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Abstract—In this letter, we present a new class of segment-based 
features for speech, music and song discrimination. These fea­
tures, called PHEQ (Polynomial-Fit Histogram Equalization), are 
derived from the nonlinear relationship between the short-term 
feature distributions computed at segment level and a reference 
distribution. Results show that PHEQ characteristics outperform 
short-term features such as Mel Frequency Cepstrum Coefficients 
(MFCC) and conventional segment-based ones such as MFCC 
mean and variance. Furthermore, the combination of short-term 
and PHEQ features significantly improves the performance of the 
whole system. 

Index Terms—Acoustic features, audio classification, HEQ-
based features, parameterization, speech/music/song discrimina­
tion. 

I. INTRODUCTION 

T HE outstanding success of Internet and the rapid growth 
of multimedia contents on it has brought up interest for 

developing techniques to automatically classify these contents. 
In particular, audio files and audio tracks in videos contain rele­
vant information about the nature and content of the multimedia 
file. In this context, audio classification plays an important role 
as preprocessing step in a variety of more complex systems re­
lated to information retrieval in music or multimedia content 
extraction, annotation and indexing. 

Previous work in the area of audio classification has focused 
mostly in audio event classification [1] and speech/music dis­
crimination [2]-[4]. In this letter we investigate the problem 
of automatically classifying collections of audio files in three 
acoustic classes: speech, instrumental music and song (music 
with singing voice). These categories can be seen as a broad 
classification of data previous to refined classification or further 
processing. 

The problem proposed in this letter is very closely related to 
speech/music classification tasks. However, speech, music and 
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song discrimination is more complex and the performance of 
such kind of systems is expected to be lower especially due to 
the strong correlation between the singing voice and the cor­
responding background music [5] and the similarities between 
nonsinging and singing voices. In fact, it has been observed that 
audio files containing music with a large speech content (opera, 
rap, . . .) tend to be classified as speech [2]. In addition, the 
large amount of different styles of music and song deteriorates 
the performance of these systems. In spite of these differences, 
similar approaches for feature extraction and classification have 
been utilized for both tasks. 

One of the main issues addressed in the literature of this field 
is the study of audio descriptors more suitable for classification. 
Among the different kind of features proposed for speech/music 
discrimination, it is worth mentioning the well-known Mel-Fre­
quency Cepstral Coefficients (MFCC) [4], [6], Line Spectral 
Frequencies (LSF) [2], Zero-Crossing Rate (ZCR) and Frame 
Energy [4], [6] and more specific parameters such as Spectral 
Centroid, Spectral Flux, Spectral RoUoff [6] or Chroma-Vector 
based features [4]. 

Most of the previously mentioned features are short-term 
characteristics in the sense that they are extracted on a 
frame-by-frame basis (typically, the frame period used for 
speech/audio analysis is about 10-20 ms). In some works, 
they are directly fed to the classifier [2], [5]; however, in other 
cases, it is preferred to consider the descriptors information 
over several consecutive frames. For doing that, short-term 
features are mapped to their statistics computed over a certain 
window. This procedure makes sense because in contrast to 
other tasks (like speech recognition), it is reasonable to assume 
that music, speech or song lasts at least 1-2 s. We refer to these 
characteristics as segment-based features. 

The most common segment-based features are the mean and 
variance of a full segment [7], although higher order statistics 
such as kurtosis or skewness have been reported [6] or complex 
combinations of all these features (as, for example, the quotient 
between the maximum value of the feature in the segment and 
the mean [4]). The problem is that is not easy to determine a 
priori which kind of statistics of a certain parameter are more 
suitable for the classification task. In practice, a certain statistic 
is chosen empirically after an exhaustive experimentation [4], 
[6] or by using feature selection techniques [7]. However, both 
methods are computationally expensive. 

In this letter, we have focused in the development of new seg­
ment-based features for speech, music and song discrimination. 
They are derived from the nonlinear relationship between a ref­
erence distribution and the short-term feature distributions com­
puted at segment level. Also, we show that the combination of 
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Fig. 1. Histograms of the (a) first (MFCC^ and (b) fifth (MFCC6) MFC 
coefficient for speech, music, and song. 

short-term features and the proposed ones can improve the per­
formance of the system. 

This letter is organized as follows. Section II motivates the 
use of the proposed segment-based features for audio classifica­
tion. Section III describes the extraction procedure. Section IV 
presents the experiments and discusses the results. Finally, some 
conclusions are drawn in Section V. 

II. SEGMENT-BASED MFCC FEATURES OF AUDIO SIGNALS 

In this work, we consider the well-known MFCC parameters 
as short-term features, although the procedure described in this 
letter could be applied to other types of audio descriptors. 

Once the MFCC are extracted each 10-20 ms, a common 
choice for the segment-based features is the MFCC mean and/or 
variance computed over windows of 1-2 s length. However, in 
general, the mean and variance are not discriminative enough for 
distinguishing between the different audio classes. This obser­
vation is illustrated in the following example. Fig. 1 represents 
the probability distributions of the first and fifth MFCC for the 
three acoustic classes considered. They have been estimated by 
smoothing the histograms obtained from a subset of the database 
described in Section IV. From Fig. 1, it is clear that the distribu­
tions of music, song and speech not only differ on the mean and 
the variance, but also in the shape. Therefore, it seems neces­
sary to include the information regarding higher order moments 
into the parametric representation of each audio segment. This 
fact has already been highlighted by other authors in which the 
kurtosis and skewness are also considered [6]. 

In these conventional approaches, each one of the moments 
considered must be computed explicitly and an extensive ex­
perimentation must be performed in order to determine which 
of them are more relevant for the audio classification task. For 
circumventing this problem, we propose a new parameterization 
of audio signals which implicitly takes into account the mean, 
standard deviation and shape of the acoustic features belonging 
to each audio segment, as described in the next section. 

III. HISTOGRAM EQUALIZATION-BASED SEGMENTAL 

FEATURES FOR AUDIO CLASSIFICATION 

The proposed segment-based features, called PHEQ (Poly­
nomial-Fit Histogram Equalization), consist of a set of param­
eters derived from the nonlinear transformation function which 
performs a mapping between the feature probability distribu­
tion of each audio segment and a reference one. Specifically, the 
PHEQ features are the coefficients of the polynomial approxi­
mation of these transformation functions which are determined 

on a segment-by-segment basis by using Histogram Equaliza­
tion (HEQ)-based techniques. 

A. Histogram Equalization (HEQ)-Based Transformations 

Recently, HEQ have been widely applied for compensating 
the nonlinear distortions due to the presence of noise in auto­
matic speech recognition systems [8], [9]. For our purposes, 
HEQ will be used for determining the transformation which 
converts the distribution of the acoustic vectors contained in 
an audio segment into a predefined one. As target distribution 
we have chosen the simplest one: a single-mode Gaussian with 
zero mean and unit variance. The HEQ-based transformation 
provides the classification algorithm with information regarding 
the mean, the variance and other higher order moments of the 
feature distributions [8]. 

For finding the transformation we have followed the proce­
dure described in [8]. The theory behind HEQ establishes that 
given two random variables x and z, whose probability density 
functions are respectively, px(x) and pz(z), the transformation 
z = T{x\ which converts px(x) into pz(z) can be obtained as 

= T{x} = C-1[Cx(x)] (1) 

in which Cx(.) and C~1(.) represents the cumulative density 
function (CDF) of x and the inverse function of the cumulative 
probability of z, respectively. 

In practice, z is the reference distribution, so C j 1 is known 
because it corresponds to the inverse function of the CDF of a 
single-mode Gaussian with zero mean and unit variance. In ad­
dition, x — {xi, • • •, XJV} corresponds to the feature vectors in 
an audio segment of length N, so its CDF must be estimated for 
each segment. For that, we have followed the approach named 
OSEQ (order statistics-based equalization) described in [8] in 
which the CDF of x is estimated using the following formula­
tion, 

^x\^n) — 
r(xn) - 0.5 

n = !,•••,N (2) 

in which r(xn) denotes the rank of xn when the elements of x 
are sorted in ascending order. Using (1) and (2), the value of 
the reference distribution zn corresponding to x„ is computed 
as follows 

Zn = T{xn} = C'-1 [Cx(xn)\ = C-1 rjxn) - 0.5' 
N 

(3) 

By applying this formula to each of the N elements of the 
audio segment x, N pair of points {xn,zn},n — 1. • • •, N of 
the nonlinear transformation T(x) are obtained. A parametric 
version of T(x) is computed by using the procedure described 
in Section III-B. 

B. PHEQ Segment-Based Features 

The parametric version of HEQ we have implemented is sim­
ilar to the so-called PHEQ ("Polynomial-Fit Histogram Equal­
ization") [9] approach, in the sense that the nonlinear transfor­
mation is approximated by a Kth order polynomial. One of 
the main differences is that in [9] the estimation of the CDF 
is performed through a quantile-based method and in our case, 
a direct estimation of the CDF is performed as described in 
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TABLE I 
CLASSIFICATION ACCURACY FOR DIFFERENT ACOUSTIC FEATURES 
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Fig. 2. Histograms of the (a) first PHEQ coefficient ofMFCd and (b) second 
PHEQ coefficient of MFCC5 for speech, music, and song. 

Section III-A. The coefficients of the polynomial approxima­
tion are PHEQ features which are the input of the classifier. 

The extraction of the PHEQ features is performed in the fol­
lowing steps. 

1) Extract the frame-by-frame acoustic features (in this case, 
MFCC). 

2) Define a window length for segment processing (in our 
case, 1.5 s). For each component of the feature vectors 
contained in the current audio segment: 
• Sort the data of the segment in ascending order. 
• Compute the corresponding transformed features using 

the OSEQ approach as expressed in (3). 
At the end of this step, a set of pair of points (#n, zn) are 
obtained in which each pair represents a feature compo­
nent and its transformed counterpart. 

• Approximate the nonlinear transformation defined by 
the sets of points computed in the previous step by a Kth 
order polynomial p(x) defined by 

z = T{x) 
K 

k=0 

i p{x) = } j akx" (4) 

The polynomial coefficients {a&} are computed by 
using a classical least-square approach from the set of 
points [9]. These are the PHEQ features for the current 
audio segment. 

3) Repeat the process in step 2 for all the segments in the 
audio sequence. 

As the PHEQ transformation indicates somehow the degree 
of similarity between the feature distribution and a Gaussian dis­
tribution with zero mean and unit variance, the coefficients of its 
approximation will contain the information regarding the mean, 
variance, and, in general, shape of the distribution. In fact, if 
the transformation is approximated by a zero order polynomial, 
the zero order coefficient is directly the mean of the distribu­
tion. If a first order polynomial is considered, the zero order 
coefficient is the quotient between the mean and the standard 
deviation and the first order one is the inverse of the standard 
deviation. Higher order moments are related to the polynomial 
coefficients if higher order polynomial approximations are used. 

An example of the discrimination capability of the PHEQ fea­
tures is shown in Fig. 2(a) and (b), which represent, respectively, 
the histograms of the first PHEQ coefficient of the first MFCC 
and the second PHEQ coefficient of the fifth MFCC for speech, 
music and song. It can be observed that PHEQ features can be 
used for discriminating between the three acoustic classes con­
sidered. 

Feature 
MFCC 
Mean 

Variance 
Skewness 
Kurtosis 

PHEQ (order 1) 
PHEQ (order 2) 
PHEQ (order 3) 
PHEQ (order 4) 

Classification Accuracy (%) 

72.34% 
62.46% 
73.24% 
56.43% 
47.17% 
74.71% 
75.29% 
71.80% 
68.77% 

IV. RESULTS 

A. Experimental Protocol and Database 

According to our knowledge there is no a common database 
for this task, we have created a specific one. This database com­
prises 800 excerpts of speech, 901 of instrumental music, and 
739 of songs (singing voice) yielding to a total of 2440 audio 
files. They were recorded from mp3 and cds with a 22.05 KHz 
sampling rate, covering a wide variety of speakers and musical 
genres (classical, rock, pop, etc.). As special care was taken for 
not mixing instrumental music and song, when needed, audio 
files were manually segmented and relabelled. 

Since this database is too small to achieve reliable classifica­
tion results, we have used a 6-fold cross validation to artificially 
extend it, averaging the results afterwards. Specifically, we have 
split the database into six disjoint balanced groups. One dif­
ferent group is kept for testing in each fold, while the remainder 
are used for training. 

In the experiments, we have used a GMM-based classifier de­
veloped using the HTK package [10]. For modelling each one 
of the acoustic classes, after a preliminary experimentation, we 
chose GMMs with 256 and eight gaussians when using, respec­
tively, the short-term and the segment-based features. 

B. Results With Short-Term and Segment-Based Features 

For the computation of the short-term features, the audio 
signal was analyzed with a Hamming window of 25 ms length 
and 12 MFCC were extracted at a frame period of 10 ms. 
The segment-based characteristics (mean, variance, skewness, 
kurtosis and PHEQ) were calculated from the MFCC over 
segments of 1.5 s length with overlap of 0.5 s. 

Table I shows the results achieved in terms of classification 
accuracy (percentage of files correctly classified). For the case 
of PHEQ, we have tried polynomial approximations from order 
1 to 4. Note that with a polynomial approximation of order 
Kth the number of PHEQ coefficients is K + 1. Results with 
a zero order approximation are not explicitly included because 
this case is equivalent to the MFCC mean (third row). 

As can be observed, using only the mean, skewness or 
kurtosis does not outperform the short-term features. However, 
the variance produces similar classification accuracies with 
MFCC. With respect to PHEQ features, the results obtained 
with first and second order approximations are better than 
those obtained with short-term features, mean and variance. In 
particular, the improvement achieved by PHEQ (order 2) with 
respect to MFCC is statistically significant according to the 



TABLE II 
CONFUSION MATRICES FOR THE MFCC-BASED AND PHEQ-BASED SYSTEMS 

TABLE III 
RESULTS WITH THE COMBINATION OF SHORT-TERM AND PHEQ FEATURES 

Class 

Speech 
Music 
Song 

MFCC | 
Speech 

96.00% 
8.00% 
15.16% 

Music 

0.38% 
52.83% 
14.34% 

Song | 

3.62% 
39.17% 
70.50% 

PHEQ (order 2) 
Speech 

93.62% 
2.22% 
3.65% 

Music 

0.38% 
62.82% 
25.71% 

Song 

6.00% 
34.96% 
70.64% 

confidence intervals calculated for a confidence of 95% (see 
[11], for details). On the contrary, higher-order approximations 
do not outperform MFCC and variance. This can be explained 
because of overfilling problems when increasing the order of 
the polynomials. 

C. Results With the Combination of Short-Term and PHEQ 
Features 

As short-term features implicitly carry local information 
about the sequential nature of audio signals, they may be com­
plimentary to the information provided by the segment-based 
ones. To gain insight into this possibility, we have analyzed 
the confusion matrices produced by the MFCC-based and 
PHEQ-based (order 2) systems. Table II shows the corre­
sponding confusion matrices. In this table, the rows correspond 
to the correct class, the columns to the hypothesized one 
and the values in it are computed as the average for the six 
folds. As can be observed, in both systems speech is the less 
confusable class whereas music is the highest confusable one. 
In the MFCC-based system, 8% and 39.17% of music files 
are classified as speech and as song, respectively. However, in 
the PHEQ-based system, music is better recognized and the 
errors are mainly due to confusions with song (34.96%). The 
song class presents a different pattern of behaviour in each 
system: in the MFCC-based one it is confused with almost the 
same percentage with speech (15.16%) and music (14.34%); 
however in the PHEQ-based one, it is mainly confused with 
music (25.71%). 

The analysis of the confusion matrices allows us to conclude 
that both systems produce different kind of errors, so they are 
suitable candidates for combination. To corroborate this obser­
vation, we have carried out several experiments in which the 
combination of short-term and PHEQ features is performed at 
segment level using the well-known product rule [12]. 

Table III shows a summary of the main results obtained. 
"Normalized MFCC" and "Normalized MFCC-D" refer, re­
spectively, to MFCC normalized with respect to their mean 
(CMN) and normalized MFCC augmented with their corre­
sponding first derivatives. As can be observed, the combination 
of short-term and PHEQ features always outperform the per­
formance of the individual systems. In addition, the differences 
are statistically significant. It is also worth mentioning that 
normalized MFCC produces slightly better results than MFCC 
whereas the combination of PHEQ with normalized MFCC 
significantly improves the results of just normalized MFCC. 
Finally, although the use of the first derivatives in other works 
in the literature did not provide a consistent improvement for 
music/speech discrimination tasks, in our study, the best results 
were obtained when also including these additional features. 

Feature 

MFCC 
Normalized MFCC 

PHEQ (order 2) 
MFCC + PHEQ (order 2) 

Normalized MFCC + PHEQ (order 2) 
Normalized MFCC-D + PHEQ (order 2) 

Classification Accuracy (%) 

72.34% 
73.36% 
75.29% 
79.14% 
81.52% 
83.81% 

V. CONCLUSIONS 

In this letter, we have developed new segment-based fea­
tures more appropriate to capture the differences between 
instrumental music, singing voice and speech. These PHEQ 
features are the coefficients of the polynomial approximations 
of the transformation functions between the short-term feature 
distributions computed at segment level and a zero-mean 
unity-variance Gaussian reference distribution. Results show 
that PHEQ characteristics obtained from second-order approx­
imations are able to discriminate between the three acoustic 
classes considered and they outperform conventional features 
such as short-term MFCC or MFCC mean and variance. 
Furthermore, a combination of short-term MFCC and PHEQ 
features achieves better results than the individual systems. 
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