
RESOURCE´S RELATIONSHIPS IN THE DESIGN OF
COLLABORATIVE WEB APPLICATIONS

Enrique Barra Arias Antonio Mendo Hernández David Prieto Ruiz

ebarra@dit.upm.es amendo@dit.upm.es dprieto@dit.upm.es

Antonio Tapiador del Dujo Juan Quemada Vives
atapiador@dit.upm.es jquemada@dit.upm.es

ETSI de Telecomunicación - Universidad Politécnica de Madrid

Avenida Complutense, 30 - 28040 - Madrid (Spain). Phone: +34 91 549 57 00

ABSTRACT

At the moment of designing a web application, we usually run into the problem of how to deal with logical connections
among resources. These connections have important implications in the operations that we take on a certain resource and
its representation, as we could verify in the design of the collaborative web application that we have developed, the
Virtual Conference Centre. For those reasons, in this paper we analyze the relationships among resources, especially
focused on collaborative web applications, and we propose some solutions and good practices for the difficulties that we
have encountered.

KEYWORDS: REST, resource design, collaborative web applications, relationships.

1. INTRODUCTION

Web based collaboration tools are becoming one of the main ways for group and distance collaboration.
Due to the easy accessibility to the Internet (e.g. via Wi-Fi) and the popularization of web browsers, users
have a nearly ubiquitous means of collaboration.

Every collaboration tool needs to manage resources and the relationships among them. As it is defined in
RESTful Web Services book [1] "A resource is anything that's important enough (in your web application)
to be referenced as a thing in itself..." and "... it has to have at least one URI". Also it is important to define
relationship, understood as "a general term covering the specific types of logical connections found on class
and object diagrams".

The Representational State Transfer (REST) is an architectural style for hypermedia distributed systems
based in these resources and relationships, introduced by Roy Fielding in 2000 [2]. It is defined by a set of
constraints, and it is inspired by the features and principles that made World Wide Web successful. In fact,
The Web is the best instance of a REST architecture style.

In this paper we analyze, from the REST point of view, the relationships among resources as a key part of
web collaboration tools architecture. We will see how these logical connections affect the representation of a
resource or a collection of resources, how these cases arose in the design of the collaborative web application
that we have developed, the Virtual Conference Centre (VCC) [3], and we will propose some good practices
and solutions to solve the obstacles we encountered.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148657335?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:ebarra@dit.upm.es
mailto:amendo@dit.upm.es
mailto:dprieto@dit.upm.es
mailto:atapiador@dit.upm.es
mailto:jquemada@dit.upm.es

2. DESIGN OF RESOURCE´S RELATIONSHIPS IN
COLLABORATIVE TOOLS

Web resources are related among them, they share connections and references. According to the UML [4]
instance level relationships there are four kinds of relationships: aggregation, external links, composition and
association.

In next sections we will discuss some good practices to be taken into account when designing your web
based collaborative applications, and we will show how implement them by using real examples taken from
the VCC. We believe it will help developers design better applications, avoiding well known problems and
promoting readability.

The VCC is a Web application developed by the Universidad Politécnica de Madrid (UPM) within
GLOBAL project, a research project supported by the European Commission’s seventh framework
programme. It offers a complete environment for web collaboration; besides other classic tools like versioned
document repository or dialog forums, the VCC offers users a service for creating, sharing, recording and
publishing distributed events, which may vary from small meetings to big conferences. The VCC and
specially the "VCC events" help project members to get closer and to collaborate as if they were office
partners.

2.1 URI Design

URIs are one of the key building blocks of REST architectures like the WWW. They are used to reference
resources and they are part of a resource’s representation; in fact, every resource must be referenced by at
least one URI. That way we can link one resource to another (inside or outside our application).

Although it is not mandatory, URIs should be human friendly and meaningful. Resources in web
collaboration tools are usually linked in a big variety of media like emails, web pages and also in meetings
and presentations. Providing meaningful URIs facilitate collaboration. Besides, resources are better indexed
by web crawlers when their URIs are descriptive. Google provides webmasters [5] with advices in this
direction.

Composition relationships, such as the container-content one, are usually reflected on URIs. The
hierarchical order provides a natural way to nest resources in the URI. They have this appearance:
/container/contents. If we use an example from the VCC like /spaces/global/events/monthly_meeting, we
realize there is a composition relationship between the event and the space (notice that in the VCC, group
collaboration is organized into spaces). This URI clearly shows where you are going if you click on it, and
so, it will influence on the user’s decision to follow it and, finally, collaborate.

Sometimes, when contents have a lot of nesting, we end up using too long URIs: e.g.
/spaces/global/events/meeting/attachments/session-1.odp. They provoke visual noise and they lack
persistency, as relationships among resources can change. That is why we do not need to always keep all the
containers in the path, e.g. when the content's identifier is unique per application scope. We can decouple
some of the resources and make the URI shorter and more persistent. We need to find a compromise between
URIs being descriptive and being persistent.

2.2 Resource Representations

Another key point in a RESTful design is the representation of a resource. Typically resource
representations are divided in two groups: collections and elements.

On one hand, forums, blogs or photo albums are just a few examples of collections that appear in most of
the web collaboration tools. In a generic case, the relationship between the collection and its container can be
found in the URI: /spaces/global/attachments or /spaces/global/events/monthly_meeting/attachments. In both
URIs a collection of attachments is shown. The first one is the representation of the space document
repository, containing all the attachments that belong to the “global” space; and the second one only returns
those that belong to the event called “monthly meeting” of the “global” space. Furthermore, the first

collection will be shown, in the HTML representation, inside the context of the space (surrounded with
information and links related to the space), while the second one will be shown inside the event context.

On the other hand, element representations show the state of a single resource, like a picture, a comment
in a blog or a video. Usually the relationships of a resource with other resources are included at the resource
representation, and means of communication are provided through links.

These relationships have also several consequences in resource manipulation operations. More
specifically, we will see how WRITE operations get affected in these scenarios, and how we applied it to the
VCC.

There are three ways of creating resources that are related to some other resource:

1. Providing a reference to the container in the representation sent to the server: used in the cases
that those relations were optional, e.g. posts that are related to events.

2. Using a URI that includes the container: Using POST requests to a URI that contains the space
in the path is our preferred way for the creation of resources that need a space to exist.

3. Including the contents in the container representation when manipulating the container: we send
nested resource representations in some cases, such as creating posts with several attachments.
The web development framework tool that we have used, Ruby on Rails [6], provides some
facilities like the one called “nested resources” which, along with the use of JavaScript to
include several file inputs in the HTML form, make this method very convenient.

Finally, update and delete methods are independent of container relations, beyond the representation sent
to the server when updating resources. These methods do not need descriptive URIs, neither the full URL
with all the nested resources.

3. CONCLUSIONS

REST gives us some useful guidelines that can be used in the design of collaborative web applications. It
is focused on resources and their representations, and we have learnt that the key for a successful design is
the resource identification and definition.

In this paper, in order to face the design and implementation of the VCC, we have classified the
relationships present in collaborative web applications’ resources, according to the UML instance level
relationships. Taking into account the compromise between URI persistency and URI description, we have
analyzed how and when these relationships should be reflected on URIs. Clear and meaningful URIs
facilitate collaboration, so it is important bringing the most relevant relations into URIs. We have also studied
how relations affect the resource’s representation, documenting three different ways of establishing
relationships. Finally, we have supported our study and conclusions with a real web service design.

4. REFERENCES

[1] Leonard Richardson, Sam Ruby. May 2007. RESTful Web Services. O’Reilly.
[2] Fielding, Roy Thomas. 2000. Architectural Styles and the Design of Network-based Software Architectures. Doctoral
dissertation. University of California, Irvine.
[3] The Virtual Conference Centre. http://www.globalplaza.org
[4] Scott W. Ambler. 2004. The Object Primer: Agile Model-Driven Development with UML 2.0. Cambridge University
Press, New York, USA.
[5] URL structure, Webmaster Tools Help,
http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=76329
[6] Sam Ruby et al, March 2009. Agile Web Development with Rails: Third Edition. Pragmatic Bookshelf.

http://www.globalplaza.org/
http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=76329

