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Abstract. Perfect imaging of electromagnetic waves using the Maxwell fish
eye (MFE) requires a new concept: a point called the perfect drain that we shall
call the perfect point drain. From the mathematical point of view, a perfect
point drain is just like an ideal point source, except that it drains power from
the electromagnetic field instead of generating it. We introduce here the perfect
drain for the MFE as a dissipative region of non-zero size that completely drains
the power from the point source. To accomplish this goal, the region must have a
precise complex permittivity that depends on its size as well as on the frequency.
The perfect point drain is obtained when the diameter of the perfect drain
tends to zero. This interpretation of the perfect point drain is connected well
with common concepts of electromagnetic theory, opening up both modeling
in computer simulations and experimental verification of setups containing a
perfect point drain.
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1. Introduction

The possibility of focusing light below the diffraction limit (super-resolution) has been
demonstrated during the last decade using left-handed materials [1]–[4] (i.e. materials with
negative dielectric and magnetic constants [5]). Recently, a new possibility has been introduced
for a material with a positive, isotropic and inhomogeneous refractive index. This possibility
uses the Maxwell fish eye (MFE) lens. It is well known that, in the geometrical optics (GO)
framework, the MFE perfectly focuses rays emitted by an arbitrary point of space into another
(its image point). Leonhardt [6] has demonstrated that the MFE lens in two dimensions (2D)
not only perfectly focuses radiation in the GO approximation, but also does so for actual
fields of any frequency, a result that has been confirmed via a different approach [7]. This 2D
analysis describes TE-polarized light in a cylindrical medium (where the electric field vector E
points orthogonal to the plane), and the electric field magnitude fulfills the Helmholtz equation.
Leonhardt and Philbin [8] have also demonstrated the analogous ideality of a novel impedance-
matched spherical MFE for perfect focusing of electromagnetic waves in 3D.

In the 2D case, the perfect focusing of the MFE in [6] ensures that the medium will
perfectly transport an outward (monopole) Helmholtz wave field, one generated by a point
source, towards an ‘infinitely well localized drain’ [6] (one that we will call ‘perfect point
drain’) located at the desired image point. Note that the perfect point drain must be such that
it totally absorbs all incident radiation, with no reflection or scattering by it. Note also that the
field around the drain asymptotically coincides with an inward (monopole) wave. Here we will
refer to such a wave as ‘Leonhardt’s forward wave’.

Even though the physical significance of a point source as a limiting case seems to be well
accepted, that of a passive perfect point drain has been considered very controversial [9]–[12].
In [6], the drain was not physically described, but only considered as a mathematical entity,
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leaving no clues as to how to simulate that drain in software or how to make it. In particular,
an analysis of such a drain, one located at a position different from the image point, would help
one to prove the super-resolution, which could not be done with the information in [6].

Recently, however, a candidate for a perfect drain has been proposed for a microwave-
frequency MFE [13], wherein a 2D MFE medium has been assembled as a planar waveguide
with concentric layers of copper circuit board forming the desired refractive index profile of the
MFE. Also, both the source and the drain have been built as identical coaxial probes, one to
introduce power into the planar waveguide and the other to extract it. The coaxial probe was
intended to act as the perfect sink and is completely passive and loaded with the characteristic
impedance of the coaxial cable [13]. There is no theoretical proof that such a coaxial probe
will actually behave as a perfect drain, but a practical proof is claimed by comparing (figure 4
in [13]) the measured electric field distribution and the analytical expression for Leonhardt’s
forward wave ([6], reviewed here in section 1.1). Since the measured and analytical values
differ significantly (deviations attributed primarily to imperfections in the probes), we think a
more detailed analysis is called for in order to clarify whether or not that receiving coaxial probe
is acting as the perfect drain as defined here. Nevertheless, this clarification does not affect the
main conclusion in [13]: such a probe certainly leads to super-resolution in the conditions of
that measurement.

In this paper, we present a different realization of a passive perfect drain, obtained
theoretically from analytical equations. It consists in the introduction of a certain non-magnetic
material inside a circle of radius R enclosing the image point (although not centered upon it, as
discussed later). As will be proved in section 2, the complex permittivity of that non-magnetic
material will be such that the field outside that circle coincides exactly with Leonhardt’s forward
wave and the incoming power will be fully absorbed inside it. In general, this perfect drain can
have a finite radius R; the perfect point drain is just the limit case when R → 0.

1.1. Leonhardt’s forward wave

The strength of the TE monochromatic field E(x,y)e−iωtz in a region without sources or drains
fulfils the 2D Helmholtz equation,

1E + n2k2
0 E = 0, (1)

where k0 = ω
√

µ0ε0 and n is the MFE refractive index distribution given by

n =
2

1 + ρ2
, (2)

where ρ =
√

x2 + y2. Leonhardt’s forward wave is a particular family of solutions of
equation (1), given by equation (12) of [6],

E =
Pν (ζ ) − eiνπ Pν (−ζ )

4 sin(νπ)
, (3)

where Pν is the Legendre function of the first kind,

ν =

−1 +
√

1 + 4k2
0

2
, (4)
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and

ζ =
|z′

|
2
− 1

|z′|2 + 1
, z′

=
z − x0

z x0 + 1
. (5)

Here, z = x + iy is the complex notation of the point (x, y), and x0 is an arbitrary real number.
Without lack of generality, we have located the point source described in [5] at the object point
(x0, 0). Note that −16 ζ 6 1 and by the divergence of Pν(ζ ) when ζ → −1, E is infinite at
|ζ | = 1. A wave according to equation (3) is generated by the point source located at (x0, 0), and
it propagates towards the perfect point drain at the image point (−1/x0, 0). The time evolution of
the field, Re(E(x,y)e−iωt), is shown in the associated media files, Movies 1 and 2 (available in
the supplementary data, at stacks.iop.org/NJP/13/023038/mmedia), for x0 = −2, k = 15. This
evolution clearly includes the one-directional propagation of the wave from the source to the
drain, with no reflection or scattering by it.

The magnetic field H(x,y) of Leonhardt’s forward wave can be easily computed from the
field E, equations (3) and (5), as

H =
1

iωµ
∇ × E =

1

iωµ

dE

dζ

(
∂ζ

∂y
x −

∂ζ

∂x
y
)

. (6)

1.2. Current of the source

Equation (1) is only valid in a region without sources or drains, in our case the full plane except
for the points (x0, 0) and (−1/x0, 0). An equation valid for the full plane must include the Dirac
delta at those points. The amplitude of equation (3) was specifically selected in [6] to make it
behave as a Green’s function, so the weights of those Dirac deltas have unit modulus. It can be
written as [6]–[8]

1E + n2k2
0 E = −δ(x − x0, y) − eiνπδ(x + 1/x0, y). (7)

The right-hand side of equation (7) can be identified (from the Maxwell equations) as
−iωµ J (x,y)z, where J(x,y) is the current density. Consequently, the electric currents through
the source and the drain for the specific field amplitude of equation (3) are

Isource =
1

iωµ0
, Idrain =

eiπν

iωµ0
= eiπν Isource. (8)

1.3. Alternative expression for the forward wave

There is an alternative way to express equation (3) (equation (12) of [6]), which uses the
Legendre function of the second kind Qν . We consider here the branch of Qν that is real valued
when Im(ζ ) = 0 and |ζ | < 1 (another complex-valued branch Qν is claimed to be considered
in [6]). Taking into account, from [14] (equation (15) on p 144), that

Pν(−ζ ) = cos(πν)Pν(ζ ) − sin(πν)
2

π
Qν(ζ ), (9)

equation (3) can be alternatively rewritten, with the help of (9), as

E =
−ieiπν

4

[
Pν(ζ ) + i

2

π
Qν(ζ )

]
. (10)
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Let us represent the factor in square brackets of (10) by

Fν(ζ ) = Pν(ζ ) + i
2

π
Qν(ζ ). (11)

Interesting asymptotic expressions for function Fν are set forth in appendix 1, which gives
a comprehensive discussion of Leonhardt’s forward wave. Additionally, this alternative
expression will greatly simplify some calculations in the perfect sink design of the next section.

2. Perfect sink

The theoretically ideal point drain of Leonhardt is located at point (−1/x0, 0). We will design
first a finite-area perfect drain, which will comprise a convex region surrounding that point
(−1/x0, 0), filled with an inhomogeneous, isotropic, non-magnetic material with complex
dielectric permittivity (thus absorptive), such that the field outside that region coincides exactly
with Leonhardt’s forward wave.

The equation satisfied by the field in that region will then be the homogeneous Helmholtz
equation. Since the incident wave fields E and H are known, the necessary continuity of E and
H on the drain boundary will be forced by particularizing on the boundary the values of E and
H in equations (3) and (6), respectively.

2.1. Selection of the boundary

From equation (5), it is easy to confirm that the line ζ = ζd = constant is a circle with its center
at point (xc, 0) and its radius R given by

xc =
2x0

1 − x2
0 −

(
1 + x2

0

)
ζd

, R =

−

√
1 − ζ 2

d

(
1 + x2

0

)
1 − x2

0 −
(
1 + x2

0

)
ζd

. (12)

We select the drain region as that containing the points fulfilling ζ > ζd, with ζd fulfilling

ζd >
1 − |x0|

2

1 + |x0|
2 . (13)

Condition equation (13) is required in order to guarantee that the drain area is finite and encloses
the image point (−1/x0, 0), as can be deduced from equation (12). The ζ = constant circum-
ferences are shown in red in figure 1. The ζ = constant circumferences are also E = constant
lines (see equation (3)) and coincide with the GO wavefronts. This property is fulfilled by a
more general class of inhomogeneous media, a class analyzed in [7]. The blue lines in figure 1,
which we can call δ = constant, are also circumferences. They coincide with the GO rays and
are the Poynting vector lines of Leonhardt’s forward wave. Both families of lines coincide with
coordinate grid lines of the bipolar orthogonal coordinate system (see for instance [7]).

From equation (12) we see that selecting ζd close enough to 1 will make the radius R as
small as desired. At the limit ζd → 1, we obtain the perfect point drain (R → 0, xc → −1/x0).

2.2. Inhomogeneous complex refractive index of the drain

Inside the drain (ζ > ζd), we select µ = µ0 and the refractive index has the following form,

nd =
2
√

εd

1 + ρ2
, (14)
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Figure 1. Source, drain and cylindrical bipolar coordinate system in MFE. The
source is a line of current perpendicular to the x–y plane and placed at the point
(x0, 0), which defines the 2D point source. The boundary of the finite-area passive
drain is a cylinder with base ζ > ζd. The red lines (ζ = constant) and the blue
lines (δ = constant) define a cylindrical bipolar coordinate system.

where εd is a complex constant and with Im(εd) 6= 0 to be calculated later (in section 3). Then,
the homogeneous Helmholtz equation in the drain is

1E + n2
dk2

0 E = 0. (15)

Define kd = ω
√

µ0ε0εd (which is complex). Using the expression for the refractive index n of the
MFE (equation (2)), we find that the selection made with equation (14) fulfills that ndk0 = nkd,
so equation (15) can also be written as

1E + n2k2
d E = 0. (16)

This equation is identical to the Helmholtz equation of the MFE, equation (1), after substituting
the real wave number k0 by kd (still to be calculated).

2.3. Ordinary differential equation of the drain

One of the boundary conditions on the line ζ = ζd is the continuity of the field E = Ez.
As mentioned before, E is constant on that boundary surface, so it would be particularly
interesting to express equation (16) in the bipolar coordinate system ζ–δ. That was already
done in section 3.1 of [7]. As shown there, the expression of equation (16) for solutions
depending only on ζ is the same as that of equation (9) in [6]. Using the change in variables
ζ = (r 2

− 1)/(r 2 + 1), this equation is

1

r

d

dr

(
r

dE

dr

)
+ n2k2

d E = 0. (17)

Its general solution [14] can be written as

E = A Pν′ (ζ ) + B Qν′ (ζ ) , (18)
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where ν ′ is given by

ν ′
=

−1 +
√

1 + 4k2
d

2
. (19)

The three constants A, B and ν ′ are fixed by three conditions. Two of them are given by the
continuity of the E and H fields at the boundary, and the third is that the field E must be bounded
(i.e. it cannot diverge), since the Helmholtz equation (15) is homogeneous.

Consider first the third condition. From the properties of the Legendre functions [14],
we know that the function Qν′(ζ ) diverges when ζ → 1, if Im(ν ′) 6= 0 and Pν′(ζ ) do not
(Pν′(1) = 1). Therefore, this boundary condition imposes B = 0, which means that the field
inside the drain region (ζ > ζd) has the form

E = A Pν′(ζ ). (20)

A and ν ′ are calculated, forcing the other two conditions, i.e. the continuity of E and H at the
boundary. E and H outside the drain are taken from the solution in the absence of reversed wave
(so the drain is reflectionless), i.e. by using equations (10) and (6).

A Pν′ (ζd) = −ieiπν

(
Pν(ζd) + i

2

π
Qν(ζd)

)
,

A
dPν′

dζ

∣∣∣∣
ζd

= −ieiπν

(
dPν

dζ

∣∣∣∣
ζd

+ i
2

π

dQν

dζ

∣∣∣∣
ζd

)
.

(21)

Dividing both equations, we obtain

dPν′

dζ

∣∣∣
ζd

Pν′ (ζd)
=

dPν

dζ

∣∣∣
ζd

+ i 2
π

dQν

dζ

∣∣∣
ζd

Pν(ζd) + i 2
π

Qν(ζd)
, (22)

which is an expression where only ν ′ is unknown. Once this is solved, we can calculate εd with
equation (19). Equation (22) has been numerically solved with Wolfram Mathematica 7,

εd =

(
kd

ω
√

µ0ε0

)2

=
ν ′(ν ′ + 1)

ω2µ0ε0
. (23)

3. Examples

Figure 2 shows εd of a perfect drain as a function of frequency for two different drain radii, and
figure 3 shows it as a function of the drain radius for different frequencies. In all of the examples,
we shall assume that ρ in equations (2) and (14) is given in cm and the frequency in GHz.
Movies 3 and 4 (available at stacks.iop.org/NJP/13/023038/mmedia) show the time evolution
of the field, Re(E(x,y)e−iωt ) for a drain radius R = 0.2 cm, x0 = −2, k = 15. This should be
compared with the case of the perfect point drain shown in the introduction (Movies 1 and 2).
Movie 5 shows the time evolution of the field inside the drain for a radius of 0.2 cm.
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Figure 2. Dependence of the εd of a perfect drain on frequency. Dark and bright
blue curves correspond to the real and imaginary parts for a drain radius of 0.2 cm
centered at xc = 0.5159 cm, yc = 0. Red and orange curves correspond to the
real and imaginary parts for a drain radius of 0.001 cm centered at xc = 0.5 cm,
yc = 0. The point source is located at x0 = −2 cm, y0 = 0. The frequency is
in GHz.

Figure 3. Dependence of the εd of a perfect drain on drain radius. Dark and
bright blue curves correspond to the real and imaginary parts for a frequency of
200 GHz. Red and orange curves correspond to the real and imaginary parts for
a frequency of 10 GHz.

4. Looking inside the drain

4.1. The electric field and current inside the drain

The conductivity σ of the media inside the drain can be calculated as a function of εd from its
definition,

σ =
ω

µ0
Im
[
n2

dk2
0

]
=

4ωε0

(1 + ρ2)2
Im[εd]. (24)
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Figure 4. Representation of the modulus of the current density (mA cm−2) inside
the drain. Drain radius = 0.2 cm; the drain center is at (0.519, 0) cm. The total
current in the source is 1 mA.

Using equation (23), we can calculate σ as a function of ν ′. The electric field inside the drain is
given by equation (20). Consequently, the current density J = σE in the drain is

J(x, y) =
4Aωε0

(1 + ρ2)2
Im[εd]Pν′(ζ )z. (25)

Figure 4 shows the modulus of the current density inside the drain for a drain radius of 0.2 cm
and a total current in the source of 1 mA when the drain center is at the point (0.519, 0) cm.

4.2. Power absorption

The power emitted by the source P can be obtained by integrating the Poynting vector over a
surface enclosing the source. The MFE is a lossless system, so this power has to equal both the
total power entering the drain and the power that it absorbs. This integration has been made as
shown in equation (26). This surface has cylindrical symmetry along the z-axis, so for the sake
of simplicity we take a surface whose projection on the x–y plane is a ζ = constant curve, let us
say ζ = ζs . Since the Poynting vector has no z-dependence, the surface integral is reduced to a
line integral along ζ = ζs .

P =
1

2
Re

[∫
E × H∗

· dl
]

=
1

2
Re

(Pν(ζs) + i
2

π
Qν(ζs)

)(
1

iωµ

d
(
Pν(ζ ) − i 2

π
Qν(ζ )

)
dζ

∣∣∣∣∣
ζs

)∗ ∫
ζ=ζs

(
∂ζ

∂y
, −

∂ζ

∂x

)
· dl

 . (26)

Alternatively, the same power can be calculated as the power absorbed in the volume of the
drain, which is

P =
1

2
Re

[∫
J × E∗ dV

]
=

1

2

∫
ζ6ζd

σ |APν′(ζ )|2 dS

=
1

2
Re

[
|A|

2 Pν′(ζd)

(
1

iωµ

dPν′(ζ )

dζ

∣∣∣∣
ζd

)∗]∫
ζ=ζd

(
∂ζ

∂y
, −

∂ζ

∂x

)
· dl. (27)
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Figure 5. Power emitted by the source and absorbed by the drain as a function
of frequency. The total current in the source is 1 mA.

Figure 5 shows the power P as a function of the frequency for 1 mA total current in the point
source. Note that this implies an amplitude value for Leonhardt’s forward wave, correspondingly
scaled from equations (3) and (8). The power P depends on the source total current and
frequency, but obviously it does not depend on the drain radius.

5. Conclusions

We have introduced the perfect drain concept as a region that absorbs all of the energy carried
by Leonhardt’s forward wave solution Fν in the MFE, leading to a field solution where there is
no reverse wave Rν and consequently no reflected energy. This region has a specific complex
permittivity that depends on frequency and on the drain radius (figures 2 and 3 show an
example). Without such a perfect drain, both the forward and the reverse waves appear as
responses to the point source. When the diameter of the perfect drain tends to zero, both the
real and the imaginary parts of the corresponding permittivity tend to infinity, and the perfect
drain becomes the perfect point drain introduced by Leonhardt, i.e. it tends to a region of zero
diameter that completely absorbs the forward wave.

This result allows us to model and simulate a perfect point drain as a small (and finite)
dissipative region. Unlike the perfect point drain, the model of a perfect drain with non-zero
radius can easily be included in electromagnetic analysis software, and its experimental setup
is readily realized. These two features simplify analysis and experimental verification of super-
resolution in the MFE, i.e. checking that the power absorbed by the drain changes drastically
when the drain moves to a neighboring point located at a distance much smaller than the
wavelength from the source image point.

Acknowledgments

The authors thank the Spanish Ministry MCEI (Consolider program CSD2008-00066; DEFFIO:
TEC2008-03773) for their support of this work. The authors also thank Jesús López for
assistance with the video and Bill Parkyn for editing the manuscript.

New Journal of Physics 13 (2011) 023038 (http://www.njp.org/)

http://www.njp.org/


11

Appendix. Asymptotic expression when ν � 1 and the reverse wave

Using equations (1) and (2) on p 162 of [14], the functions Pν(ζ ) and Qν(ζ ), ζ = cos θ , for
ε < θ < π − ε (ε > 0) can be approximated as

Pν (cos θ) =
0(ν)

0(ν + 3/2)

√
2

π sin θ
{cos((ν + 1/2)θ) + O(ν−1)},

Qν (cos θ) =
0(ν)

0(ν + 3/2)

√
π

2 sin θ
{− sin((ν + 1/2)θ) + O(ν−1)}.

(A.1)

Thus, using equation (11), we have

Fν(cos θ) =
0(ν)

0(ν + 3/2)

√
2

π sin θ
{e−i(ν+1/2)θ + O(ν−1)}, (A.2)

which is clearly identified as a wave propagating toward decreasing values of θ (remember the
factor e−iωt ), that is, increasing ζ , from the source to the drain. This expression is accurate for
ε < θ < π − ε (ε > 0) (i.e. not too close to the point source and point drain). Asymptotes to
equations (A.1) and (A.2) suggest defining the reverse function Rν ,

Rν (ζ ) = Pν (ζ ) −
2

π
iQν(ζ ), (A.3)

to describe a field propagating from the image point to the object point. In analogy to canonical
solutions of the Helmholtz equation (as planar waves, cylindrical waves or spherical waves
in free space), it seems more natural for this MFE problem to define the general solution of
equation (17) as a superposition of the functions Fν and Rν , i.e. to rewrite the field E as

E = C Fν (ζ ) + D Rν (ζ ) . (A.4)

When there is a perfect drain, only Leonhardt’s forward wave Fν exists in the region outside the
circle delimiting the perfect drain, which implies that D in equation (A.4) is null. This means
that there is no reverse wave going back to the source. Inside the perfect drain region, the
condition that the field E must be bounded leads to equation (20), which in terms of Fν′ and Rν′

implies the condition C = D. This means that inside the perfect drain there is a standing wave,
which is necessary in order to avoid the singularity at the image point (ζ = 1). This is analogous
to the superposition of converging and diverging cylindrical waves, of equal amplitude, in
free space as described by the Hankel functions H (1)

0 (k0ρ) and H (2)

0 (k0ρ), which results in the
bounded Bessel function J0(k0ρ).

The forward and reverse waves defined here for the MFE lens are intimately related to the
retarded and advanced fields defined in [12] and [13] for the MFE mirror. Using the formulation
in [12] and [13], a wave bounded at the image point for the MFE lens can be written as

E =
Fν(k0) − eiπ(ν(k0)−ν(−k0))Fν(−k0)

1 − eiπ(ν(k0)−ν(−k0))
, (A.5)

where the positive and negative wave numbers are defined as

ν(±k0) =

−1 ±

√
1 + 4k2

0

2
. (A.6)

In addition to the complexity of the expression equation (A.5), it can easily be seen that
it is (up to a multiplicative constant) simply equal to Pν (which is the bounded expression
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used above in equation (20)). This is obtained by direct computation, after considering that
ν(−k0) = −ν(k0) − 1, and then using equations (7) and (16) on p 144 of [14],

P−ν−1 (ζ ) = Pν(ζ ),

Q−ν−1(ζ ) = −π cot(πν)Pν(ζ ) + Qν(ζ ).
(A.7)
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