
Towards a Method to Conceptualize Domain Ontologies

Asunción Gómez-Pérez, Mariano Fernández
Laboratorio de Inteligencia Artificial

Facultad de Informática
Universidad Politécnica de Madrid

Campus de Montegancedo sn.
Boadilla del Monte, 28660. Madrid, Spain.

Tel: (34-1) 336-74-39, Fax: (34-1) 336-7412
Email: {Asun, mfernand}@delicias.dia.fi.upm.es

Antonio J. de Vicente
Departamento de Automática

E.U. Politécnica
Universidad de Alcalá.

Campus Universitario, Ctra. Madrid-Barcelona
33,600.

Alcalá de Henares, 28771 Madrid, Spain
Tel:(34-1) 885-48-32, Fax: (34-1) 885-48-04

Email: avicente @aut.alcala.es

ABSTRACT

This paper presents the suite of principles, designs criteria and verification process used in
the knowledge conceptualization process of a consensuated domain ontology in the domain of
chemicals. To achieve agreement between different development teams we propose the use of
a common and shared conceptual model as starting point. To capture domain knowledge of a
given domain and organize it in a shared and consensuated conceptual model, we recommend
an approach that integrates the following intermediate representation techniques: Data
Dictionary, Concepts Classification Trees, Tables of Instance Attributes, Table of Class
Attributes, Table of Constants, Tables of Formulas, Attributes Classification Trees, and
Tables of Instances. We also provide a set of guidelines to verify the knowledge gathered
inside each intermediate representations and between intermediate representations.

1. INTRODUCTION.

Ontological engineering is a craft rather than a science. The cause [3] is that there is no
definition and standardization of a life cycle and methodologies and techniques that drive
the development of ontologies. Usually, each development team follows a suit of principles,
design criteria, and phases in the ontology development process. The absence of articulated
guidelines and methods make difficult the development of consensuated and non-
consensuated ontologies inside and between teams, the extension of a given ontology by
others, and its reuse in other ontologies and final applications. We claim that the source of
the mentioned problems is the absence of an explicit and totally documented conceptual
model upon which the ontology is built.

Conceptualization is important in any software engineering development. The
conceptualization phase [8] includes the objects presumed or hypothesized to exist in the
word and its relationships. Its goal [2] is to structure the domain knowledge in a conceptual
model that describes the problem and its solution in terms of the domain vocabulary. The
IDEAL Methodology [5] proposes two simultaneous activities called analysis and synthesis
in the conceptualization phase. The analysis detects the factual, tactual, strategical
knowledge and the meta-knowledge of the domain. The synthesis uses this knowledge to
build a static and dynamic model which leads the conceptual model of the system. Both
modeling activities use a set of intermediate representations (IRs) to summarize the
knowledge.

The following sections describe our approach to solve some of the problems that the
ontology development process have. In section Two, we propose the first draft of a method to
build ontologies. Sections Three to Ten describe a set of knowledge intermediate
representation techniques that allow express knowledge in a structured and organized way.
Some of them are partially based on IDEAL [9] intermediate representations. Others are
specifically created to conceptualize ontologies. For each one, we provide its definition and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148657298?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

utility, followed of how to use them, how to verify the knowledge gathered in them, and how
to perform crossed verification between IRs. We have conceptualized a domain ontology
focused in objects [7] in the domain of chemicals to prove the viability of the ideas we
propose in this paper.

2. TOWARDS A METHOD TO BUILD ONTOLOGIES.

Ontological engineering requires the definition and standardization of a life cycle that goes from
requirement definitions to maintenance of the finished product, as well as methodologies and
techniques that drive their development. Our experience in the chemicals ontology development
process allows us to distinguish four steps in the development of any ontology1:

Step #1. To capture knowledge of a given domain and to develop a requirement specification
document.

Step #2. To conceptualize it in a set of IRs. The activities we have identified for a domain
ontology about objects [7] are:

1. To identify concepts, their instances, attributes and their values in a Data Dictionary.
2. To classify groups of concepts in Concepts Classification Trees.
3. To describe constants in a Table of Constants.
4. To describe instance attributes and class attributes in Tables of Instance Attributes

and Tables of Class Attributes.
5. To describe formulas used to infer numerical values of attributes by using Tables of

Formulas.
6. To gather the inference sequence of the attributes in Attributes Classification Trees.
7. To describe instances in Tables of Instances.

Activities 1 to 7 are not secuencial in the sense of a Waterfall life-cycle model [10], but a kind of
secuencialli ty of any nature must be followed to assure that the first two steps lead us to a well defined
model without any redundancies, omissions and inconsistencies. At this phase, the documentation
generated allow: (a) to figure out if an ontology is useful and usable for a given application without
inspect its source code; and (b) to compare the scope and completeness of several ontologies, their
reusabili ty, and shareabili ty by analyzing the knowledge expressed in each IR.

Step #3. To implement the conceptual model in a formal language like: Ontolingua,
description logic, etc.

Step #4. To evaluate the ontology with respect to a frame of reference during each phase and
between phases of their life-cycle [4].

We think that this approach really improves the shareability and reusability of an ontology
since before coding the ontology in a formal language, agreements in the conceptual model
between all the development teams are required.

3. DATA DICTIONARY.

Definition and Utili ty. The first thing to do when the ontology builder tries to capture knowledge
of a given domain is to build a Data Dictionary (DD). The DD identifies and gathers all the
useful and potentially usable domain concepts, their meanings, attributes, instances, etc.

How to build a Data Dictionary. For each identified concept in the domain, the ontology
builder should fill in the following fields of the dictionary:

• Concept Name;

1 See the ontology at http://delicias.dia.fi.upm.es:5915/ontologias/chemicals.html

• Synonyms and acronyms of the concept name;
• Description, which provides the meaning of the concept name;
• Instances, which includes the instances of the concept;
• Class Attributes, or relevant properties of the concept that describe the concept itself;
• Instance Attributes or relevant properties that describe the instances of a concept.

Table 1 summarizes some concepts (Alkaline, Halogens, Elements) identified in
the domain of chemicals, as well as information about their meaning, attributes, instances, etc.

Knowledge Verification inside the DD. If the DD is almost built, a few checks will allow to
detect omissions of some pieces of knowledge. The aims are:

a) To guarantee the completeness of the knowledge attached to each concept. That is, the
concept description is concise and all the relevant instance attributes, class attributes and
instances have been identified.

b) To determine the granularity or level of detail of the concepts covered by the ontology.
c) Consistency of the instance attributes and class attributes. That is, they make sense for

the concept.
d) Concept names and descriptions. To assure absence of redundancies and to keep concision.

4. CONCEPTS CLASSIFICATION TREES.

Definition and Utility. The Concepts Classification Trees organize domain concepts in
taxonomies. They are used not only to know how concepts relate each other, but to
modularize the domain knowledge in independent ontologies.

How to build a Concepts Classification Tree. Once the ontology builder has almost done the
DD, the next step is to develop Concepts Classification Trees. Given all the concepts of the DD, a
concepts classification tree usually organizes the domain concepts in a class/subclass taxonomy in
which concepts are linked by mutually-disjoint subclass-of2 relations, exhaustive-subclass-
partition3 and subclass-of4 relations. The ontology builder should be able to classify them in
mutually disjoint sets. In fact, for each disjoint set a concepts classification tree is built. Each tree
leads to build an independent and modularized ontologies in the application domain. Figure 1
shows a concepts classification tree attached to the DD given in Table 1.

Knowledge Verification inside a Concepts Classification Tree. This IR is useful to
graphically display the hierarchy of concepts of the DD. Its aims are to assure: (a) non
repetition of concepts, to prevent redundancies in the conceptual model; (b) absence of cycles
between concepts; (c) there are not isolated subtrees about related concepts.

Crossed Verification between IRs. All concepts which are displayed in the tree must be
defined in the DD. If not, must be added to the DD or removed in the tree.

Before going straightforward, it is suitable that all teams involved agree with the definitions of the
DD and the concepts classification trees generated. If they are, they might distribute the effort of
capturing knowledge in other IRs speeding up the ontologies development process.

5. TABLES OF INSTANCE ATTRIBUTES.

Definition and Utility. A table of an instance attribute provides information about the

2 It is a set of subclasses of a class C whose objects have no member which belong to differents sets.
3 A subrelation-partition of a class C is a set of mutually-disjoint classes (a subclass partition)
which covers C. Every instance of C is is an instance of exactly one of the subclasses in the
partition.
4 Class C is a subclass of parent class P if and only if every instance of C is also an instance of P.

attribute or about its values at the instance. For each instance attribute included at the field
Instance Attribute of the DD, a table must be created.

How to build a Table of an Instance Attribute. Each table includes:

• Instance Attribute Name;
• Description, which provides the meaning of the instance attribute;
• Value Type refers to the class of values (natural, real, boolean, string, ...) with which the

attribute could be filled in;
• Unit of Measure for numerical values. If the value is not numerical, we introduce the

symbol "__". This symbol will be used, throughout other IRs, to express that a given field
has no values. If we wonder to show that the value is unknown, we will use the symbol
"unknown.";

• Precision of the numerical value;
• Range of Values, which specifies a list or set of possible values of the attribute;
• Default Value, if they are known;
• Cardinality, which specifies the number of values of the attribute;
• Inferred from instance attributes, inferred from class attributes and Inferred from-

constants which include the name of those instance attributes, class attributes and
constants that allow to infer the value of this attribute;

• Formula, which includes crossed references to the tables of formulas that allow to
calculate the numerical value of the attribute (it might be more than one formula);

• To infer, which contains the name of those instance attributes whose values could be
inferred using the instance attribute;

• References, to record the source of the information (a book, expert, etc.).

Tables 2, 3 and 4 show definitions of the instance attributes: Atomic-Volume-At-20-
Celsius-Degrees, Atomic-Weight and Density-At-20-Celsius-
Degrees.

Knowledge Verification inside a Table of Instance Attributes . The ontology builder
would need to use common sense knowledge to guarantee that these tables lack of
mistakes/omissions. Next points must be satisfied:

a) If an instance attribute (Density-At-20-Celsius-Degrees) is inferred using
instance attributes (Atomic-Volume-At-20-Celsius-Degrees and
Atomic-Weight), its field Inferred from Instance Attributes is filled in with the
names of the instance attributes used to infer its value. At the tables of instance attributes,
the field To infer is filled in with the name of the instance attribute that can be inferred.

b) Default values must be fitted with the value type of their attribute.

Knowledge Verification between IRs. To guarantee consistency and completeness with the
 knowledge captured in previous IRs, the ontology builder should check:

a) For all the instance attributes identified in the Instance Attribute field of the DD, there
exists a table of instance attribute, and that for each table of instance attribute, there
exists an instance attribute in the DD.

b) If an instance attribute is inferred using class attributes and constants, its fields Inferred from Class
Attributes and Inferred from Constants are filled in with the names of the class attributes and
constants used to infer its value. At the table of class attributes and at the table of constants, the field
To infer is filled in with the name of the instance attribute that can be inferred.

c) If an instance attribute is inferred from other instance attributes, class attributes and constants using
a formula, then it must possibly to deduce the Unit of Measure of the inferred instance attribute
using the composition of unit of measures of each instance attribute, class attribute and constant.

6. TABLES OF CLASS ATTRIBUTES.

Definition and Utility. Class attributes describe the concept itself, not its instances. So, a
table of a class attributes provides information about them and about their values. For each
concept included at the field, a table of class attributes must be created.

How to build a Table of Class Attributes. Specifying the following fields:

• Class Attribute Name;
• Relation Attribute Name; it is the name of the attribute which participes in the

relationship.
• Logic Relationship, attaches two concepts across logic operators;
• Value of the class attribute;
• Unit of Measure for numerical values;
• To infer, which contains the name of those instance attributes whose values could be

inferred using the value of the class attributes;
• References, to record the source of knowledge.

Table 5 shows the definitions of the class attributes attached to the concept Halogens.

Knowledge Verification inside a Table of a Class Attributes. To guarantee the lack of
mistakes/omissions, the ontology builder would need to use common sense knowledge. In
Table 5, we checked that Minimum-Melting-Of-Halogens is lower than
Maximum-Melting-Point-Of-Halogens.

Knowledge Verification between IRs. The checks to be done are:

a) For all the concepts that have defined class attributes in the DD, there exists a table of
class attributes, and for each table of class attributes, there exists a concept in the DD.

b) For all the class attributes specified at the field Class Attributes of the DD, there is an
entry at a table of class attributes, and viceversa.

7. TABLE OF CONSTANTS.

Definition and Utility. Constants are used to specify information related to the domain of
knowledge, they take always the same value, and they are usually used in formulas. For
example, gravity acceleration is 9.8, the water melting point is 100 Celsius degrees, and so
on. A few constants in the domain of chemicals appear in Table 6.

How to build a Table of Constants. For each concept classification tree, the ontology
builder should identify a set of constants and describe them following the pattern:

• Constant Name;
• Description, which contains the meaning of the constant name;
• Value of the constant;
• Unit of Measure for numerical values;
• To infer, with the name of the instance attributes whose values could be inferred using the

value of the constant;
• References, which refers the source of knowledge from which the constant was elucidated.

Knowledge Verification inside a Table of Constants. Checks to be done are:

a) For any constant which appears in the table of attributes or in the formulas one, must be
also listed in a table of constants.

A table of constants may contain some items that won't be used by any formula or for
inferring any value of an attribute. These constants are kept for maintaining the reuse of

knowledge by other applications.

Knowledge Verification between IRs. The only checks to be done are specified in section
five, when constants are used to infer values of instance attributes.

8. TABLES OF FORMULAS.

Definition and Utility. In many domains, numerical values of instance attributes might be
derived from numerical values of other attributes and constants by using formulas.

How to build a Table of Formula. The standard definition of formulas includes:

• Formula Name;
• Inferred Attribute, which identifies the instance attribute that is calculated with the formula;
• Formula includes the mathematical formula to be used to calculate the inferred attribute;
• Description, which includes the theoretical foundations of the formula;
• Basic Instance Attributes which refer to the list of instance attributes used by the formula

to calculate the inferred attribute;
• Basic Class Attributes contain the list of class attributes used calculate the inferred attribute;
• Constants, which include the list of constants used by the formula to get the inferred

attribute;
• Precision with which the number should be calculated (i.e., two decimal numbers);
• Constrains, if the formula is appropriate under specific values of basic instance

attributes it is necessary to specify some conditions (i.e., the formula must not be used if
the value of a basic instance attribute used as divisor is zero);

• References, which refers the source of knowledge from which the formula was elucidated.

Table 7 shows the definitions of the formula that calculates a value of the attribute
Density-At-20-Celsius-Degrees. Note that to infer its value, only values of
instance attributes (Atomic-Volume-At-20-Celsius-Degrees and
Atomic-Weight) are used.

Knowledge Verification inside a Table of Formulas. We must guarantee:
a) All the attributes which appear in the right-side of a formula must appear in the Basic

Instance Attributes, Basic Class Attributes or in the Basic Constants fields.
b) Given an instance attribute (Density-At-20-Celsius-Degrees) whose value is

inferred by using a formula, the fields Inferred From Instance Attributes, Inferred From
Class Attributes, and Inferred From Constants, at its table of attributes must be filled
with the names of the involved instance attributes (Atomic-Volume-At-20-
Celsius-Degrees and Atomic-Weight), class attributes and constants used in
the formula.

c) If the definition specifies some constrains, other formulas should cover alternative situations.
d) We must re-read the descriptions of the formulas in order to assure the absence of

redundancies and to keep the concision.

Knowledge Verification between IRs. To guarantee that the information gathered in the table
of a formula is complete and consistent with those gathered in tables of instance attributes, in
tables of class attributes, and in tables of constants, the following checking should be done:

a) For all the formulas identified in the Formula field of the tables of instance attributes,
there exists a table of formula. In the tables of formulas, the field Inferred Attribute is
filled in with the name of the instance attribute inferred by using the formula.

b) Analyze the use of the formula to detect if some instance attributes need default values.
For example, if a formula adds values of two instance attributes, some of them could be

optional. Then, the field Default Value of the optional attribute should have been filled
with a default value (i.e., zero).

9. ATTRIBUTES CLASSIFICATION TREES.

Definition and Utility. Once the Ontology builder has verified the completeness and
consistency of tables of instance attributes, class attributes, constants, and formulas, the
next step is to develop Attributes Classification Trees. They display graphically attributes
and constants that are related in the inference sequence of the root attributes, as well as the
sequence of formulas to be executed to infer the root attributes.

How to build an Attributes Classification Tree. Using the fields Inferred from Instance
Attributes, Inferred from Class Attributes, Inferred from Constants, To infer and Formula
 defined at each table of instance attributes. The result will be several attributes classification
trees. Figure 2 shows one of these trees and the formula that make it possible.

Knowledge Verification inside an Attributes Classification Tree. We must check:

a) If some attributes and constants used in the sequence of inference of the root attribute
are missed, or they are wrong, or they are not useful to infer values of other instance
attributes or even the root attribute.

b) If some formulas are missing or if they are used wrongly.
c) There are no cycles in the tree, that is, from an instance attribute we are not able to infer

 itself.

Knowledge Verification between IRs. To prevent inconsistencies between an attributes
classification tree and tables of attributes, constants and formulas used to build it, any
modification (addition/removal) in the tree forces to modify the involved tables of attributes,
constants and formulas, and the DD. For example:

a) If any attribute is included into the tree and either it is not defined in the DD or doesn't
exist its table of attributes, then we should include it at the DD and/or create its attached
table of attribute.

b) If any attribute is removed in the tree, the builder should analyze whether or not the attribute
should be deleted from the DD and/or if its table of attribute should be also removed.

c) The same checks must be done for formulas than for attributes.

10. TABLES OF INSTANCES.

Definition and Utility. If the ontology builder is sure that all the instances mentioned at the
Instance field of the DD exist in the domain, the next step is to create a table of instance for
each instance identified in the DD. An example of a table of instance is Table 8.

How to build a Table of an Instances. We propose the following fields:

• Instance Name;
• Description, which provides the meaning of the instance name;
• Attributes. Allowed attributes filled in at the instance are defined into the classes with

which the instance is linked and into their superclasses;
• Values of these attributes, could be: a number, a string, a set of values, "unknown", or "__".

Knowledge Verification inside a Table of Instances. We should guarantee:

a) Absence of redundancies between instances. We must carefully read the description of the
instances to guarantee this point.

b) Consistency between attributes and their values.

Knowledge Verification between IRs. The following checks should be done:

a) For all the instances identified in the Instance field of the DD there exists a table of
instance, and that for each table of instance, there exists an instance in the DD.

b) Propagation of attributes using inheritance. All the attributes identified in classes and
superclasses to which the instance is attached to should be filled in with concrete values.
In other words, there are not attributes in the instance that are not in the path between the
instance and the root concept of its concepts classification tree.

c) Maintenance of consistency between the values of the attribute at the instance and the
Value Type field defined at its table of instance attributes. That is, the value is a legal
value for the attribute.

d) Maintenance of consistency between the number of values asserted in an attribute and the
Cardinality field defined at its table of instance attribute.

CONCLUSION.

We provide the first draft of a method to build domain ontologies. The method distinguish
four steps in any ontology development process: the capture of knowledge, its
conceptualization in a set of IRs, its implementation in a formal language, and its evaluation
during each phase and between phases of its life cycle. The method uses a set of IRs at the
conceptual phase that allow to identify concepts and their attributes and values, as well as
relationships between them. These IRs allow to specify a set of ontological commitments.

For each IR, we have identified a set of checks out to be done with independence of whether
or not the ontology is been developing by different teams. These checks help to detect
inconsistencies, redundancies and lacks of knowledge inside an IR and between them, at the
earliest stages of the ontology development process. The use of the IRs allows generate an
explicit and totally documented conceptual model upon which the ontology is built.

Elements

Halogens Transition-Metals Non-Transition-Metals

Non-Metals Semi-Metals Metals

Reactiveness Reactiveless

First-Transition
Serie

Second-Transition
Serie

Third-Transition
Serie

Actinides Alkalines Alkaline-Earth

Mutually-disjoint-subclass-of
All subclasses are disjoint it

Lantanides

Noble-gases

Figure 1: Concepts Classification Tree in the domain of chemicals.

Figure 2: Attributes Classification Tree in the domain of chemicals.

to infer

Density-A t-20-Celsius-Degrees

Atomic-Weight Atomic-Volume-A t-20-Celsius-Degrees

Density

Concept Name Synonyms Acronyms Description Instances Class Attributes Instance Attributes
Alkalines Ia Group AlK. Their valence layer electronic-structure is

ns1. The Alkalines are soft; when they are
cut, they have a white silvered colour.
When they are exposed to air, they are
clouded because of the oxidation, due to
this, they are kept in a inert atmosphere or
submerged in mineral oil. The melting-
point, the boil-point and the specific-heat
decrease when the atomic-number
increases. They react with the hydrogen.
[1].

Lithium.
Sodium.
Potassium.
Rubidium.
Cesium.
Francium.

Group-Of-Alkalines
Low-Electronegativity-Of-Alkalines
Oxidation-States-Of-Alkalines
Minimum-Of-Electronic-Affinity-Of-Alkalines
Maximum-Of-Electronic-Affinity-Of-Alkalines

List-Of-Bases

Halogens VIIa Group
Halogenous

Hlg. They have seven electrons at the valence
layer, two of which are in a s orbital and
the rest of them in a p one. They easily
react because of they only need one
electron for obtaining eight in their
valence layer. [1].
Their melting-point, boil-point and
density increase with the atomic-number.

Fluorine.
Chlorine.
Bromine.
Iodine.
Astatine.

Group-Of-Halogens
Minimum-Of-Electronic-Affinity-Of-Halogens
Maximum-Of-Electronic-Affinity-Of-Halogens
Minimum-Melting-Point-Of-Halogens
Maximums-Melting-Point-Of-Halogens

List-Of-Salts

Element Elmts. It is a substance that are made up only by
atoms with the same number of protons.

Atomic-Number.
Atomic-Volume-At-20-Degrees-Celsius.
Atomic-Weight.
Boil-Point.
Crystalline-Structure.
Density-At-20-Degrees-Celsius
Electronegativity
Electronic-Affinity
Electronic-Structure
Group
half-life
Hardness-Scale
Ionisation-Energy
Melting-Point
Oxidation-States
Period
Radioactivity-Constant
Resistivity-At-20-Degrees-Celsius
Resistivity-Temperature-Coefficient-Per-Degree-Celsius
Semidisintegration-Period
Specific-Heat-At-Standard-Temperature
Symbol
Thermal-Conductivity-At-Standard-Temperature

Table 1: Data Dictionary in the domain of chemicals.

Instance Attribute Name Atomic-Volume-At-20-Celsius-Degrees
Description It is the volume occupied by 1 atom-gram of a element at 20 Celsius degrees.

The atom-gram is the mass corresponding to atomic weight expressed in grams. [6]
Value type real
Unit of Measure pot(Centimeter, 3) / Atom-Gram
Precision ---------
Range of values (0, 100)
Default value ---------
Cardinality 1
Inferred from instance attribute unknown
Inferred from class attribute unknown
Inferred from constants unknown
Formula unknown
To infer Density-at-20-degrees-Celsius
References [1] [6]

Table 2. Table of Instance Attribute: Atomic-Volume-At-20-Celsius-Degrees.

Instance Attribute Name Atomic-Weight
Description The atomic-weight is the relative mass that a atom of the considered element has in a scale in the which it is taken as

unit the twelfth part of the carbon 12 isotope.[6].
Value type real
Unit of Measure AMU5

Precision ---------
Range of values (1, 257)
Default value ---------
Cardinality 1
Inferred from instance attribute unknown
Inferred from class attribute unknown
Inferred from constants unknown
Formula unknown
To infer Density-at-20-degrees-Celsius
References [1]

Table 3. Table of Instance Attribute: Atomic-Weight.

Instance Attribute Name Density-At-20-Celsius-Degrees
Description Density of a body is the mass of a volume unit [1].
Value type real
Unit of Measure Gram / pot(Centimeter, 3)
Precision ---------
Range of values (0, 25)
Default value ---------
Cardinality 1
Inferred from instance attribute Atomic-Weight and Atomic-Volume-At-20-Celsius-Degrees
Inferred from class attributes unknown
Inferred from constants unknown
Formula DENSITY = ATOMIC-WEIGHT /ATOMIC-VOLUME-AT-20-CELSIUS-DEGREES
To infer unknown
References a) First acquisition session with the expert in 1995 Springtime.

 b) [1]

Table 4. Table of Instance Attribute: Density-At-20-Celsius-Degrees.

Class Attribute Name Relation-Attribute-Name Logic Relationship Value Unit of Measure To infer References
Minimum-Of-Electronic-Affinity-Of-Halogens Electronic-Affinity > 2.5 Electronvolt --------- ---------
Maximum-Of-Electronic-Affinity-Of-Halogens Electronic-Affinity < 4 Electronvolt --------- ---------
Minimum-Melting-Point-Of-Halogens Electronic-Affinity ≥ -219.62 Degree-Celsius --------- ---------
Maximums-Melting-Point-Of-Halogens Electronic-Affinity ≤ 302 Degree-Celsius --------- ---------

Table 5: Table of class attributes: of the concept Halogens.

Constant Name Description Value Unit of Measure To Infer References
Standard-Temperature It is the temperature at which

many processes are observed
and many measures are taken.

25 Celsius-Degree --------- [Candel. 87]

Standard-Pressure It is the pressure at which
many processes are observed
and many measures are taken.

1 Atmosphere --------- [Candel, 87]

Table 6: Table of Constants in the domain of chemicals.

5 It is the weight of a proton. An atom-gram of an element is the weight of 1/Avogadro’s # atoms of
this element.

Formula Name Density
Inferred Attribute Density-At-20-Celsius-Degrees
Formula Density-At-20-Celsius-Degrees -Atomic-Weight / Atomic-Volume-At-20-Degrees-Celsius
Description It is necessary to note that the Atomic-Weight is given in AMU's, and the Atomic-Volume in cm3 / atom-gram. There is

not problem, 1 atom-gram of a element maps with the Atomic-Weight in grams, for instance, 1 atom-gram of oxygen is
15.999 grams, therefore, when the units transformation is done, the things left like they were.

Basic Instance Attributes Atomic-Weight
Atomic-Volume-At-20-Degrees-Celsius

Basic Class Attributes ---------
Constants ---------
Precision ---------
Constrains Atomic-Volume-At-20-Degrees-Celsius > 0
References a) First acquisition interview in 1995 Springtime.

b) Characteristic tables of elements [1]

Table 7: Table of a Formula Density-At-20-Celsius-Degrees.

Instance Name Description Attributes Values
Chlorine (Gr. Chloros, greenish, yellow). Discovered in 1774 by Scheele, who

thought it contained oxygen; named in 1810 by Davy, who insisted it was
an element. In nature it is found in the combined state only, chiefly with
sodium as common salt (NaCl), carnallite KMgCl36(H20), and sylvite
(KCl).
It is member of the halogens (salt-forming) group of elements; it is a
greenish-yellow gas, combining directly with nearly all elements.
Chlorine is widely used in making many everyday products. It is used for
producting safe drinking water the world over. Even the smallest water
supplies are now usually chlorinated. It is also extensively used in the
production of paper products, dyestuffs, textiles, petroleum products,
medicines, antiseptics, insecticides, foodstuffs, solvents, paints, plastics,
and many other consumer products. Most of the chlorine produced is
used in the manufacture of chlorinates compounds of sanitation, pulp
blanching, disinfectants, and textile processing. Further use is in the
manufacture of chlorates, chloroform, carbon tetrachloride and in the
extraction of bromine. Organic chemistry demands much from chlorine,
for example in the elaboration of synthetic rubber. Chlorine is a
respiratory irritant. It was used as war gas in 1915. [11]

Atomic-Number.
Atomic-Volume-At-20-Degrees-Celsius.
Atomic-Weight.
Boil-Point.
Crystalline-Structure.
Density-At-20-Degrees-Celsius.
Electronegativity.
Electronic-Affinity.
Electronic-Structure.
Group.
half-life.
Hardness-Scale.
Ionisation-Energy.
Melting-Point.
Oxidation-States.
Period.
Radioactivity-Constant.
Resistivity-At-20-Degrees-Celsius.
Resistivity-Temperature-Coefficient-per-
 Degree-Celsius.
Semidisintegration-Period.
Specific-Heat-At-Standard.
Symbol.
Thermal-Conductivity-At-Standard-
 Temperature.
List-Of-Salts

17
unknown
35.453
-34.6

unknown
3.0
3.614
3s23p5

VIIa

12.967
-100.98
[1, 3, 5, 7]
3
0
unknown

unknown

unknown
Cl

unknown
["common-salt,
"carnallite",
"sylvite"]

Table 8: Table of Instances: Chlorine.
REFERENCES.

[1] Babor et al. “Química General moderna”. De MArtín. 1979.
[2] Blum B. Y. “Software Engineering a Holistic View”. Oxford University Press. 1992
[3] Gómez-Pérez A. "From knowledge Based Systems to Knowledge Sharing Technology: Evaluation

and Assessment". KSL-94-73. Knowledge Systems Laboratory. Stanford University. CA. 1994.
[4] Gómez-Pérez A., Juristo N., Pazos J. "Evaluation and Assessment of the Knowledge Sharing

Technology". Towards Very Large Knowledge Bases. JOS Press. 1995. Pg.: 289-296.
[5] Gómez-Pérez A., Juristo N., Pazos J. "Ingeniería del conocimiento: construcción de sistemas

expertos" CEURA. 1996 (for coming)
[6] Hidalgo P.J. “Curso Breve de Química, Electroquímica y Corrosión”. De. ICAI. 1984.
[7] Mizoguchi R., Vanwelkenhuysen J., Ikeda M. "Task Ontology for Reuse of Problem Solving

Knowledge". Towards Very Large Knowledge Bases. JOS Press. 1995. Pg.: 46-59.
[8] Nilsson J., Genesereth M. “Logical foundations of the artificial intelligence”. Morgan-

Kauffmann Publishers Inc. 1986.
[9] Pazos J. Conceptualización. Master en Ingeniería del Conocimiento. Facultad de Informática

de Madrid. Universidad Politécnica de Madrid. SPAIN. 1995.
[10] Royce W.W. "Managing the Development of Large Software Systems: Concepts and

Techniques". Proceedings of WESCON. AUGUST. 1970.
[11] Willi am H.B. “Handbook of Chemestry and Physics”. 65th edition. CRC-PRESS, INC. 1984-85

