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We present in this paper a semi-Lagrangian algorithm to calcúlate the viscoelastic flow in which a dilute 
polymer solution is modeled by the FENE dumbbell kinetic model. In this algorithm the material derivative 
operator of the Navier-Stokes equations (the macroscopic flow equations) is discretized in time by a semi-
Lagrangian formulation of the second order backward difference formula (BDF2). This discretization leads 
to solving each time step a linear generalized Stokes problem. For the stochastic differential equations 
of the microscopic scale model, we use the second order predictor-corrector scheme proposed in [22] 
applied along the forward trajectories of the center of mass of the dumbbells. Important features of the 
algorithm are (1) the new semi-Lagrangian projection scheme; (2) the scheme to move and lócate both 
the mesh-points and the dumbbells; and (3) the calculation and space discretization of the polymer 
stress. The algorithm has been tested on the 2d 10:1 contraction benchmark problem and has proved to 
be accurate and stable, being able to deal with flows at high Weissenberg(Wi) numbers; specifically, by 
adjusting the size of the time step we obtain solutions at Wi = 444. 

1. Introduction 

Micro-macro models for polymeric flows couple the continuum 
mechanics equations for conservation of mass and momentum 
(macro-scale) to the equations derived from the kinetic theory via a 
coarse-grained description of the molecular configurations (micro-
scale). Numerical algorithms directly based on the kinetic theory 
for complex fluids have been developed since the 1970s, but due 
to the fact that the simulations are very demanding from a com-
putational standpoint, they have become available only after the 
development of supercomputers. For the deterministic versión of 
the micro-macro models one needs to solve a very high dimen­
sional partial differential equation system in both position and 
configuration spaces. As another candidate approach, stochastic 
simulations have the virtue of being dimension-independent and 
parallel in nature, with the additional advantage that no ad hoc 
constitutive equation for the polymer stress is needed to cióse the 
model. Therefore, this is a very promising approach for multiscale 
simulations of complex configurations such as polymer chains. Laso 
and Ottinger [1 ] seem to be the first in designing a numerical algo­
rithm for stochastic simulations of polymer flows, the so-called 
CONNFFESSIT idea (C alculations O f N on-N ewtonian F low: F inite 
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E lement and S tochastic SI mulation T echnique). Applications of 
this approach to dumbbell models of dilute polymer solutions are 
reported in [2] for two-dimensional stationary flows and [3,4] for 
two-dimensional non-stationary flows, for liquid crystalline poly-
mers in [5] and for free surface flows in [6] and [7].The advantages 
of such a method have had an important impact in the develop­
ment of numerical micro-macro models; however, as recognized 
by [4,8], there are still some difficulties, such as the tracking of the 
"molecules" and the calculation of the polymer stress tensor, that 
have to be addressed to improve the efficiency and accuracy of the 
numerical calculations. A step forward in that direction is repre-
sented by the technique of Brownian configuration fields of Hulsen 
et al. [8], the adaptive configuration fields of Gigras and Khomami 
[9], and by the Lagrangian particle method (LPM) of Halin et al. 
[10] and Wapperom et al. [11]. (For additional details, see e.g., the 
revisión by Keunings on micro-macro methods [12]). 

In the present paper, we improve previous micro-macro 
approaches [2-7] by implementing new schemes at both macro 
and micro levéis. For the macro level, we use a second order in time 
backward difference formula (hereafter, BDF2) semi-Lagrangian 
scheme in combination with P2/P1 /Pl finite elements for space dis­
cretization; that is, the velocity is calculated with quadratic finite 
elements whereas the pressure and the polymer stress are both 
calculated with linear polynomials. As for the micro level, (1) we 
calcúlate more accurately and more efficiently the trajectories of 
the individual dumbbells by implementing a second order in time 
adaptive scheme which prevents the dumbbells from leaving the 
flow domain through impervious walls; and (2) we consider that 
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the polymer stress is a piecewise linear continuous function whose 
point valúes are calculated by applying Kramers' expression for the 
polymer stress on the finite volume associated to each vértex of the 
elements. Semi-Lagrangian schemes to deal with the convective 
terms are not new in the realm of viscoelastic flows, in particu­
lar in numerical integrations of models based on the continuum 
approach, because several researchers such as [ 13-16], just to cite a 
few, have used semi-Lagrangian schemes or schemes based on the 
backward method of characteristics; however, to the best of our 
knowledge, this is the first time that the micro-macro approach 
is combined with semi-Lagrangian schemes. The result is a robust, 
accurate and highly stable method that is able to perform numerical 
simulations at high Weissenberg numbers in the 10:1 contraction 
flow example. 

The layout of the paper is as follows: in Section 2 we formú­
late the micro-macro FENE model equations whose dimensionless 
versión is presented in Section 3. Section 4 is devoted to the descrip-
tion of the numerical methods. The results of the numerical tests for 
the 10:1 contraction flow are reported and commented in Section 
5. Conclusions are set in Section 6. 

2. The micro-macro model governing equations 

dumbbells '*¡ 

Q(X,t) 

X(t) 
• ^ 

\ 
* A A - # 

out ' 

Fig. 1. The 10:1 planar contraction geometry for the 'dumbbells' FENE model. 

a constant viscosity coefficient, is the solvent contribution to the 
stress; and TP is the polymer contribution to the total stress that 
results from the anisotropic orientation and stretch of the polymer 
chains. This contribution is the dynamic link between the micro-
and macro-scales, and is calculated by Kramers' relation [17] from 
the configurations obtained as solutions of the micro-scale model. 
Note that, since r¡s is constant, we have by virtue of the divergence 
free condition that V • TS = r¡s Au. 

In this paper we focus on two-dimensional viscoelastic 
incompressible flows modeled by the kinetic theory approach; 
specifically, we shall use FENE dumbbell model to account for the 
dynamics effects at the micro-scale. In this context, a dumbbell 
is thought of as an object composed of two Brownian beads con-
nected by an entropic spring. We consider the flow of a constant 
density diluted solution of polymeric liquid in a bounded domain 
D e l 2 with boundary r during a time interval [0, T]. The bound-
ary r is composed of various pieces on which different types of 
boundary conditions are imposed. Thus, f = P U fs U f , where 
r1, rs, r° denote inflow, solid and outflow boundaries, respec-
tively, and such that rl n T s = 0, rl n T° = 0 and rs n T° = 0. 
The model consists of two sets of equations; one set, corresponding 
to the macro-scale, is formed by mass and momentum conserva-
tion equations of the flow; and the other set, corresponding to the 
micro-scale, is based on the kinetic theory of the molecular con­
figurations to display a more or less accurate description of the 
flow-induced dynamics upon the non-interacting polymer chains. 

2.1. Macro-scale equations 

For the sake of simplicity, we shall consider no body forces acting 
on the flow, so that the governing equations are the following: 

• Du 
P~Dt + V p = JlsAu + V ' T P l n D x ( 0 ' r ] ' (1) 

[ V - u = 0 in Dx (0,T], 

These equations are to be solved subject to the initial conditions 

u(x, 0) = u0(x) VxeD (2) 

and the boundary conditions 

u(x, t) = 0 on rs Vt, 

-pn + í?STj- =g(x , t) on r° Vt, 
on 

-n-u(x , t) = a(x, t) o n P Vt. 

(3) 

Here, u and p denote the flow velocity and the hydrodynamic pres-
sure, respectively; p is the constant density of the solution; n is 
the unitary outward normal vector at the boundary; g and a are 
known data; D/Dt = d/dt + u • V represents the material deriva-
tive operator; the total stress tensor r is defined as T = TS + TP; 

the Newtonian stress tensor TS = r¡s (Vu + (Vu)T) , with r¡s being 

2.2. Micro-scale equations: the FENE dumbbell model 

The polymer solution is modeled as a flowing suspensión of non-
interacting dumbbells that are transported by the flow. At time t, 
each dumbbell is characterized by the position of its center of mass 
X(t) and the elongation vector Q.(t), see Fig. 1. By the action of the 
macroscopic flow, the dumbbells experience three forces: the first 
one is the drag forcé due to the differences in velocity between 
the dumbbell and the surrounding flow particles, the second forcé 
is the elastic forcé due to the spring stiffness, and the third forcé 
is the so-called Brownian forcé due to the thermal agitation that 
is modeled as a Brownian motion. Using Newton's second law, we 
have that the following stochastic differential equations govern the 
dynamics of a dumbbell: 

dX(t) = u(X(t),t)dt 

and 

dQ = K(X(r),r).QÍr)--F(Qír)) dt + 
4k„0 

K 
dW(t), 

(4) 

(5) 

where £ is a friction coefficient; kB is the Boltzmann constant; & 
stands here for the absolute temperature; K = (Vu)T is the trans­
pose of the velocity gradient; F(Q) denotes the elastic forcé acting 
on the spring due to elongation; and W(t) is a vector of independent 
Wiener processes that accounts for the Brownian contribution to 
the dumbbell dynamics. Note that Eq. (5) is the Lagrangian formu-
lation of the stochastic differential equation for each dumbbell. For 
the FENE model, the elastic forcé F(Q(t)) is expressed as 

F(QÍ0) = HQÍO 
i - HQÍOllVllQoll 

(6) 

where H is the Hookean constant for the spring forcé, QQ is the 
maximal extensión of the elongation vector Q, and || • || denotes 
the modulus of a vector. To solve Eq. (5) it is customary to 
introduce the non-dimensional elongation vector <¿* defined as 
Q.*(t) = y^kB0/HQÍt). In doing so (dropping for simplicity the 
superscript*), Eq. (5) becomes 

d(¿. K(XCO,0-Q£0-
1 0(0 

2A. 1 - ||Q(t)||2 
d t + ^ / x d W ( t ) , (7) 

where b = H||Qol|2/(kB®) and k = £/(4H). So that the equations of 
the dumbbells we have to solve are Eqs. (4) and (7) plus the initial 



conditions for the location of the center of mass and the configu-
ration vectors of the dumbbells. The polymer stress tensor is given 
by Kramers' formula as 

-n/<B@I + n(F(Q)®Q> (8) 

where n is the number density of dumbbells, I denotes the identity 
tensor, and (•> is the ensemble average in (¿space. 

2.2.2. ¡nitial conditions for the stochastic Eqs. (5) and (7) 
The initial condition for the connector vector Q. is drawn from 

the equilibrium distribution (K = 0) represented by the probability 
density function 

, O - I I O I I 2 / ^ 2 if,ioii2<b 
f(WQi\)=< 27rb3/2B(3/2,(b + 2)/2) l f | l Q J I < &' 

0 otherwise, 
(9) 

where 6(3/2, b + 2/2) is the so-called Euler beta function. Since 
i? (IIQJI) is symmetric, then Q.is isotropic and its direction is obtained 
by random sampling over the surface of a sphere of radius r; the 
modulus of Q.is calculated by the rejection method [18] to genérate 
random deviates for a probability density function/(r) = 4nr2 r/r(r). 
The initial dumbbells are uniformly randomly distributed over 
the domain. The von Neumann acceptance-rejection method was 
employed for the extraction of random numbers satisfying the dis-
tribution/(r) withanupperconstantM = 0.65. Computation of the 
random unit (director) vectors needed in the equilibrium distribu­
tion was carried out by means of the method proposed by Knop 
[19], and all the uniformly distributed random variables were gen-
erated by the "mtl9937" algorithm of Matsumoto and Nishimura 
[20], available from the GNU Scientific Library [21]. 

3. Non-dimensional equations 

To better understand the role played by the different mecha-
nisms taking part in the phenomenology modeled by Eqs. (l)-(8), 
it is convenient to introduce non-dimensional variables and formú­
late the micro-macro scale equations in a non-dimensional form. 
For the macro-scale equations, we consider the following non-
dimensional variables (denoted with the superscript*): (x*,y*) = 
L^1(x,y); u* = U_1u; t* = rc

_1t; p* = p/(pU2), where I and U are 
the characteristic scales for space and velocity, respectively, and 
Tc = L/U is the characteristic macroscopic convective time scale. 
Next, for the microscopic equations we define the non-dimensional 
variables <¿* = y/kB&fHQ; t* = T~xt = (4H/f)t = (1 /k)t, where Tr 

is the mesoscopic relaxation time of the spring. Once Eqs. (1), (4) 
and (5) are non-dimensionalized, they have the form (dropping for 
simplicity the superscript*) 

V - u = 0, 

«Au + 
Wi 

V-T„ (10) 

in D x (0, T] for the macro-scale, whereas for the micro-scale 

TP = ( F ( Q ) ® Q ) - I . (11) 

dX(t) = u(X(t) , t )dt , 

d<¿ = K ( X ( 0 , 0 - Q £ 0 -
0(0 

2WÍ 1 - ||Qít)||2/b 
dt+—=dW(t), 

VWi 
(12) 

where Re = {pUL)/r¡s is the usual Reynolds number of the 
Navier-Stokes equations; here r¡ is the total viscosity coefficient 
considered as a sum of the coefficient r¡s and a coefficient r¡p due to 
the polymer. Wi = Tr/Tc = %U/(4HL) = kU/L is the so-called Weis-
senberg number; this number is a measure of importance of the 

memory of the polymer with respect to the macroscopic convective 
t ime, a = r¡s/{r¡s + j]p).And b = H | |QQ | | 2 / ( /< : B ®) is the finite extensi-
ble parameter that represents the máximum extensibility allowed; 
in our FENE model, we shall set nkB& = {b + 5)r¡p/{bk). 

4. Numerical formulation 

We introduce in this section the numerical methods we have 
developed to intégrate the micro-macro-scale equations. The 
numerical difficulties associated with the problem are the follow­
ing: 

(1) For the macro-scale equations, we have on one side the typ-
ical difficulties posed by the conventional time dependent 
Navier-Stokes equations; specifically, the non-linear terms 
included in the material derivative Du/Dt, and the constraint 
V • u = 0; and on the other side, the calculation of the polymer 
stress T P . 

(2) As for the micro-scale equations, the main difficulty is the accu-
rate and stable integration of Itó equation for the elongation 
vectors Q£t) along the trajectories of the dumbbells. 

Although the order we arrange the calculations in our algorithm 
at each time step is to intégrate first the micro-scale equations and 
then the macro-scale equations, we shall start by describing the 
t ime integration scheme of the macro-scale model. 

4.1. Time integration ofthe macro-scale equations 

We divide the time interval / = (0, T] into N sub-intervals 
¡n = (tji> tn+i]> 0 < n < N - 1 of equal length At, and note that, for 
(x, t) in D x (0, T), the material derivative Du/Dt can be expressed 
as 5HM = 3u(X(«,t;r),r)|t=t w h e r e x ( X j f . T ) a r e t h e c h a r a c t e r i s t i c 
curves or (fluid trajectories), which, assuming that the velocity vec­
tor u(x, t) is continuous in time and Lipschitz continuous in space, 
are the unique solution ofthe system of equations 

' dX(x, t; x) 
di 

X(x, t; t) = 

:U(X(x, t;x),x), 

Equivalently, we can write Eq. (13) as 

X(x, t\s) = x- u(X(x, S ; T ) , x)dx 

(13) 

(14) 

for all t,se¡ and for all xeD. Then, at each time instant tn+1, 
we approximate along the characteristics X(x, tn+\; t) the mate­
rial derivative by the BDF2 formula; specifically, using the notation 
g(x, tn) = gn(x), or occasionally and if confusión does not arise, gn, 
we have 

Du(x, t) 311"+! - 4u"(X(x, tn+1; t„)) 
lt=Wi = Dt 2At 

U - W . t n + H t n - ! ) ) ( A f 2 ) 

2At *• ; 
(15) 

where X(x, tn+\\ t n )andX(x, tn+\\ tn_i) denote the positionsat time 
instants tn and tn_\, respectively, of a particle that at t ime t n + 1 will 
be at x. Therefore, they are solutions of Eq. (13) when t = tn+\ and 
x = tn and x = tn_i, respectively. It is clear in Eq. (15) that f o r x s D 
one needs to calcúlate X(x, t n + 1 ; tn) and X(x, t n + 1 ; tn_\) in order to 
evalúate u n + 1 (x ) . Postponing the description of the method to cal­
cúlate such positions up to the next section, we have the following 
t ime integration scheme for the macro-scale equations, which is 
formallyO(At 2) : 

Gívenu°(x) andu1(x),forallxeDandforalln = 1 , . . . ,N - 1 



(1) CalcúlateX(x, tn + 1 ; tn)andX(x, t n + 1 ; tn_i) by solving numerically 
Eq. (13) or, equivalently, Eq. (14). 

(2) Calcúlate 

u" (X(x , t n + 1 ; t n ) ) and u " - 1 ^ , tn + 1 ; t ^ ) ) 

and set 

ü"(x) = u " ( X ( x , t n + 1 ; t n ) ) and ün-\x) = un-\X(x,tn+í;tn_í)). 

(16) 

(3) So/ve the generalized Stokes problem 

' 3 p u n + 1 - 2At í? s Au n + 1 + 2 A t V p n + 1 

= p(4ü"(x) - ü"" 1 (x)) + 2 A t V • T p
n + 1 , 

V - u n + 1 = 0 , 

S u n + 1 = 0 on rs, 

9 u n + l 

(17) 

- p n + 1 n + í?s 9n 
gn+i o n r ° 

- n - u n + 1 = a n + 1 on rl. 

We have termed problem (17) the generalized Stokes problem 
because it is mathematically and numerically equivalent to a gen­
eralized Stokes problem with the forcing terms provided by the 
polymer stress tensor and the known valué p ( 4 ü n ( x ) - ü n _ 1 ( x ) ) . 
Next, we describe the time integration scheme for the micro-scale 
equations. 

Remark 1. Since the BDF2 scheme needs u" and u n _ 1 to update 
u n + 1 , we calcúlate u 1 with a single step scheme, such as the 
Crank-Nicolson or Euler implicit schemes. 

4.2. Time integration ofthe micro-scale equations 

Since the formulation ofthe stochasticequation (7) for the elon-
gation vector Q£t) is along the trajectories ofthe center of mass X(t) 
o f the dumbbells, then we have to calcúlate such trajectories by 
solving for each in terval / n , 0 < n < N - 1, the equations 

dX(t) 
= I I I /VI ( I. ( I í.r> < - ( < - l .« i 1 . 

(18) dt 
:U(X(t),t) tn<t<tn+í, 

[ X ( t n ) s D is a datum, 

or equivalently 

X(t) = X(tn) + / U ( X ( T ) , x)dx t„<t< tn+í. 
Jtn 

(19) 

The system (18), which is formally the same as the system (13) of 
the characteristic curves, has a unique solution. Next, we intégrate 
Eq. (7) along the trajectories X(t) applying the second order (weak 
sense) semi-implicit scheme of [22], the stability of which has been 
analyzed in [23]. Thus, using the notation X" = X(tn), Q" = Q"(Xn) 
and Kn = K ( X " ) , we calcúlate Q"+ 1 by the following splitting proce-
dure: 

Q n + 1 = Q " + At 
1 

2k 1 - ||Q"||2/fa 
AW, (20) 

and 

Qn+l 1 + 
1 At 

+ ^ K " - Q " 

4A- l_ | |Q"+l | | 2 /b 

At Q" 

4 X l - | | Q . n | | 2 / b 

: Q n + ^ £ j e n + l . Q n + 1 

AW. (21) 

To solve for Q"+ 1 we take modulus on both sides of Eq. (21) and 
obtain the cubic equation 

yi+1,,3 
•RIIQ: 

n+lM2 b 1 + 
At 

4 l 
i " + i i + bR = 0, (22) 

where Ris the modulus ofthe right hand side of Eq. (21). This cubic 
equation has one root in the interval (0, Vb); thus, when solving Eq. 
(22) we choose the root which is in that interval and then go back to 
Eq. (21) to solve for the components of Q"+ 1 . At this point, we must 

note that in Eq. (22) we have Kn+Í = (Vu n + 1 (X n + 1 ) ) T , but u n + 1 ( - ) 
is not known yet; so that, we extrapólate this valué by the second 
order extrapolation formula u n + 1 ( - ) = 2u"(-) - u n _ 1 ( - ) . Henee, we 
calcúlate Kn+Í as 

Kn+Í = (2Vu"(X n + 1 ) - Vun-\Xn+í))T. (23) 

Once we know Q"+ 1 , we proceed to calcúlate rp
n+í applying (8). 

The Wiener process A W is the one proposed by [22] for schemes 
of second order, namely 

A W = At Y ci Y + c2 (24) 

where Y is a stochastic variable uniformly distributed in [0,1] x 
[0,1] x [0,1] , and the constants c\ and cj, satisfying all the condi-
tions for the moments of Y, have the valúes c\ = 14.14855378 and 
C2 = 1.21569221. The time integration scheme is the following: 

Given (for eachdumbbell) QP andX0 ,andu° (seeinitialconditions), 
then for each dumbbell and for all n = 1 , . . . , N - 1 

(1) Calcúlate Kn = (Vu n(X n))T . 
(2) Calcúlate X n + 1 by solving numerically Eq. (18) or equivalently Eq. 

(19), and Kn+Í by formula (23). 

(3) Calcúlate the components of Q_ making use of Eq. (20). 
(4) Calcúlate | |Q"+11| by solving Eq. (22) and choose the root which is 

in (0, Vb). 
(5) Calcúlate the components o / Q n + 1 makinguse of Eq. (21). 
(6) Calcúlate rp

n+1 applying formula (8). 

Remark 2. One may argüe that integrating the macro-scale equa­
tions with a second order scheme will not significantly improve 
the accuracy of the solution versus that obtained with a first 
order scheme, such as the Euler implicit scheme used by many 
researchers, since the main component of error committed in 
the calculation of the macro-scale variables is contributed by the 
approximation of T p

n + 1 via an ensemble average that is described 
below, and the statistical error of such an average is 0(1 /VM), M 
being the number of dumbbells used in the average. Admitting that 
such an argument is true, we, nevertheless, use the BDF2 scheme 
for the following reasons: (1) to be consistent in terms of numerical 
convergence with the second order scheme employed to intégrate 
the stochastic equations along the dumbbells trajectories; and (2) 
because from a computational point of view, the cost o f the BDF2 
scheme in terms of memory and CPU time is marginally higher than 
that of any first order scheme. 

4.3. Finite element formulation 

Our next concern is the formulation of the time discretization 
schemes in a finite element context. To this end, we shall use 
unstructured meshes composed of quasi-uniformly regular tr ian­
gular elements T¡,\ <j< NE, where NE is the number of elements 
of the mesh. The set D/, = {T¡, 1 < j < NE} denotes a uniformly reg­
ular par t i t ionofD such that D u r = U l 3 < N £ Tj. The triangles Tj that 
are in the interior of D have straight sides, whereas those triangles 
which intersect the boundary r may have curved sides. One has to 
make additional assumptions on curved triangles. Pm(Tj) denotes 



the set of polynomials (or polynomial-like functions) of degree < m 
defined on the triangle Tj. The type of finite elements we employ for 
space discretization of velocity and pressure is the so-called Taylor-
Hood P2/P1 element, that is, quadratic polynomials for velocity and 
linear polynomials for pressure on each triangle T¡\ this element is 
known to be stable in the sense that it satisfies the inf-sup condi-
tion. As for the polymer stress tensor, rp, we shall use P\ -element, 
that is, linear polynomials. So that, we are now in a position to 
define the finite element spaces for velocity, pressure and polymer 
stress tensor associated to the partition Dh. 

Velocity: 

Vh = | v h sC°(D)2 : vh\T. eP2(Tj)2,1 <j < N E } , 

and 

Vh0 = { v h s V h : v h | r s = 0 } . 

Pressure: 

Qh = {qheC°(D) : qh\Tj eP^Tj), 1 <j < NE}. 

Polymer stress tensor: 

Sh = {sh sC°(D)4 : sh\T. eP^Tjf, 1 <j < NE}. 

Here, C°(D) means that the functions are bounded and continu-
ous up to the boundary; P2<Tj) means that the two components of 
the velocity vector are piecewise polynomials of degree 2, whereas 
Pi(Tj) denotes that the four components of the stress tensor are 
piecewise linear polynomials. Let MV be the number of velocity 
nodes in the mesh, and let MP be the number of pressure (also poly­
mer stress tensor) nodes in the mesh. Then, any vh e V/,0, c//, s Q/, and 
sh e Sh can be represented as 

MV 

1=1 

MP 

Qh = J2QkXpk, (25) 
k=í 

MP 

k=í 

where {&&, &&}, {Wk} and { ( ^ e j e j , Wke1e2,
 tJ/

ke2eu Wke2e2)} 
denote the sets of global basis functions of the finite element 
spaces V/,0, Qh and Sh, respectively; V,- = (Vj,-, V2i), Qj< and Sk = 
(Snk, Suk, S2ik, S22k) are the sets of nodal valúes of V/,, cj/, and S/,, 
respectively; and ej and e2 denote the elements of the canonical 
basis ofR2. 

4.3.2. Finite element formulation ofthe generalized Stokes 
problem (17) 

Assuming that at the time instant rn, uj¡_1 and 
u/¡ e Vf,0, v\ e Oh' Tp1h+Í e $h a r e known, we wish to find uj¡+1 s V/,0 

and pj¡+1 s Qf¡ such that - n • uj¡+1 = an+1 on f, and for any vh s V/,0 

and qheQh 

'3(pu^+1 ,vh)D + 2At(Vu^ 1 ,Vv h )D 

- 2 A t ( p ^ 1 , V . v h ) D = ( p ( 4 ü ^ - ü ^ 1 ) , v h ) D 
< (26) 

+ 2 A t ( g " + 1 , v h ) r o + 2 A t ( V . T p f 1 , v h ) D , 

KiV.U»+\qh)D = 0, 

where the following notation has been used: (a,b)D = j a-
b dx, (Va, Vb)D = f Va : Vb dx and (a, b) r„ = f a • b ds. 

Fig.2. BijectivetransformationX(, t„+-¡, t„)ofelementTjandflxedpartitionDhonto 
element T*n and virtual partition D*'. 

Remark3. In Eq. (26), ün
h{x) and üJJ"1 (x) s Vh are the finite element 

approximations to 

üJ¡(x) = u"(X(x,tn+1;tn)) and üj-^x) = u"-1(X(x,tn+1 ;!„_!)). 

These approximations are calculated by the semi-Lagrangian 
method that is explained next. 

Remark 4. In contrast with other micro-macro algorithms, which 
calcúlate (uj¡+1, pj¡+1) using the valué of the polymer stress tensor 
at the previous time step tn, making the whole scheme be O(At), 
we use Tpj¡

+1 in order to be formally consistent with the second 
order BDF2 discretization ofthe material derivative. 

Remark 5. Notice that the bilinear form for the velocity uj¡+1 is 
symmetric and positive definite, so that we solve Eq. (26) by the 
Uzawa-preconditioned conjúgate gradient algorithm of [24]. 

4.3.2. Semi-Lagrangian calculation ofül
h{x) when / = n - 1 and n 

There are different approaches to approximate ü (x) = 
u'(X(x, rn+1; t¡)). For instance, on one side, we have the so-called 
Lagrange-Galerkin method (also known as Characteristic-Galerkin 
method) introduced in [25] and [26], and further analyzed in [27] 
for the incompressible Navier-Stokes equations and [28] for the 
scalar linear advection equation; or the weak Lagrange-Galerkin 
of Benque et al. [29]. These methods are specifically formulated 
in a finite element framework since they perform a L2-projection 
of u'(X(x, rn+1; t¡)) onto \Ih, and they have been used in viscoelas-
tic flow by [13,15] and [16], just to cite a few. On the other 
side, in a finite difference context, we have the so-called semi-
Lagrangian methods that were first introduced in the numerical 
weather prediction community by Robert [30], and since then they 
have become a standard scheme in numerical weather prediction 
models. Roughly speaking, the idea ofthe semi-Lagrangian schemes 
when they are applied in combination with finite differences (or 
finite volume methods) for space discretization consists of comput-
ingthe departure points(orfeet ofthe characteristics)X(x, tn+\\ t¡) 
for the grid points {x,} of a fixed square uniform grid and then cal-
culating ü (x,) by interpolation of degree > 2. However, recently 
Bermejo and Carpió [31] have devised a semi-Lagrangian scheme 
more consistent with the finite element methodology based on 
the Galerkin projection, and it is this semi-Lagrangian scheme 
that we use to calcúlate u'h(x). Briefly speaking, the idea of the 
new semi-Lagrangian Galerkin projection scheme, hereafter, SLG 
scheme unless otherwise stated, consists of first generating a vir­
tual partition D*1, which is the image of the fixed partition Dh, 
by convecting backwards in time the elements Tj of the fixed 
mesh; specifically, let D*1 = {ysR2 : y = X(x, tn+í; t¡), VxeD}, then 
we define D¡¡ = {T*1 c D*1 : T*1 = X(Tj), 1 < j < NE}, where x'(Tj) is 
a shorthand notation for X(x, tn+\, t¡), for any x in Tj. Therefore, 
T*1 is the image of Tj by the action of the bijective transformation 
X(-, rn +i; t¡). See Fig. 2, where it is shown that, for í = n and At suf-



Fig. 3. Relation among triangles f, T¡ and T*n through the bijective transformation 
X(, t„+i; t„), bijective mapping F"(x), and invertible affine transformation f,(x). 

ficiently small, the triangle T*n may intersect several elements Tk 

of the fixed partition Dh. Moreover, Fig. 3 shows graphically (1) 
the relation of 7) with T*n through the bijective transformation 
X(x, rn+i; rn); (2) the relation of T*n with the triangle of reference 

f, whose vértices are (0, 0), (1, 0) and (0,1), via the bijective map­
ping F"(x); and (3) the relation of T with 7) through the invertible 
affine transformation F,(x). Secondly, we consider the finite ele­
ment space V*f¡ associated to the partition Djj: 

vf = {v¡;eC0(D*1)2 :Vr; lsD* l ,v* l |T„SP2(r;1)2 , 1 <j<NE}, 
i 

where for any x s 7) and y = X(x, tn+\; t¡), we can define 

P2(T*1) = {p*(y): p*(y) = p(x) with p(x)eP2(7))}. 

The definitions of V¡j and P2(T*1) imply that if {(cp¡ei, 0ie2)}^{ 
is the set of global basis functions of \Ih, then we can define 
a set {(0fei, &fe2)}._, of global basis functions for VJj1 as fol-
lows: for xe7) and y = X(x, tn+1; t¡)e T*', (<Zf(y))|r, = (<Z>¿(x))|T 

i 
and (0f(yk))\T,i = (^¿(xk))|T = Sik, where xk are the mesh points 

i 
for velocity. So that, to any function v*1 s VJj1, 

MV 

v*h'(y) = Yyti*tiw 
i=0 

there corresponds a function vh(x) s V/, such that 

MV 

vi
h(x)=Yy¡^iW-

i=0 

Next, we consider u'h(X(x, rn+1; r¡)); this is a continuous function 
defined on DJj1 that does not belong to Vjj. We approximate it on 
this space by the function u*'(y), y = X(x, rn+1; t¡), which is the I 2 -
projectionofu'h(X(x, tn+\\ r¡))ontoV¡j.Inotherwords,(ujj, vjj')D,¡ = 

h 

(u'h(X(x, tn+\\ t{)), vjj1) ,, or equivalently, given that for any inte-
h 

grable function G* defined onD*1, |D , , G*(y)dy = E Í f i J r ' G*(y)dy> 
h i 

we can set 

NE NE 

Y, uh(y)-vh(y)dy = E / ul(y)-vh(y)dy> V v h s < 
, , JTtl , . JTtl 
J=l J=l 

Noting that, in general, T*1 are curved triangles, which 
are not computationally feasible to genérate, then the SLG 
scheme approximates the integráis J ¡ G*(y)dy by Ltl G*(y)dy, 

*"(%> 

Fig. 4. Affine transformation F"(x) and linear approximation T" to T*". 

where t*1 are straight side triangles whose vértices are: 
bj! = X(a7l, tn+i; t¡), bj2 = X(aj2, tn + i ; t¡) and b j 3 = X(aj3, tn+í; t¡), 
with {a,-i, aj2,aj3} being the vértices of 7). See Fig. 4, where it is 
shown that T" is a linear approximation to the curved triangle t*n. 

To evalúate ffl u*'(y) • v*'(y)dy, we consider that u*'(y)|f, eP2 (tj 

so that we can write u*'(y)|f¡ = X ^ V j ^ y ) , w h e r e (0k(y)} is 
i 

the set of local basis function for the set of polynomials P2{tj) 
defined on tj, and for 1 < i < 6 we set vjj'(y) = (0¿(y)ei, ^¿(y)e2); 
henee, we have 

<(y)-v*'(y)dy = 
6 

k=í 
(•v¡k>v2k) / ^ ( y ) ^ ( y ) d y 

••Yfi^'Vfo' 1 < i < 6, 

k=l 

where m!fe = ÍL 0¿(y)0¿(y)dy denotes the local mass matrix for the 
i 

element T!. Making use of the invertible affine transformation Fj : 

t -> Tí, see Fig. 4, we can evalúate the coefficients mí, as it is usual 
j ' ° ' xk 

in finite element technology; that is 

0¿(y)0¿(y)dy = / 0¿(x)0k(x)i/aidx, (27) 

where J^ denotes the Jacobian determinant of the transformation 
i 

FJ, which is constant for each element tj, and {^(x)} is the set of 
basis functions for the set P2(T) of polynomials defined on the refer­
ence triangle T. To evalúate L¡ u'h(y) • v^(y)dy, we set, for i < i < 6, 

i 
vi1 = (0¿(y)ei, ^¿(y)e2), and making use ofthe affine transformation 
F*' and quadrature rules we have that 

A = (r'i • r '2) = / ("íh(y)' "2/,(y))^(y)dy = 

{v\h{FJ{x)),v2h{FJ{x)))<pm hl dx: (28) 

hi 

ngp 

^ g ( 4 ( F J ( x g ) ) , v'h(FJ(xg)))^%), 
g=i 

where n^p denotes the number of quadrature points ofthe rule, and 
(Xg, üTg) is the g th quadrature pair, denoting the quadrature point 
and its corresponding weight, respectively; for^,(x)sP2(T) weuse 
Hammer'srule of7 points [32].The key point inEq. (28) isthe eval-
uation of (v'. (yg), f2i,(yg)). yg = FÍ(xg), because we must identify 



Fig. 5. The quadrature point xg has as image in f" the point yg which is in a flxed 

meshelement. 

the element Tk of the fixed mesh that contains yg and then calcú­
late (vl

íh(yg), vl
2h(yg)), makinguseofthe element ofreferencef as is 

usual in finite element technology (see Fig. 5). To perform this task, 
lócate the element and calcúlate the interpolation in this element, 
we have developed a new search-locate algorithm for unstructured 
triangular meshes based on the one presented in [33], which is able 
to lócate the element containing a point given by the Cartesian coor-
dinates {x\, x2) and then calcúlate the reference coordinates {x\, x2) 
of this point (Fig. 6 illustrates the capabilities of this method to 
search and lócate points in unstructured meshes on multiply con-
nected domains). We must remark that the approximation of Tí" by 

f" introduces the significant difference that the calculation of the 
points F"(Xg) is done very efficiently, and so is the identification 
of the elements T^ wherein they are located, because the search to 
find out T^ is local in the sense that if we know, by previous calcu-
lations, the element Tk that contains, say Xn(a)1); then, when both 
At and |u| are sufficiently small, F"(xg) must be either in the same 
element Tk or in a neighbor element. Fig. 5 illustrates the situation. 
In contrast with Lagrange-Galerkin methods, for which one needs 
to solve the system (13) for each quadrature point in the element 
Tj, or for interpolatory semi-Lagrangian schemes of [34] and [35] 
where the system (13) is numerically solved for each mesh-point, 
in the SLG scheme one has to solve (13) only for the vértices of 
the triangles, what means a large saving in CPU time. Details on 
the numerical analysis of the SLG method as well as a comparison 
of its performance on typical puré convection problems and the 
Navier-Stokes equations with Lagrange-Galerkin and interpola­
tory semi-Lagrangian schemes can be found in [31 ]. An algorithmic 
description of the SLG projection scheme is as follows: 

3.8' ' ' ' ' ' ' ' ' ' 
-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 

Fig. 6. The search-locate algorithm starts at point (-1.185, -0.03749) and after 164 
steps finds out the element containing the point (-0.01816, 0.09047). The figure 
shows the path followed by the algorithm. 

Assuming that the velodties u'h e V/,0 are known, find uh e V/, 
through the foüowing steps: Forj = 1,2,... ,NE 

(1) Calcúlate the element f! by solving Eq. (13), with x = a^, 1 < 
k < 3 being the vértices of the fixed mesh element 7). 

(2) Calcúlate the elemental mass matrixMÍ by Eq. (27) and assem-

ble it in the global mass matrix M . 
(3) Calcúlate r̂  by Eq. (28) and assemble it in the vectors R[ = 

(ríi> • • • > ríiw) a n d R2 = (r21 > • • • > r W ) • 
(4) Calcúlate the entries of the vectors 

S!l
í=(V'n,...,V[MV)T; St2 = {Vl

2l,...,V
l
2m)T, 

by solving M " ^ , \/2) = (R[, R2). 
(5) Setü 'hsVhas 

MV 

ü'h(x) = ^ ( V n ^ C x ) , V2í<P,(x)). (29) 
i=i 

4.3.3. Calculation ofthe backward andforward trajectories ofthe 
flow 

At each time instant tn+\, we have to compute the departure 
points X(x, rn+1; tn) and X(x, rn+1; tn_\) ofthe characteristic curves 
ofthe material derivative operator, as well as the points X(tn+i) 
which are the positions of the center of mass of the dumbbells. 
Looking at Eqs. (13)-(14) forX(x, tn+i\tn) andX(x, tn+\\ tn_i); and 
(18)-(19) forX(tn+i), we note that the calculation of X(x, tn+í;tn), 
X(x, rn+1; tn_i) consists of solving backwards in time for all x e D, 
whereas the calculation of X(tn+i) represents for each dumbbell 
the solution forward in time of the same system of ordinary dif-
ferential equations; therefore, we shall apply the same numerical 
method to calcúlate the solutions X(x, tn+\; tn), X(x, tn+\; tn_i) and 
X(tn+i )• There are a number of numerical methods that can be used 
to perform these calculations, for instance, considering only explicit 
schemes, we have the families of Runge-Kutta methods of order 
> 2, or some predictor-corrector schemes of order > 2; however, 
based on the experience of [36] and our own one, we find satisfac-
tory the second order scheme described in [34] which combines 
the scheme 2 of [36] with our new search-locate algorithm for 
unstructured meshes. 

Calculation o/X(x, tn+\; t¡) when í = n - 1 or n 
Recalling Eq. (14) and approximating the integral by the mid-

point rule up to 0(At3), we can set 

X(x, rn+1; t¡) = x¡ - Atuh(X(x¿, tn+1; t¡ + ñnl), t¡ + ñnl), (30) 

where &n¡ = (n + 1 - í)Ar/2, and the points x¿ are the vértices ofthe 
triangles ofthe fixed mesh. Since all the variables are calculated at 
time instants nAt, we have to approximate bothX(x,-, tn+\; t¡ + &n¡) 
and U/,(-, t¡ + &n¡) in this formula. The approximation of uh(-, t¡ + 
&n¡) is calculated via the second order extrapolation formula 

,, , , , , < , - , í ^ u h ( - , t n ) - - u h ( - , t n _ 1 ) , l = n, 
Uh( - , t | + ^ n l ) = < 2 2 ( 3 1 ) 

[uh(-,tn), l = n-1, 

whereas in order to approximate X(x,-, tn+1; t¡ + &n¡) we note that 
X(x¿, tn+\; tn+\) = x¿, so that we can write 

v c v t -f , A ^ í ^ ( X j + X Í X i . t n + i I t n ) ) , l = n, 
X(xi,tn+i;tl + -&nl)= < 2 (32) 

[Xíx. tn+ntn) , l = n-1. 

Henee, defining e(x¿, tn+\\ t¡) = x¿ -X(x¿, tn+\\ t¡), we have, by a 
Taylor expansión up to order 0(At2), that X(x,-, tn+\\ t¡ + &n¡) = 



0 

(b) x(W) 

X(t) 

Xf,_ 

.O' 

Fig. 7. Time adaptive scheme to compute X(, t„+i; t¡) (panel (a)), and X(t„+i) (panel (b)). 

x , - je(x,-, tn+\; t¡). Substitution in Eq. (30) yields the following 
equation to calcúlate e(x,-, tn+\; t¡) up to order 0( At3): 

e(x¿, tn+1; t¡) = Atuh(Xi - -e(x¿, tn+1; t,), t, + #„,). (33) 

This equation has a unique solution if [37] 

At max Vuí(x) 
( x . t n J e B j x / 1 " ' 

< 2 (34) 

where 6,- is a neighborhood of the points x,- such that 
X(x¿, tn+\\ t¡)eB,-.Thus, assuming that At andu¡¡ satisfy this condi-
tion, we make use of Eq. (31) to calcúlate the solution of Eq. (33) by 
a fixed point iterative procedure that will stop when either a toler-
ance Tol or the máximum number of iterations, KMAX, are reached. 
Both Tol and the integer KMAX are supplied by the user. Then, we 
have that for each i: 

X(x¿, tn+1; t¡) = x¿ - e(x¡, tn+1; t¡). 

Several remarks are now in order: 

(35) 

(1) Let e(x,-, tn + i ; t¡) be the k-iteration of the fixed point iterative 
procedure as per Eq. (33), then we need to identify the ele-
ment that contains the point x,- - ^•e('£~1'(xi, tn+1; t¡), and then, 
by finite element interpolation, evalúate 

To overeóme the last two problems in the calculation of 
X(x,-, tn+1; t¡), we shall implement an adaptive versión of the for-
mulae (30)-(35)(see Fig. 7). Thus, noting that for any integer m > 1 
we can write up to order 0(At3): 

X(x¡, tn+i; tn+i - 2ún¡m) = x¿ - 2#nímu(l(X(xi, tn+\; tn+\ - &n¡m), 

ln+l • ^n ím)> (36) 

where ftnlm = ^ í , n(í) = 2""', so that, when í = n - 1 => n(í) = 2, 
and when í = n => n(í) = 1. Then, setting 

*(X¿. tn+11 fn+l - 2??nlm) = x i ~ X(X,-, t n + i ; tn+\ - 2Únlm) 

and arguing as above, we obtain 

e ( x i . tn+1! fn+l - 2&n¡m) 
e(x¿, tn+1; tn+1 - 2#nlm) = 2?>nlmuh(xí 

X tn+1 - #ním)- (37) 

Now, applying the fixed point iteration procedure we will find the 
unique solution of Eq. (37) if 

n(í)At jvv n , ,, . 
^ (X,tnJeBj xi ' ' 

(38) 

u/,(x¿ s^k-1\xi,tn+1;tl),tl + ñnl) 

on such an element. We do this by using the new search-locate 
algorithm. 

(2) Note that for some points xit the criterion for the convergence 
of the iterative procedure may impose a restriction on At that 
should unnecessarily penalize the size of At for the overall 
calculation. 

(3) It can be shown theoretically that the trajectories X(x¿, tn+\; t) 
cannot leave the domain D through a solid wall because on it 
the velocity is zero; however, due to numerical errors, for At 
not sufficiently small, some trajectories leave the domain; since 
the numerical errors depend on the size of At, then by taking 
it sufficiently small we ensure that no trajectory will cross over 
a solid boundary. 

So that, for each x¿ one can control the convergence of the itera­
tive procedure by increasing va. The important point here is that 
different x,- have different valúes of &n¡m. This same method can 
also be applied to prevent the trajectories from leaving the domain 
through solid walls. We implement this time adaptive versión in 
Algorithm 1. 

Forward calculation ofthe points X,(tn+1) 
We now calcúlate the position ofthe centerofmassX,(tn+i), for 

all i = 1 , . . . , N¿ dumbbells in the domain, in an analogous manner 
to that used when computing X(x, tn+1; t¡) for l = n - 1 or n. Since 
both methods share a similar structure and implementation, we 
just provide the time adaptive procedure as laid out in Algorithm 
2. 

Algorithm 1. Scheme for the adaptive calculation of X(x¿, tn+\; t¡) 
when í = n - 1 or í = n. 



Data: x¿,¿-th vértex of the triangle 7). Tol, KMAX, m = 1. 
Result: X(x¿,ín+i;¿¿), for l — n — 1 or l — n. 
for j = 1 to Ar£ do 

for i = 1 to 3 do 
sm • 

if x¿ - ^ D /* Through so l id boundaries 

then 
m = m + 1; 
do 3 

end 
for fc = 1 to K M Á Y do 

*/ 

Jk) 
Jk-1) 

if 

= 2tfnZmUfe I x¿ - -

.(fe) _ £ ( f e - i ) | | 

;n+l — v n / m 

> Tol A x¿ )— <£ D /* Through so l id 
n^r 'II 2 

boundaries 
then 

TO = m + 1; 
do 3 

else 
X (x¿, ín.+i; ín + i - 2&nlTn) = x, - ef } 

end 
i ) /* Through so l id boundaries 

*/ 

* ( * > , 

• ^ ) , W i - W 

18 if X¿ 

19 t h e n 
20 ra = ra + l; 
21 do 3 
22 end 
23 end 
24 for «s = m — 1 to 1 do 
25 X (x¿, tn+1; í n + i - 2tfn¿s) = 

x, - 2'&ni, • uh (X (x¿, í„+i; í, 
26 end 
27 end 
28 end 

Algorithm 2. Scheme for the adaptive calculation of X,(tn+i). 
Data: X¿(ín),center of mass of z-th dumbbell at tn. Tol, KMAX, m = 1. 
Result: X¿(ín+i). 

i for ¿ = 1 to Ar
d do 

*/ 

£° -
— (¿ D /* Through solid boundaries 

(0) = ^ 
i 2r 

if X¿(ín) 

then 
m = m + 1; 
do 2 

end 
for fc = 1 to i í M A X do 

2Aí 

*/ 

- (^ ) . 

Jk) . 

uh X¿(ín) + - >¿n + " 
At 

^-1)11 
if 

^(fc-i)!! 
> To/ A X¿(ín) + -^- ^ L> /* Through so l id 

boundaries 
then 

m = TO + 1; 
do 2 

else 
2Aí\ _ 

*/ 

Xi tn + 
2m ; 

X i W 

end 

s¡ 
(fe) 

if X¿(ín 

then 
m = TO + 1; 
do 2 

end 
end 
for 5 = vn — 1 to 1 do 

2Aí\ 

^ D /* Through so l id boundaries */ 

X?; í, 
2-s y 

X,;(ín) 
2Aí 

Uh X?; ín 
At\ At\ 

25 e n d 

26 e n d 

Remark 6. Note that all dumbbells leaving the domain are re-
entered in it, by sampling from a parabolic distribution in the case 
of the planar contraction 10:1 so as to obtain their spatial posi-
tion. As for their configurations, they are extracted from the initial 
distribution indicated in Eq. (9). 

4.3.4. Computation ofthe transpose ofthe velocity gradient 
tensorK 

The transpose ofthe velocity gradient, K = (Vu/J7, is a term that 
must be calculated with care because it appears in the stochas-
tic differential equation of the elongation vector Q. As such, it 
must satisfy certain regularity conditions to guaranty the existence 
and uniqueness of the solution [22]. Since uheVh0 is a piece-
wise quadratic vector valued function, then a direct calculation of 
iyuhf yields a discontinuous piecewise linear function that does 
not belong to S .̂ In order to calcúlate /casa Lipschitz continuous 
function in Ŝ  we recover K as the L2-projection of(Wuh)

T onto S .̂ 
Thus, setting for all time tn 

MP 

(39) Kn(x) = ¿jeVVu 

i=í 

where JC" = (ÁTJ^X,)), 1 < m, l < 2, we have that for allj, 1 <j < MP, 

(40) I ¡cn&jdx= / (Vuh)
T#j-dx. 

D JD 

Henee, we calcúlate the tensor valúes ( ^ (x , ) ) by inverting the so-
called mass matrix. Noting that the mass matrix is symmetric and 
very well conditioned, this operation is trivially done by using a 
preconditioned conjúgate gradient method. 

4.3.5. Computation of the polymer stress tensor rp 

The calculation of the polymer stress tensor rp at each point 
(x, t) is done according to formula (8). In the stochastic approach, 
the ensemble average is approximated by averaging over the 
individual realizations ofthe stochastic process Q(t) which are Solu­
tions of Eqs. (20) and (21). In doing so, we must note that each 
realization is the solution of the stochastic equation along the tra-
jectory of the center of mass of a particular dumbbell; so that, by 
calculating such a solution we can get at each time instant tm a 
discrete set of valúes {Qj"(X{") 0 F(QJ"(X{"))}1<1<N , with the points 
{X|"} being located in the spatial domain D. With this information 
we must devise an scheme to calcúlate a polymeric stress ten­
sor depending on both time and space, and belonging to the finite 
element space S .̂ In this respect, it is worth mentioning some of 
the schemes proposed in the past; for instance, the scheme of [4] 
consists of dividing each element (rectangle) into two triangular 
subelements within which the polymer stress tensor rp is calcu­
lated applying formula (8) and taking the ensemble average over 
the dumbbells contained in such a subelement, assigning this valué 
to the barycenter of the triangle, so that the polymer stress is a 
piecewise constant function in space. In the scheme proposed in 
[10] the polymer stress is calculated in each element by perform-
ing a linear least squares fit to the valúes of the stress associated 
to the particles carrying the dumbbells contained in each element, 
so that the polymer stress is now a piecewise linear discontinuous 
function. 

We propose in this paper the following scheme. First, we divide 
each triangle of the mesh into three subelements by joining its 
barycenter with the mid-points of its edges, the área of each one of 
these subelements is equal to Área of T/3. Next, for each mesh-point 
Xj that is a vértex of a triangle, we consider the región Aj formed by 
the unión of the subelements of all triangles sharing x¿ as a vértex, 
see Fig. 8. Let s be the number of those subelements Aj¡, 1 < / < s, 
note that Aj = U/Aj7 and D = UjAjt and therefore, Área {Aj) = J ^ = 1 



Fig. 8. Area/ij associated to the vértex x, inthe calculation of the stress tp. 

Área (AJÍ), and Área (D) = V ^ Área (A¡). Let N¡ be the number of 
dumbbells that at time tm are located in the subelement A«\ then, 
applying formula (8) we calcúlate 

*P¡" = nkB0(^-Yj^(Xf) ® F(Q,m(X!")) - I) 

vi; 

(41) 

i=l 

and set for allx mA lü 

r?(x)k. 

This means that T™(X) is a piecewise constant function that does 
notbelongtoS/,. We calcúlate TP" ínSh astheL2-projectionof T"(X) 
onto S/,. Specifically, let 

MP 

LVh (X): 

J=l 

«5(x), 

where TP™ = (TP™(XJ)), 1 < q, r < 2, then for each j 

lph VjUX. - tPm^dx, 

(42) 

(43) 

Since Tp
m Wj is a polynomial of degree 1 in each triangle of the mesh, 

we can compute the integráis by means of a first order accurate 
quadrature rule such as the Gaussian rule of one point (barycen-
ter of the triangles). This quadrature rule calculates exactly the 
right hand side of Eq. (43); as for the left hand side, the integral 
is equivalent to lump the mass matrix. Thus, the procedure yields 

1 

Area(A) l ¿-~i 
Area^TpJ 1 (44) 

4.4. An algorithmic presentation of the semi-Lagrangian 
micro-macro method 

We have given a thorough description of our new semi-
Lagrangian micro-macro method, separated into a time discretiza-
tion part, a finite element formulation of the equations arising from 
the time discretization of the Navier-Stokes, and stochastic equa­
tions. From this description it is clear that at each time instant tn+\ 
we calcúlate the velocity vector uj¡+1, the pressure pj¡+1, the elon-
gation vectors Q"+1, the trajectories Xn+1 of the dumbbells, T P " + 1 

and so on; however, in order to facilítate the comprehension and 
the existing interrelation of the different parts of the algorithm, we 
summarize its description in a step-by-step presentation. 

(1) Choose At and genérate the mesh Dh. 
(2) Let N¡¡ be the number of dumbbells uniformly and randomly dis 

tributed in the domain at time t0. Assuming that U^,{<101 d 

7=1 
and {X¡}_ are known, perform the first time step to calcúlate 

J <j=\ 

(3) Forn = 1,2,.. 
Pj. 1 ']=! 

,N: 

and rv
l
h. Then 

(3.1) For each dumbbell, apply Algorithm 2 to calcúlate its center 
{n+\ ^ e / e m e n j j where it is located, and estímate of mass X" 

n+i(Xn+i) by the extrap0iati0n formula (23)K"+1(X]1 + 1) = 

2K"(XJ1+1)-K"-1(X51+1). 

K. 

-K'^-^XJ-
(3.2) For each dumbbell, solve Eqs. (20)-(22)to obtain the elongation 

vectors yi+l 

(3.3) Calcúlate the polymerstress tensor TP5¡+1. 
(3.4) Apply the semi-Lagrangian projection algorithm to calcúlate 

ü¡¡, üjj - 1 . Note that the semi-Lagrangian projection algorithm 
makes use of Algorithm 1 to calcúlate the departure points 
{X(a,, tn_¡), í = 1, 2}, ofthe vértices {a,} ofthe triangles. 

(3.5) Solve the generalized Stokes problem (26) to calcúlate u¡¡+1 and 

p«+\ 
(3.6) Calcúlate K"+ 1 by applying formulas (39) and (40). 

Remark 7. Our method to calcúlate the solution ofthe micro-scale 
model is somewhat similarto the Lagrangian particle method (LPM) 
presented in [10], in the sense that both methods solve stochas­
tic equations (in Lagrangian formulation) along trajectories; in our 
case, the trajectories correspond to the center of mass ofthe dumb­
bells, whereas in LPM the trajectories are described by the motion 
of particles, each one carrying a given number of dumbbells n¡¡. 
The difference between our method and LPM is, however, the fol-
lowing. Our method considers that a given number of dumbbells 
N¿ is initially uniformly randomly distributed over the domain; 
whereas LPM considers a given number npart of particles initially 
uniformly distributed in each element ofthe mesh. Since in a mean-
ingful calculation, npan < N¿/NE, then the number of trajectories 
to be calculated is presumably much higher in our method that in 
LPM, and therefore, our method may require longer time to solve 
the micro-scale equations. To this respect, we must say that in our 
method the calculations of the trajectories of the dumbbells and 
the location of their final positions over irregular meshes repre-
sents 20-25% ofthe time required to calcúlate the solution ofthe 
micro and macro-scale equations per time step on a single proc-
cesor of a Dual Core AMD Opteron Processor 265 at 1.8 GHz, 1 MB 
cache, 4 GB RAM, compiled with no optimization flags; whereas 
the predictor-corrector algorithm spends about 40-50% of that 
time. Now, if one takes npsrt = O(10), nd = O(103) and Nd = (106) 
then, roughly speaking, our micro-macro algorithm may require 
about 20% more of CPU time that LPM with uncorrelated ensem-
bles. In order to ¡Ilústrate the performance of our semi-Lagrangian 
micro-macro method as for the CPU time is concerned, we say that 
the calculations on mesh Mi withNj = 106 and 1.6 • 106 time steps 
need 110 days, or equivalently, an average of about 6 seconds per 
time step. 

5. Results and discussion 

The stability and convergence behavior ofthe new method were 
assessed by performing a series of calculations in the abrupt, planar 
10:1 contraction for increasing valúes ofthe Weissenberg number 
Wi. 

In all results reported below the calculation was started from 
a spatially uniform distribution of molecules, the configurations 
of which were initialized from the known equilibrium distribu-
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Fig. 9. Streamlines for Wi = 11 (panel (a)), Wi = 66 (panel (b)), Wi = 222 (panel (c)), Wi = 333 (panel (d)) and Wi = 444 (panel (e)). 

tion (9). A parabolic velocity profile was imposed at the inlet and 
a sufficient channel length ensured that a fully developed veloc­
ity profile was achieved three diameters upstream of the reentrant 
córner. Independent runs at increasingly larger valúes of Wi were 
performed and continued until 1CU.. Apart from the transient evo-
lution, velocity, stress and molecular configuration fields at the 
steady state were obtained by averaging over the last five relaxation 
times. Outflow boundary conditions were free stress according to 
(3). Following [38]W¡ is defined as 

Wi = 2X 
U 

(45) 

where U = 6.6 x 10~3 and I = 6 x 10~3 are the mean velocity and 
channel width at the outflow, respectively. In all cases the follow­
ing parameters and material properties were kept constant at these 
valúes: Nd = 10b; tend = 1CM.; r¡5 = \Q-¿ Pas; p = 103 kgirr3 ; b = 
50; a = 0.2; v™max = 10~3 ms _ 1 ; where N¿ is the size of the global 
ensemble of FENE dumbbells in the domain and v™max is the máxi­
mum in the parabolic velocity profile at the inlet. Mesh MI is used 
for most calculations. The upstream/downstream channel lengths 
were set at 8 and 30 times the upstream/downstream channel 
widths, respectively. 

In addition to that, two increasingly refined meshes M2, M3, and 
also increasingly larger molecular ensembles (between Nd = 106 

and N¿ = 107 molecules) were used for convergence tests. Table 1 
shows MV, MP and NE for each of the meshes. Time integration 
steps were varied between 10~2 (mesh MI) and 1.25 x 10~3 (mesh 
M3). The symmetry of the domain with respect to its mid-plane was 
deliberately not exploited, and all calculations were carried out in 

Table 1 
Velocity nodes MV, pressure nodes MP and number of elements NE for all three 
considered meshes MI, M2 and M3. 

Mesh MV MP NE 

MI 
M2 
M3 

4,511 
17,367 
69,737 

1179 
4511 
7637 

2,154 
8,616 

34,464 

the whole domain. The reason for making the extra computational 
effort due to ignoring domain symmetry, was to assess the quality of 
the solutions obtained also with respect to symmetry, i.e. to verify 
that the method rigorously produced symmetric (apart from sta-
tistical fluctuations) solutions, and eventually to observe the onset 
of oscillatory behavior as Wi was increased. 

The highly stable character of the method was confirmed by 
its ability to produce converged solutions up to valúes of Wi as 
high as Wi = 444, which were also stable with respect to mesh 
refinement. An actual Wi upper limit for convergence could not 
be found, since computation times increased greatly with Wi and 
were discontinued before any numerical instability could be found 
(see Table 2). 

Table 2 
Integration time step At as a function of the Weissenberg number Wi. 

Wi 

At (x l0 - 3 s ) 

11 

10 

66 

5 

222 

2.5 

333 

1.25 

444 

1.25 



2 -

Wl=333 
W¡=222 

w,=66 m=n 

x(m) 

Fig. 10. Elongational component of the rate-of-strain tensor for Wi = 
11,66, 222, 333 and 444. 

The stability of the method makes it possible to follow the 
growth of the vortex región at steady state with increasing Wi. 
From the streamline plots in Fig. 9, major changes in the stream-
line pattern, and appreciable growth of the recirculating regions 
are evident as Wi increases from Wi = 11 to Wi = 222. How-
ever, as Wi goes beyond approximately 200, streamlines and 
vortex size remain almost constant. Velocity gradients (Fig. 10 
shows the y\\ extensional component) also satúrate beyond Wi = 
200. 

In Fig. 11 the evolution of the vortex with Wi at steady state is 
characterized in a graphical way by plotting the separation Une, and 
the migration of its stagnation point as Wi increases. Error bars indi-
cating the statistical uncertainty in the position of the stagnation 
point are included in the plot for Wi = 4,11, and 66. For higher Wi, 
the error bar is smaller than the symbol. It can be observed that the 
stagnation point of the vortex (A) moves appreciably upstream and 
towards the center of the channel as Wi grows. The Une separating 
the recirculating región from the flowing fluid also moves rapidly 
as Wi increases up to approximately 200, after which valué it stalls 
up to the máximum valué investigated (Wi = 444). We also charac­
terized vortex size quantitatively by the ratioX* = 2xc/L (Fig. 12), 
where xc is the horizontal (x) distance between the stagnation point 
on the wall and the re-entrant córner. In addition to its size, vortex 
intensity was also characterized by its flowrate, defined as the total 
volumetric flowrate being recirculated in the vortex at steady state. 
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Fig. 11. Migration of vortex stagnation point for increasing valúes ofVVi. 
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Fig. 12. Size and intensity of vortex as a function of Wi. (a) Left axis is vortex size, 
defined as the horizontal distance between the contraction and the detachment 
point of the separation line. Right axis is dimensionless vortex flowrate, as indicated 
by Eqs. (46) and (47). (b) Figure inset for the planar contraction. 

This flowrate was computed as the integral 

Qvortex '• u n c í s (46) 

over the straight line from (internal vortex stagnation point) to (on 
the channel wall, immediately below A), as indicated in the inset of 
Fig. 12(b), where u is the local velocity and n is the local unit vector 
normal to the line A-B. Likewise, in Fig. 12(a) we have considered 
the dimensionless vortex intensity 

Q* Ovo; 

QÍ, nlet 
(47) 

1-3 m 2 c - 1 1 

nel. It is remarkable that, while vortex size grows monotonically 
and reaches almost asymptotic behavior after Wi ~ 200, its inten­
sity measured by (46), goes through a máximum at Wi ~ 100 and 
subsequently decreases to an asymptotic valué of about 80% of its 
máximum valué. In all cases, the recirculating flowrate in the vortex 
remains below 1% of the fluid flowrate traversing the contraction, 
although the extent occupied by the vortex grows appreciably with 
Wi. 

The increase in vortex flowrate, which is a global, integral 
measure, is a direct consequence of major changes in the veloc­
ity profiles in the vortex. It was found however that the velocity 
field within the vortex maintains a high degree of geometric self-
similarity over the whole range of Wi investigated, as can be seen 
in Fig. 13. In this figure, the horizontal velocity profile along the line 
B-A-D (as defined in Fig. 12) is plotted as a function of the ordinate, 
made dimensionless by dividing through the distance between the 
points B and D. Horizontal velocity ux is also made dimensionless by 
dividing through ux at point D. Although vortex size and intensity 
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Fig. 15. Axial velocity profile for Wi = 11, 66, 222,333 and 444. 

Fig. 13. Circulation velocity profile in vortex as a function of Wi along line A-B, 
where A is the stagnation point of the vortex (determined at steady state) and B lies 
on the domain boundary. 

vary appreciably and in a very non-linear fashion, their velocity 
profiles virtually collapse on a single curve when suitably made 
dimensionless. 

It also follows from the previous quantitative vortex description 
that, as vortex grows, the shape of the effective domain through 
which the non-stagnant fluid flows (i.e. total domain minus vortex) 
departs more and more from the shape of an abrupt contraction, 
and tends to resemble a rectangular-triangular (cylindrical-conical 
in axisymmetric contraction flow) channel. 

In spite of this loss in cross sectional área cióse to the contraction, 
the total pressure drop (Fig. 14) decreases monotonically, i.e. since 
the volumetric flow rate is constant, the vortex has a mildly drag-
reducing effect for the contraction flow. Drag reduction is caused 
by the smoother effective flow domain and by the shear thinning 
behavior of the FENE fluid, but partly also by the replacement of a 
no-slip boundary condition at the rigid wall by a velocity-continuity 
boundary condition at the vortex separation line. 

As a consequence of the less abrupt effective contraction, the 
influence of Wi on the velocity profile along the symmetry axis is 
to damp the peak at the contraction proper (Fig. 15; in each panel 
of this figure, a single error bar has been plotted at x ~ 0.6 as a 
measure of the size of statistical fluctuations). 

The modulus of the FENE polymer contribution to the stress ten­
sor along line E-F (inset Fig. 12(b)) at steady state is plotted in Fig. 16 
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Wi 

Fig. 14. Pressure drop across entire channel as a function of Wi. 
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Fig. 16. Modulus of FENE polymer contribution to the stress tensor along line E-F 
for Wi = 11, 66, 222,333 and 444. 

for five selected valúes of Wi. Again, the strongest variation with 
Wi found up to approximately Wi = 200. The shear contribution 
(Fig. 17) shows similar behavior. It is noticeable that while Tpl2 

downstream decreases with Wi due to shear-thinning, the large 
spike in Tpl2 at the contraction proper (x ~ 0.48) caused by the 
large velocity gradient cióse to the re-entrant córner has an almost 
constant intensity of 0.06. 

In Fig. 18, the contour Unes of the modulus of the FENE polymer 
contribution |T P | to the stress tensor are plotted in the neighbor-

x(m) 

Fig. 17. Shear component of FENE polymer contribution to the stress tensor (r¿: 

(Pa) along line E-F (see inset of Fig. 12(b)) for Wi = 11, 66, 222,333 and 444. 
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Fig. 18. Isolines of modulus of FENE polymer contribution to the stress tensor (rPl2) 
(Pa) in the neighborhood of the contraction for Wi = 11 (a) and Wi = 444 (b). 
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Fig. 19. Isolines of pressure in the neighborhood of the contraction for increasing 
valúes of Wi = 11 (a) and Wi = 444 (b). 

hood of the contraction. An interesting qualitative change takes 
place as Wi increases from Wi = 66 (panel (b)) to Wi = 222 (panel 
(c)). Máximum valúes of polymer stress are found, as expected, at 
the contraction. At low Wi, two local máxima are found symmetri-
cally located about the centerline, aty ~ ±0.002. These máxima are 
caused by FENE molecules flowing cióse the walls in the upstream 
región and thus undergoing large shear flow. However, as Wi 
increases, the two máxima merge into a single, centrally located 
máximum. This máximum in the modulus of the polymer stress 
comes now from the elongational contribution of FENE molecules 
flowing along the centerline and being subjected to strong elonga­
tional flow. This qualitative change at high Wi could not be observed 
in previous studies [4] in which only the two symmetric máxima 
were detectable before the numerical method failed to converge. 
The merger of the two local máxima into a single, central one is a 
consequence of the change in shape of the effective flowing domain, 
whose contraction (defined by the separation Unes) becomes dras-
tically less abrupt. This geometric change leads to a diminished 
shear strain rate intensity for molecules flowing closer to the wall, 
and to an increased extensional strain rate intensity for molecules 
flowing along the centerline. 

Pressure contour line plots (Fig. 19) show the already observed 
[4] transition from approximately Newtonian {Wi = 11) to a dis-
tinctly viscoelastic pressure field {Wi = AAA). 

For the highest valué of the Weiseenberg number Wi = AAA, 
we have represented the x and y components of the configuration 
vector Q. at four different positions of the 60% of height stream-

line (initially at (0, 0.018)) of a cloud of N = 5 x 103 dumbbells 
being evolved with the velocity field (see inset of Fig. 20(e)). The 
combined effects of shear and elongational stresses as the cloud 
progresses through the contraction can be noticed in Fig. 20(a-d). 
Just after passing the contraction, panel (c), a majority of the 
dumbbells in the cloud are extended cióse to their máximum 
length according to the FENE parameter b = 50, as can be seen in 
Fig. 21. 

In this figure we show the probability density of the (square) 

end-to-end distance Ql at each selected position of the cloud of 
dumbbells, with the left vertical axis displaying the density for (a) 
and (b), and the right vertical axis being applied to (c) and (d), so 
as to highlight the difference in the scales. It is interesting to note 
how the distribution in Fig. 20(b) (just before reaching the con­
traction) evolves into the very sharply peaked distribution at point 
(c) (right after the contraction). This is a consequence of the very 
strong extensional character of the flow in the vicinity of the sudden 
contraction. It is also remarkable how the characteristic sigmoidal 
cloud of configuration points (Fig. 20(a)) evolves into the straight, 
almost horizontal cloud (panel (c)) due to the strong extensional 
flow. Axes scales in this latter panel differ by a factor of 10, so 
that the configurational cloud is virtually horizontal. Most dumb-
bell connector vectors are almost parallel to the symmetry axis of 
the exit channel. Further down the exit channel, connectors retain 
their high elongation, but the configurational cloud tends to regain 
the sigmoidal shape characteristic of a simple shear flow. 
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6. Conclusions 
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Fig. 21. Probability density of the square of the modulus of conflguration vector (Jat 
different positions: (a and b) (left vertical axis); (c and d) (right vertical axis). Notice 
different scales on both vertical axes. 

In this paper, a new semi-Lagrangian micro-macro method 
for viscoelastic flow calculations has been presented. The method 
makes use of the semi-Lagrangian projection method to reduce the 
Navier-Stokes equations to a Stokes problem, employing quadratic 
polynomials for the velocity and linear for both pressure and poly-
mer stress tensor; a new search-locate algorithm to cope with 
particles scattered over unstructured, unconventional meshes has 
been devised as well. Forthe stochastic equations of the micro-scale 
model, the second order predictor-corrector scheme presented in 
[22] is applied along the forward trajectories of the center of mass of 
the dumbbells. The polymer stress tensor is computed using a pro­
jection method that employs piecewise constant functions over an 
"influence" región around each mesh node. 

The method is tested on a benchmark problem, namely, the 
planar contraction flow 10:1. The stable character of the method 
allows to compute at Weissenberg numbers as high as 444, showing 
remarkable elastic effects and a profound change in the rheological 
behavior of the fluid. 
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