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A new methodology to characterize nonlinear systems is described. It is based on the measure-
ment over the time series of two quantities: the "Dynamical order" and the "Self-correlation". 
The averaged "Scalar" and "Perpendicular" producís are introduced to measure these quanti­
ties. While this approach can be applied to general nonlinear systems, the aim of this work is to 
focus on the characterization and modeling of chaotic systems. In order to illustrate the method. 
applications to a two-dimensional chaotic system and the modeling of real telephony traffic series 
are presented. Three important aspeets are discussed: the use of the averaged "Scalar" product 
as supplement of the "Lyapunov exponent", the use of the averaged "Perpendicular" product 
as a reñnement of the "Mutual information" and the reduction of m-dimensional systems to 
the study of only one dimensión. This new conceptual framework introduces a perspective to 
characterize real and theoretical processes with a unifying method, irrespective of the system 
elassiñeation. 
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1. Introduction 
Many tools have been developed to study sys­
tems with chaotic behavior. Some of them are: the 
Lyapunov exponents [Wolf et al., 1985; Eckmann 
et al., 1986; Sano & Sawada, 1985; Stoop & 
Meier, 1988; Li & Chen, 2004; Okushima, 2003]; 
Kolmogorov entropy [Kolmogorov, 1959; Bennetin 
et al., 1976; Grassberger & Procaccia, 1983]; 
Poincaré section [Poincaré, 1892; Hénon, 1982]; 
fractal dimensión [Mandelbrot, 1983; Badii & Politi, 
1986; Grassberger, 1987] and Hausdorff dimensión 

[Hausdorff, 1919; Rogers, 1970; Schleicher, 2005]. 
Such powerful methodologies are used to unveil the 
underlying complexity in nonlinear systems in order 
to understand how it can be modeled. Most real 
problems are nonlinear, henee there is a huge inter-
est in having a set of tools to describe this kind of 
systems, to make realistic models and, of course, to 
make predictions. Many complex behavior, studied 
in chaotic equations, have already been observed in 
the real world. We could quote varied fields in which 
chaos has been found: Economics [Guegan, 2009], 
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wind time series [Karakasidis & Charakopoulos, 
2009], computer processors [Halbiniak & Jozwiak, 
2007] and living cell populations [Laurent et al, 
2010]. 

Although the classical Nonlinear Dynamics 
Theory was set up some decades ago, new 
approaches have been proposed recently: the study 
of the topology of complex networks derived from 
time series for the characterization of the underlying 
dynamics [Zhang & Small, 2006; Zhang et al, 2008; 
Xu et al, 2008]; the use of the combination of 
a complexity measure and the Shannon entropy 
for distinguishing noise from chaos [Rosso et al, 
2007]; the search for forbidden patterns in time 
series for detecting determinism [Amigo et al, 2008; 
Amigo et al, 2006; Carpi et al, 2010; Zanin, 2008]; 
the use of the Modified Sample Entropy as a reg-
ularity measure in time series [Xie et al, 2008; 
Xie et al, 2010]; the application of the 0-1 test for 
finding chaos in deterministic systems [Gottwald & 
Melbourne, 2009] and the extraction of the qual-
itative dynamical states in a system using Fuzzy 
c-Means Clustering [Shao et al, 2007]. 

Our purpose in this paper is to introduce two 
normalized indicators which combined together can 
be used complete method for characteriz-
ing nonlinear systems, distinguishing chaotic from 
stochastic behavior and measuring determinism. 
These indicators are the averaged "Perpendicular" 
and "Scalar" producís which are measures of "Self-
correlation" and "Dynamical order" respectively, 
concepts conveniently defined in the paper, always 
in the context of an orbit evolution within a proper 
space state. 

The first hypothesis in this work is that the 
combination of the averaged "Perpendicular" and 
"Scalar" producís, calculated over orbits derived 
from only one dimensión, is enough to characterize 
the whole system. Henee, for m-dimensional sys­
tems, it would be enough to genérate orbits from 
one of its variables. The second hypothesis is that 
the self-correlation, measured with the averaged 
"Perpendicular" product, provides the basis for 
modeling the system with equations in differences. 

We present two different applications. The 
first one consists in a complete characterization 
of a system formed by two coupled nonlinear 
maps, that present a rich behavior which ranges 
from pseudo-periodicity to chaoticity. The second 
one consists in the successful modeling of two 
experimental time series belonging to a telephony 
network. Some important conclusions are derived 

from these applications: the "Perpendicular" prod­
uct is a refinement of the "Mutual information", 
after the latter reaches its first minimum, and 
the "Scalar" product can work complement 
of the "Lyapunov exponent". Furthermore, some 
strong evidence of dimensión reduction are provided 
for both, discrete and continuous systems. The 
"Perpendicular" product spectra are shown to be 
coupled for the whole variables which implies that 
it is possible to characterize the overall dynamics 
by the study on just one variable. 

The scope of the method covers three differ­
ent fields: general nonlinear systems, chaotic equa­
tions and experimental time series. In general, the 
first purpose will be to characterize the system. The 
second one will be to use the obtained information 
to model such system with equations in differences. 
Both, characterization and modeling are addressed 
in this work. 

The paper is organized as follows. We present 
the methodology in Sec. 2, introducing three 
important definitions: averaged "Scalar" product, 
averaged "Perpendicular" product and "Escape 
velocity". We present an application to coupled 
nonlinear equations in Sec. 3. The relationship 
between "Dynamical order" and scale is presented 
in Sec. 4. In Sec. 5 we compare the averaged 
"Perpendicular" and "Scalar" producís with the 
"Mutual information" and the "Lyapunov expo­
nent". The dimensión reduction is also addressed 
in this section. We present an application to exper­
imental time series modeling in Sec. 6. Finally, we 
conclude the work in Sec. 7. 

2. Method 

Let us consider a generic n-dimensional chaotic sys­
tem X(í,u;) with r¡ parameters UÜJ, so that the sys­
tem under consideration is of the general form 

X(t,u1,...,uv) = (X1(t,u>),...,Xn(t,u>)). (1) 

Fixing the initial conditions 

X = (X° , . . . ,X° ) , (2) 

and the valúes of the parameters vector u> 

u = (61,...,6r¡), (3) 

one may choose one of the variables Xj and obtain 
a time series 

Xj(t,u>)=Xj(At,u>),...,Xj(NAt,u>), (4) 



where Ai is the sampling period for a continuous 
system. Its valué is Ai = 1 in the discrete case. 

Xj will be the object under study. The aver-
aged "Scalar" (p) and "Perpendicular" (p±) prod­
ucís are new indicators to measure dynamical order 
and self-correlation over a time series. The first 
one has been defined previously by other authors 
[Huerta et al, 1994], although we use it here in a 
novel way. The second one is defined in this work 
for the first time. In order to calcúlate these indi­
cators, the time series must be represented in an 
m-dimensional state space. For that purpose, it is 
necessary to fix two parameters: the dimensión of 
the space (m) and the time delay (r). The dimen­
sión has the traditional meaning for mathematical 
spaces and the time delay is a natural number which 
signifies the relative position between two valúes in 
the time series. When the time series has "memory" 
and the valué of (r) matches with such memory, the 
hidden dynamic emerges from the state space. 

For simplicity, in this work we will use m = 2. 
The use of higher valúes of m implies more compu-
tation time but it does not introduce further impli-
cations. We use this valué without detriment to the 
general result. 

2.1. Averaged scalar product (p) 

Consider a general time series derived from one of 
the variables of a chaotic system 

x(t) = x(l),x(2),x(3),..., x(N). (5) 

For each valué of r a two-dimensional vector is 
obtained from the scalar series, forming a state for 
each valué of t 

x(í) = (a;(í) ,a;( í-r)) . (6) 

The states evolution can be expressed as 

x(r + l ) , . . . , x ( í ) 

= (x(T + l),x(l)),...,(x(t),x(t-T)). (7) 

The flow vector z(í), associated with each state 
x(í), is defined as 

It is an unitary vector which points to the direc-
tion of the motion from state x(í) to the next one 
x(í + l) . Henee, z(í) shapes the trajectory along the 
states in space. 

The "averaged flow vector" V(í) is calculated 
by considering x(í) as the center of a circle with 
radius R and evaluating the quantity 

v^ = w^z{0 (9) 
? Sen 

where £ e Cl if ||x(£) - x(í)|| < R and N^ is the 
total number of points belonging to the inner circle. 

At this point, it is worth clarifying two very 
important aspeets: 

Valué of R: It is critical to choose a right valué 
and it depends on the numerical series under study. 
If R is too small, there will be very few points 
within every circle, henee V(í) will not be aver­
aged enough. On the other hand, the average must 
have a local nature in the vicinity of every point of 
the space. If R is too big rather a global average is 
obtained, since most points are in every circle. It is 
necessary to adjust the valué of R so that there are 
neither too many ñor too few points within each cir­
cle. That valué will be related to the states density 
in the space. 

Dynamic meaning of V(í ) : This vector repre-
sents the average dynamical evolution in the vicin­
ity of every state. It points to the direction in which 
a local región moves to, on average. It is likely that 
the dynamical properties are not the same in all the 
space. In this case V(í) provides a view of the local 
dynamics. 

Taking the latter aspeets into account, the aver­
aged "Scalar" product (p) is calculated within all 
the state space by the following expression: 

J V - l 

v = ^ 3 7 3 1 £ *(*)v(f) (io) 
t=T + l 

where the product z(í)V(í) provides a local mea-
surement of dynamical order, since this product 
evaluates how parallel a single motion direction is 
with the averaged motion direction in its vicin­
ity. The averaged "Scalar" product is obtained by 
adding all the local producís along the space and 
dividing the result into the total number of states. 
If a space is very ordered, it will have a well defined 
vector V(í) for every point in space. In addition, 
z(í) will be parallel to V(í). As both vectors are 
unitary the local "Scalar" product will be cióse to 1. 
If these conditions are the same along the space the 
averaged product (p) will be cióse to 1 as well. So, 
a state space which represents a time series is more 



ordered as fast as p gets closer to 1. In the same 
way, it is more random as p gets closer to zero. 

2.2. Perpendicular product (p±) 

When a periodic time series is represented in a 
state space with T = T, T being the period, all 
the states x(í) get restricted to the diagonal of the 
two-dimensional space. So, there are only two pos­
sible motion directions, both on the diagonal, which 
implies that there are only two possible valúes for 
any z(í) 

(y/2 V2.\ (V2 V2.\ 

{-1 + - i ) °r - { - 1 + -i)- (11) 

If r / T, the states are located out of the diag­
onal and a generic flow vector z(í) may have a huge 
variety of directions. With these considerations the 
"Perpendicular" product p± is defined as 

í = r + l \ / 

(12) 

It is a sum of scalar producís between flow vec-
tors and a fixed vector, perpendicular to the diag­
onal. If r = T, z is on the diagonal Vi, and all the 
producís are equal to zero, resulting in p± = 1. On 
the contrary, if r / T a certain number of flow vec-
tors z(í) will be far from the diagonal and (p±) < 1. 

P± m a v be used both, to test whether a valué 
of r is the period of a given time series and 
to make a self-correlation analysis in the case of 
nonperiodicity. 

2.3. Escape velocity (m(u;,T)) 

The "escape velocity" is 

m{u,T) = P±{T>U + Al-p±{T>U\ (13) 

where LO is one of the parameters in the system 
under study and A is the precisión taken for the 
valué LO. 

The system gains periodicity in r when the 
"escape velocity" is positive, and loses periodic­
ity when it is negative. A way to visualize this 
is by considering the system moving away from a 
periodic attractor T (TÍ) if m{uj,T) < 0 and get-
ting closer (TÍ) if m(u),T) > 0. When the system 

remains at the same distance from the attractor (T) 
m(uü,T) = 0 . The possible valúes of m are summa-
rized as 

m(u,nT) < 0 ^ T í 

m(u,nT) = 0 ^ T (14) 

m(u,nT) > 0 => Ti 

The "escape velocity" is a very useful indi-
cator to calcúlate with precisión the valué of the 
parameter LO in which a bifurcation occurs. A 
detailed illustration of its use is provided in the next 
section. 

2.4. General methodology 

The general procedure to characterize chaotic sys-
tems involves the next four sequential steps: 

(1) General sean with p(r = 1), for different val­
úes of uij, V j . 

(a) p{r = 1) w 1 points out ordered áreas. 
(b) p(r = 1 ) < 1 points out disordered áreas. 

(2) Correlation study with p±(r) in ordered 
áreas, varying the valué of r. 

(a) P±(T) = 1 => T = T (Periodic). 
(b) P±(T) w 1 => T w r (Pseudo-periodic). 

(3) Bifurcations study with m(u)j,T) in periodic 
áreas, varying ujj slowly. A bifurcation takes 
place at w° if 

(a) w° is a máximum for m{uú°j,T) and 

(b) ÜÜ°- is a minimum for m(w°,T/2). 

(4) Disorder study with p±(r), in disordered 
áreas. 

(a) Detection of dominant correlations. 

(i) ro is a dominant correlation ifp±(r) has 
a máximum at r = ro-

(b) Determination of chaotic or random nature. 

(i) Chaotic system. p(r, R) decreases 
slowly when increasing R. 

(ii) Random system. p(r, R) decreases 
quickly when increasing R. 

Notice that the object under study may be 
a system of equations or a single experimen­
tal time series. The scheme presented above can 
confront both situations, although some of the 
steps do not apply in the characterization of 



an experimental time series. In this latter case, 
step (3) does not apply and (1) is only carried 
out once, since there are no system parameters uij 
to vary. 

3. Applicat ion 1. Sys t em of Two 
Coupled Nonlinear Maps 

Once the general method is introduced we proceed 
in this section to characterize a complex system con-
sisting of two coupled nonlinear maps: 

' xn = w(3yra_i + l)a;n_i(l - xn-i) 

yn = u(3xn-i + l)yn-i(l - yn-i) 
(15) 

where UJ G [0,1.19]. 
Two-dimensional coupled maps are strongly 

studied in many fields: chaos [López & Pérez, 1991], 
complex patterns formation [López & Fournier, 
2003], cryptography [Fridrich, 1998], etc. We prove 
herein that these kind of systems can be charac-
terized easily with the method proposed in the 
previous section. Despite the fact that the system 
is two-dimensional, a general description is pos-
sible by using only one dimensión analysis. The 
study is done on the variable xn with initial con-
ditions XQ = 0.3, yo = 0.76. The calculations are 
carried out over orbits of 200 valúes, after dis-
carding the first 10 000 ones in order to eliminate 
the transitory evolution. The averaged "Scalar" 
producís are calculated with a circle of radius 
R = 0.001. 

Figure 1 shows the bifurcation diagram for the 
variable x, along with its Lyapunov exponent, show-
ing the complex behavior when LO > 0.95. Note that 
the Lyapunov exponent remains positive for most 
valúes of the parameter LO within the range shown 
in the figure. 

3.1. General sean 

A general sean of xn and yn has been carried out 
by calculating the "Scalar" product p{r = 1) for the 
range [0, 1.19] of parameter ui. The results for xn 

are presented in Fig. 2. It shows that the system can 
be split into two different regions from a dynamical 
order point of view. The first región corresponds 
to a regular área with a boundary in w = 1.0295. 
After this valué of w, there is another región highly 
disordered. A detail of the regular zone is shown in 
the inset of Fig. 2 in order to observe its interesting 
structure. 

x 0.5 

Fig. 1. Comparison of bifurcation diagram (top) and 
Lyapunov exponent (bottom) as a function of the parame­
ter LO for the map defined by Eq. (15). 

The results for the variable yn turned out to be 
the same as for xn, which means that these coupled 
variables produce the same order scheme. 

3.1.1. Regular región. Period T = 2 

The inset of Fig. 2 shows a small área with p = 1 
which is an indicator of periodicity. A correlation 
study on this área determines that it consists of 
periodic orbits with period T = 2. Next, according 
to the correlation study, the system moves away 
from the period T = 2 and comes into a pseudo-
regular behavior with intermittent regularity peaks. 
In Fig. 3 can be seen the calculation of the "escape 
velocity", m (w,r = 2), within the interval ui <G 
[0.956,0.960]. The results are quite clear and deter­
mine the exact valué in which the system departs 
from a perfect periodicity, ui = 0.95723. Both, the 
máximum of the new period and the minimum of 
the former can be used to calcúlate a period dupli­
cation. However, in this system there is no period 
duplication, but a periodic state which changes into 
a pseudo-periodic one. So, in order to determine the 
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Fig. 2. General sean of xn. Measurement of disorder by the "Scalar" product p(l) as a function of LO. The inset shows the 
structure of the regular área. 
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Fig. 3. Escape velocity. Calculation of the exact valué of LO for which period T = 2 is abandoned. 
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Fig. 4. Periodic and pseudo-periodic peaks in the interval UJ £ [0.957,0.986]. The numbers at the top of the peaks indicate 
the period of the corresponding orbits. 

transition valué between both states the minimum 
of m (UJ, r = 2) is used. 

3.1.2. Regular región. Pseudo-periodic 
behavior 

After departing from T = 2, in UJ = 0.95723, the 
system has an interesting structure. As can be seen 
in Fig. 2 the dynamical order p(uj, 1) decreases on 
average, but there are many shapely peaks which 
jump to the vicinity of p(uj, 1) = 1 indicating the 
presence of periodic or pseudoperiodic orbits. The 
study of the first peak is presented as an exam-
ple of characterization. Once the general sean has 
detected the dynamical order cióse to p = 1 for 
a given valué of cu, a correlation study must be 
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Fig. 5. Correlation study for UJ = 0.96048. r = 14 and its 
múltiples are dominant delays. 

carried out on such valué. In the case of the first 
peak, the máximum valué of p(uj,l) is reached in 
UJ = 0.96048. In other words, it is the valué of UJ at 
the top of the first peak in Fig. 4. Figure 5 shows the 
correlation study for this valué. The predominant 
periods are r = 14 and its múltiples. The obtained 
valué p±(0.96048,14) = 0.9999 < 1 indicates that 
it is not a perfect periodic orbit. In order to clar-
ify whether there is a perfect periodic behavior in 
the vicinity of this valué it is necessary to increase 
the precisión. A calculation of p±(uJ, 14) was car­
ried out within the interval [0.96045,0.96060] with 
a precisión of ten decimal places and the results 
are shown in Fig. 6. A periodic orbit is found in 
u = 0.9605236799. 

w= 0.9605236799 

1.000000 

p_(T = U) 

0.999950 

0.999903 

0.96050 0.96060 

IV 

Fig. 6. "Perpendicular" product as a function of UJ. The top 
of the peak indicates a periodic orbit, while the valúes of UJ 
at the right and left correspond to pseudo-periodic ones. 



1.00 

0.50 — 

1.00 

y»--. 

0.50 — 

i yn 

0.40 0.80 

Fig. 7. Period T = 14 corresponding to LO = 0.9605236799. 
State space for variables xn and j / n . 

Henee, the system is periodic at this valué and 
pseudo-periodic to the right and left. The approach 
from pseudo-periodicity to a perfect period T = 14 
is smooth and builds a curious shape, shown in 

• # . 

>'„ 

0.50 0.60 

Fig. 6. Figure 7 shows the state space for variables, 
xn and yn and makes clear that both orbits are 
perfectly periodic. Two-dimensional state space can 
be visualized in Fig. 8. It is important to underline 
that a two-dimensional problem has been reduced 
to one dimensión. 

The previous characteristics have already been 
found in the remaining peaks. The correspond­
ing periods are shown in Fig. 4, although only 
for some cases where the peak reaches perfect 
periodicity. 

3.1.3. Disordered región 

In order to prove that the general method can be 
used to characterize highly disordered systems, it 
is applied to an orbit located in the most disor­
dered región of Fig. 2. Figure 9 shows the orbit for 
y = 1.04141 and the results of the correlation study 
are presented in Fig. 10. The dominant period is 
r = 53, both for variable xn and yn. The valué of 
p_i_(53) is 0.575702 for xn and 0.55661 for yn, which 
indicates a low level of correlation. From Fig. 10, it 
follows that the correlation structure is very simi­
lar for xn and yn. The state space for xn is shown 
in Fig. 11, where an attractor is observed. The 
two-dimensional state space is depicted in Fig. 12 
where the details of the global attractor emerge. It 
is important to underline again that the dynam-
ics of this two-dimensional system has been charac-
terized using the one-dimensional method proposed 
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40 
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Fig. 8. Two-dimensional state space for LO = 0.9605236799. 
Fig. 9. Orbit in a disordered región of the system. LO = 
1.04141. 
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Fig. 10. Correlation study for LO = 1.04141. (a) Variable xn. 
(b) variable yn. 

in this work. Every variable is obviously affected 
by the other and the information contained in 
any of them is enough to characterize the whole 
system. 
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Fig. 12. Two-dimensional state space for LO = 1.04141. 

4. Disorder and Scale 

The variation rate of the "Dynamical order" with 
the scale is a characteristic of every system. The 
comparison of p(r) for two different systems mea-
sures their different dynamical order at a certain 
scale R and this is enough for most purposes. How-
ever, if this dynamical order needs to be studied 
in depth, a slow variation of R must be done to 
cover the entire scale. In order to show how different 
this variation rate might be, a comparison between 
two extreme systems is done. Figure 13 compares a 
chaotic orbit with a random series and shows how 
the dynamical order depends on the scale (R). Ini-
tially, the order drops very fast in the random series 

P{? = 2) 

I I 

Uiao tiir í- dj Ll 

Fig. 11. State space for LO = 1.04141. 
Fig. 13. Chaos versus randomness. Dynamical order 
decreases faster with R in the case of randomness. 



whereas it is kept quite high in the chaotic orbit. 
They both decrease with the scale but much more 
gradually in the case of chaos. The reason can be 
found by analyzing the behavior of the flow vectors 
in every single circle with radius R. In a random 
time series, a single point can move towards any 
direction with the same probability. Henee, one may 
find a continuous range of flow vectors within the 
circle. When increasing the radius R more points 
get included and the random nature of the new flow 
vectors makes p smaller. In the presence of chaos, 
at a small scale, the flow vectors are quite paral-
lel due to local dynamical order. When increasing 
R, the circles include neighboring points with other 
dynamical patterns, so p decreases in every scale 
change, but accumulating less disorder than in the 
random series. 

This result indicates that chaotic systems are 
very ordered from a "microscopic" point of view. 
However, at a "macroscopic" scale, the system 
seems to be random. The scale under consideration 

is very important when it comes to classifying a 
system as random or chaotic. 

Figures 14(a) and 14(b) present some details on 
the directions taken by the flow vectors in chaotic 
and random state spaces. Figure 14(a) corresponds 
to a chaotic system. When a circle with a small 
radius R\ is considered, the included states have 
similar dynamical characteristics. In other words, 
their flow vectors are really parallel. At this scale, 
the system is quite ordered. Increasing the scale 
by taking a greater radius R2, the new included 
states have smooth differences in their flow vectors 
with those considered in the previous circle, and 
already present in the new one. Now, the same cir­
cle includes different behavior, so the infernal disor­
der increases. A change of scale in a random system 
causes an increase as well in the dynamical disorder 
but the effect is much more abrupt. Figure 14(b) 
shows that the flow vectors are not parallel at the 
scale R\. The system is not specially ordered at 
this scale, but its random nature is not already 
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Fig. 14. Dynamical order as a function of the scale. (a) Flow vectors in a chaotic system. (b) Flow vectors in a random 
system. (c) Light increase in disorder for a chaotic system when increasing the scale. (d) Strong increase in disorder for a 
random system when increasing the scale. 



obvious since the amount of states in the circle is 
not enough to have a good statistical average. This 
random nature requires enough states in the circle 
to be obvious. The disorder increases considerably 
in the change of scale with R2, since every incorpo-
rated group of states contributes randomly oriented 
flow vectors. So, the quantity of disorder which is 
incorporated only depends on the amount of new 
states included in the change of scale. However, in a 
chaotic system the new states are groups of flow vec­
tors with local homogeneity, so the disorder incor­
porated depends on the amount of new states and 
the orientation of the local clusters. Figures 14(c) 
and 14(d) show that the entry of the same number 
of states into a circle, in a change of scale, causes a 
larger increase of disorder for a random system. 

In general, the increased rate of disorder 
depends on the specific system, it will be smooth in 
the case of regular determinism, strong in chaotic 
systems and extremely strong in the case of ran­
dom processes. The comparison of the evolution of 
p(r, R) for two general series is a measure of how 
different they are from a dynamical order point of 
view. 

5. Lyapunov Exponent, Mutual 
Information and Dimensión 
Reduction 

The method detailed in the previous sections is 
based on two basic indicators: "Perpendicular" and 
"Scalar" averaged producís. The purpose of this 
section is to frame these indicators within the con-
text of the current nonlinear science by establishing 
a relation among them and three of the most impor-
tant measures available of late "Lyapunov expo­
nent", "Mutual information" and "Dimensión". 

5.1. Lyapunov exponent 

The calculation of the Lyapunov exponent [Wolf 
et al, 1985; Eckmann et al, 1986; Sano & Sawada, 
1985; Stoop & Meier, 1988; Li & Chen, 2004; 
Okushima, 2003] for a variable provides clear infor­
mation about the sensitivity to initial conditions, 
which is also a measure of the presence of chaos. 
Positive valúes of the exponent imply chaotic 
behavior where near trajectories diverge from each 
other, whereas negative valúes imply that such tra­
jectories converge together. The strength of this 
divergence or convergence depends on the absolute 
valué of the Lyapunov exponent. 

Now, it is interesting to establish if the averaged 
"Scalar" product can supply similar information or 
even supplement the Lyapunov exponent in some 
ways. Regarding the nature of the information pro-
vided by both measures, it can be proved that this 
information is quite similar. While the "Lyapunov 
exponent" is calculated over a really long evolution 
of two near trajectories, the averaged "Scalar" prod­
uct calculates the divergence of múltiple trajectories 
for a short time evolution within a small volume of 
the state space. When calculating scalar producís 
among flow vectors belonging to near points, the 
result is a measure of divergence only for one time 
step. That is to say, the measure does not average 
over a complete trajectory for two initial conditions 
but over múltiple initial conditions for only one time 
unit. As this local calculation is carried out within 
the whole space, the final result can be assumed as 
a global divergence rate. 

On the other hand the averaged "Scalar" 
product has two interesting characteristics which 
supplement the Lyapunov exponent. The first char-
acteristic is that it is a normalized indicator of 
dynamical order, which provides a quick impres-
sion of the amount of underlying order in a sys­
tem. For instance, if a system in an ordered regime 
with p = 1 is suddenly affected by external noise 
and the next measure comes to p = 0.95, one can 
state that the external noise has introduced a 5% 
of disorder according to an absolute scale, since 
p = 1 is the máximum order state (100%). The 
second characteristic is that p can distinguish small 
changes in the dynamics of a system due to its high 
sensitivity to dynamical order changes. Averaged 
"Scalar" product and Lyapunov exponent are com­
pared for the logistic map in Fig. 15. Figure 15(a) 
shows how p distinguishes clearly the áreas with 
positive Lyapunov exponent from those with neg­
ative ones. What is more, p goes beyond the lim-
its of the "Lyapunov exponent", since it reaches 
higher precisión when differentiating cióse dynam­
ical states. Figure 15(b) shows how p reveáis a 
región with a variety of dynamical states where 
the Lyapunov exponent only detects a rather flat 
behavior. An analysis of the states, marked by an 
arrow in Fig. 15, is shown in Fig. 16. Every state 
corresponds to a valué of LO in the logistic map. 
Both have similar Lyapunov exponents but they 
are dynamically quite different. The decrease in the 
valué of p with R is faster for UJ = 3.688 which 
indicates significantly more disorder in this state 
(see Sec. 4). 
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5.2. Mutual information 
Mutual information (MI) [Cellucci & Albano, 2005: 
Khan et al, 2007; Shannon & Weaver, 1949] is a 
measure widely used in múltiple applications as an 
indicator of nonlinear correlation between two vari­
ables. In the field of time series the measure of 
interest is the "Auto Mutual Information" (AMI) 

consisting of the calculation of MI between a time 
series and itself delayed r time units [Fraser & Swin-
ney, 1986]. A similar approach is followed in this 
work — the measurement of mutual correlation in 
a series by the averaged "Perpendicular" product 
(p±). In order to compare AMI and p±, both mea-
sures have been calculated for two chaotic orbits 
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Fig. 16. Evolution of p as a function of R for the two states marked by an arrow in Fig. 15(b). 
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belonging to the Logistic map and two experimen­
tal time series. The results for the chaotic orbits 
are shown in Fig. 17. It can be observed in the 
upper graphs that AMI provides the decrease in 
nonlinear correlation function of the delay r. 
without expressing any additional information after 
reaching the first minimum. However, in the lower 
graphs, p± shows a richer structure of auto corre­
lation along all the valúes of r . This structure is a 
deep characteristic of the series which can be used 
for modeling. The modeling of experimental time 
series by using its correlation study is addressed in 
the next section. 

Two experimental time series are shown in 
Fig. 22 and a comparison of the results of p± 
and AMI for those time series is presented in 
Fig. 18. They correspond to provincial and inter-
national telephony traffic measured throughout a 
year. The details of the nature of these time series 
are commented on in the next section. Both series 
are pseudo-periodic although the one shown in 
Fig. 18(b) is much more complex, which hides its 
underlying pseudo-periodicity. The calculation of 
AMI for the provincial traffic series provides a clear 

result of pseudo-periodicity with period T = 7. The 
same conclusión is obtained by the calculation of 
p±. Nevertheless, in the case of international traffic 
AMI does not provide any special structure of corre­
lation, whereas p± shows a clear pseudo-periodicity, 
again with period T = 7. As it will be shown in 
the next section, the international traffic series can 
be modeled satisfactorily based on the information 
derived from the calculation of p±. 

5.3. Dimensión reduction 

In this section, we present some arguments and 
strong evidence which point out that the introduced 
method can reduce the study of an m-dimensional 
system to the study of only one of its dimensions. 
This statement claims not to be applicable only to 
symmetric systems, like the one studied in (Sec. 3), 
but to general m-dimensional systems. Both vari­
ables, belonging to the coupled maps system, have 
practically the same correlation study as can be 
seen in Fig. 10. Initially it might be assumed that 
this result is derived from the symmetric form of 
its mathematical expression, however similar results 
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Fig. 19. Henon attractor (a). Correlation study (b). 

have been found for three well known chaotic attrac­
tors: Henon, Lorenz and Rossler. These results are 
shown in Figs. 19-21. 

Henon attractor [Hénon, 1976] has the following 
expression 

xn+i =yk + í-ax2
k 

yk+i = bxn. 
(16) 

The relationship between both variables cause 
again an identical structure in Fig. 19, without a 
special form in the mathematical expression of the 
system. 

In order to extend the study to continuous 
systems with dimensión three, two well known 

attractors are shown. Lorenz system [Lorenz, 1963] 
has the following expression 

x = a(y — x) 

y = bx — y — xz (17) 

i = xy — cz 

and the Rossler one [Rossler, 1976] is described by 

x = -{y + z) 

y = x + ay (18) 

i = b + z(x — r). 

The correlation studies for Lorenz and Rossler 
attractors are shown in Figs. 20 and 21, respectively. 
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The parameter valúes for the systems (17) and (18) 
are specified in the figures. It is important 
to detail the process for calculating p± with 
continuous series. An original series s*(t) = 
s*(At),s*(2At),...,s*(NAt), belonging to one of 
the variables of the system, is obtained by using 
any standard method, for instance Runge-Kutta, 
with certain integration step Ai. After that, a sam-
pling period ó is selected to obtain the final series 
s(t) = s(5At),s(25At),...,s(N5At). If s*(t) is 
long enough to describe the general evolution of 
the variable in the attractor, s(t) is, besides being 
shorter, also a rough description of the variable. In 
other words, if s*(t) has enough points to visit the 
vicinity of entire regions of the attractor, the sam-
pled series s(t) also describes the general evolution. 
Working with s(t) instead of s*(t) has the advan-
tage of obtaining the same results operating with a 
shorter series. Henee, p± can be calculated directly 
with s*(t) or s(t), saving computation time. 

As can be seen in Figs. 20 and 21 the same 
structures of p± are found for all the variables 
in Lorenz and Rossler attractors. The relationship 
among the variables of the system seems to cause 
coupling in their averaged "Perpendicular" prod-
uct. Although a universal law of perfect coupling of 
p_i_ for any generic system, supported by an analy-
sis of a huge number of systems, is not provided in 
this work, strong evidence has been presented which 
point to the existence of such a law. In any case, 

a perfect coupling in the correlation study is not 
needed to carry out a characterization of the system 
with only one of its variables, since such characteri­
zation must be done with the dominant valúes of r. 
It means that only the dominant valúes of r must 
be coupled for all the variables, which relaxes the 
necessary condition for dimensión reduction. 

6. Applicat ion 2. Model ing of 
Experimental T ime Series 

In order to prove that the method has a clear poten-
tial in the characterization of complex time series, 
a real application is presented in this section. Two 
time series are characterized and modeled by using 
the basic ideas proposed in this work. These series 
correspond to telephony trafile belonging to a Span-
ish telecom company. It is a national telephony net-
work interconnected with other national networks 
in the most important provinces of the country. 
Likewise, it has an interconnection with an inter-
national carrier to route towards international des-
tinations. Calis distribution scheme is as follows: 
calis originated from any customer with destination 
to a certain province are routed to the correspond-
ing provincial "point of interconnection", from now 
on "poi". The cali is delivered there to another oper-
ator, provided that the destination number does 
not belong to the own network. These provincial 
"pois" have two-way trafile, since incoming calis are 



already received from external networks. In the case 
of incoming or outgoing international calis the inter­
national "poi" is used. A "poi" consists of intercon-
nection hardware, which is used to allocate calis and 
its occupancy can be measured in real time. This 
occupied capacity, due to incoming and outgoing 
trame, is a function of time and it is usually mea­
sured in "Erlangs" [Erlang, 1909]. So, the amount of 
traffic routed in a unit of time through a single poi 
is a time series. The modeling of traffic patterns is 
very important as it can be used for network plan-
ning purposes. Two time series are studied, on the 
one hand provincial traffic through a single provin­
cial poi, on the other hand international traffic 
through an international poi. Provincial and inter­
national traffic series have been selected to verify 
if the study can reveal different infernal dynamics. 
The time unit is a complete day and the traffic 
one is the Erlang. The length of both series is 365 
data corresponding to the traffic measured by the 

operator throughout a year. Figure 22 shows the 
series under study without any filtering process. 
Note that provincial traffic is quite regular with a 
light upward trend whereas international traffic is 
really irregular with also a late upward trend. 

6.1. Correlation study 

The graphs at the bottom in Fig. 18 show the cor­
relation study for both series. Figure 18(a) corre-
sponds to the provincial series and Fig. 18(b) to the 
international one. A clear pattern arises in both fig­
ures. There is a strong pseudo-periodicity for T = 7. 
which is logical considering the weekly periodicity 
of the activities in the human society. Note that the 
múltiples of r = 7 are kept important without infor-
mation loss. The result is specially interesting for 
the international traffic since its time series seems to 
be really disordered, however its correlation study 
reveáis a clear underlying pseudo-periodicity. 
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Fig. 22. Time series of (a) provincial traffic and (b) international traffic. 



6.2. Modeling of the traffic series 
Once the self-correlation has been characterized, the 
purpose will be to use this information to obtain an 
equation which describes correctly the time series. 
As "Perpendicular" product measures periodicity 
and pseudo-periodicity, it is logical to use an equa­
tion in differences built with the predominant valúes 
of r . The next model is proposed: 

Choose, according to the correlation study, nve 
predominant valúes of r, {TJ} with j = 1, 2 , . . . , 5 
and consider the next equation model of the 
time series 

Xk — YmXk- (19) 

Calcúlate <pk = Xk-Tj/xk-2Tj for every j , given 
a certain k. Select the minimum valué of {|1 — 
<\)\ |, 11 — 4>21, • • •, 11 — (/>51} and write its correspond-
i n g <\>) a s <\>k

m. 
Henee, only one Tj is used in (19) for every k. 

It means that the model considers the underlying 
dynamics as pseudo-periodic, hopping among nve 
different pseudo-periods. This is only an example 
of model, although other choices may be defined 
by using the information derived from the correla­
tion study of a time series. The arbitrary criterion 
for the selection of 4>m flows from the hypothesis of 
"equilibrium state". The system "decides" to keep 
as cióse to the equilibrium as possible for every 
k. Such equilibrium implies not to genérate either 
upward or downward trends, or at least genérate 
the slightest possible trend, which is reached with 

is the growth rate for bk closest to 1. Note that 5 J „ 

the period [k — 2rj,k — Tj], and (19) supposes the 
same growth rate for the next period [k — Tj,k]. 

Taking into account these 
Eq. (19) can be rewritten as 

considerations. 

x 
Xk 

k-

Xk-2Trr 
(20) 

which is a nonlinear equation in differences. Sup-
pose that the previous expression describes the 
underlying dynamics, then the prediction model is 

x 
Xk = 

k-

Xk-2r„ 
(21) 

where Xk is the predicted valué in t = k, and 
Xk-Trn,Xk-2Trn are valúes obtained from the real 
series. Note that the prediction horizon matches 
with the minimum valué of {TJ}. 

In order to reconstruct both, provincial and 
international traffic series, the first nve múltiples of 
7 are chosen, r = 7, r = 14 , . . . , r = 35, basing the 
selection on the previous correlation study with a 
strong weekly pseudo-periodicity. The reconstruc-
tion of the provincial traffic series is depicted in 
Fig. 23 according to (21). The model is shown 
to describe quite well the evolution of the tele-
phony traffic with a small averaged normalized error 
(E = (\xk — Xk\/xk) = 0.149). The reconstruction of 
the international traffic series is shown in Fig. 24. 
Although the model adjusts less in this case, due to 
the higher complexity of the series, it can be seen 
in the green square that the model follows the same 
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Fig. 23. Comparison of the time series of the provincial traffic (blue) with the proposed model (red). 
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pseudo-periodic evolution as the real series and still 
provides an acceptable averaged normalized error 
\E = 0.337). 

7. Conclusions 

We have introduced two normalized indicators, the 
averaged "Perpendicular" and "Scalar" producís, 
which combined together have shown to be a com­
plete method to characterize nonlinear systems and 
a basis for modeling. These indicators are measures 
of "Self-correlation" and "Dynamical order" respec-
tively. The first concept is a sort of correlation which 
detects how periodic or pseudo-periodic a series is 
whereas the second concept is a measure of how 
ordered the states move within a state space. The 
"Perpendicular" product provides a spectrum (cor­
relation study), when it is calculated over a range 
of r, forming the real characterization of the sys-
tem. In fact, the method could be supported only 
on the "Perpendicular" product but then a com­
plete correlation study should be carried out for 
every valué of the parameters in a system. "Scalar" 
product implies calculation only once, for r = 1, so 
it is a fast indicator of order with minimum compu-
tation time. Henee, the combination of both mea-
sures is optimal from a computation point of view. 
Although another measure has been defined, the so-
called "Escape velocity", in fact it is a derivation 

from the "Perpendicular" product, so the method 
is still based on two basic indicators. 

An important aspect is the dimensión reduc-
tion. If the m variables of an m-dimensional sys­
tem have coupled correlation studies, it is enough 
to carry out the characterization for only one of 
its variables. Even if this coupling is not perfect, 
but only the predominant r are coupled, the state-
ment is still valid: the study on just one variable is 
enough. Some results have been shown in this work 
which prove that several classical chaotic systems 
have a perfect coupling, which seems to point to a 
more general law. 

The algorithm of "Equilibrium state" has been 
proposed to address the problem of modeling. Such 
algorithm uses the predominant Tj from the "Cor­
relation study" to build a model with equations in 
differences. The evolution of this model consists of 
transitions among pseudo-periodic states (T x¿ TJ) 
with the "Equilibrium hypothesis" as the infernal 
controller of such transitions. 

Two significant conclusions are derived from 
the introduced methodology. On the one hand, the 
"Scalar" product can be used supplement of 
the "Lyapunov exponent" to distinguish among dif-
ferent dynamical states when the "Lyapunov expo­
nent" cannot detect subtle differences. Its sensi-
tivity to slight dynamical changes can be used to 
provide further information, differentiating cióse 



dynamical states when the "Lyapunov exponent" 
reaches its máximum resolution. On the other hand, 
"Perpendicular" product plays an important role in 
the context of nonlinear correlation. When compar-
ing "Perpendicular" product with the Auto Mutual 
Information (AMI), the former has been shown to 
be a refmement of the latter, after it has reached its 
first minimum. 
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