10 kbar). Albite is stable up to 520°C, 9 kbar and is partly replaced by plagioclase at higher temperature. $Fe³⁺$ -rich clinopyroxene is stable up to about 7 kbar, 450°C and 12 kbar, 550°C, whereas omphacite was not formed under the considered conditions and compositions according to our calculation.

The assemblages representing peak metamorphic conditions coincide for all three selected samples within a range of 525-575°C, 11-14

kbar, more

CONCLUSIONS

We can restrict the peak metamorphic conditions for the Tapo Ultramafic Complex to 12.5±1 kbar and 535±20°C corresponding to 41-48 km burial depth (calculating with a mean crustal density of 2.8 g/ccm) and a low metamorphic geotherm of 10-13°C/km. Such conditions occur in subduction settings and collisional belts. Similar conditions were derived e.g. by Massonne & Calderón (2008) in a Devonian collision zone between an exotic microplate ("Chilenia") and the South America. A comparable situation might also be conceivable for the situation in the Eastern Cordillera of Peru.

REFERENCES

Castroviejo R et al. (2009) Proc. *10th. Biennial SGA Meeting*, Townsville, Australia: 927-929.

Castroviejo R et al. (2010) *Ophiolites in the Eastern Cordillera of the central peruvian Andes. IMA2010*: 20th General Meeting of the International Mineralogical Association (in press)

Connolly JAD (2005) *Earth and Planetary Science Letters* 236: 524-541.

Holland TJB, Powell R (1998) *Journal of Metamorphic Geology* 16: 309-343.

Holland TJB, Powell R (2003) *Contributions to Mineralogy and Petrology* 145: 492-501.

Massonne HJ, Calderón M (2008) *Revista Geologica de Chile* 35: 215-231.

Powell R, Holland TJB (1999) *American Mineralogist* 84, 1-14

Rodrigues JF et al. (2010) *Geología y Estructura de las Ultramafitas de Tapo y Acobamba (Tarma, Perú). Removilización tectónica andina de un segmento ofiolítico pre-andino*. (This vol.)

TABLE 1

