
A Model-Based Approach for the Management of

Electronic Invoices

Rodrigo García-Carmona, Álvaro Navas, Félix Cuadrado, Boni García,

Hugo A. Parada G., Juan C. Dueñas

Universidad Politécnica de Madrid

Departamento de Ingeniería de Sistemas Telemáticos

{rodrigo, anavas, fcuadrado, bgarcia, hparada, jcduenas}@dit.upm.es

Abstract. The globalized market pushes companies to expand their business

boundaries to a whole new level. In order to efficiently support this

environment, business transactions must be executed over the Internet.

However, there are several factors complicating this process, such as the current

state of electronic invoices. Electronic invoice adoption is not widespread

because of the current format fragmentation originated by national regulations.

In this paper we present an approach based on Model-Driven Engineering

techniques and abstractions for supporting the core functions of invoice

management systems. We compare our solution with the traditional

implementations and try to analyze the advantages MDE can bring to this

specific domain.

Keywords: Electronic invoice, Model-Driven Engineering, Model

Transformation, Enterprise Applications.

1 Introduction

Electronic commerce is not something new. The buying and selling of products via

electronic means have been in use for a long time now. However, there are still some

aspects which hamper its massive adoption, such as the widespread use of electronic

invoices. This way, not only the transactions could be automated, but also the

financial, accounting and payment processes. Recent advances in aspects such as

XML Security and Encryption have made those innovations possible. Nonetheless.

most companies, especially small and medium-sized, are still adapting their financial

processes for the use of electronic invoices.

Moreover, electronic invoice adoption presents additional problems because of

even the smallest companies having to operate in a worldwide market: the myriad of

standards existing in different countries for the management of invoices, governed by

the national regulations. Therefore, the conversion from paper to digital format is

being hindered by the need to support several standards and transform between them

seamlessly.

To address this problem we propose an alternative to the traditional architecture for

an invoice management system that employs the Model Driven Engineering

paradigm. Instead of managing documents of specific formats, we propose to define a

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148657058?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

model layer for increased abstraction, expressivity and extensibility. With this

paradigm, we believe that development of an efficient and adaptable invoice

management system could be done with much less effort. Even more, the system will

be more robust, comprehensible and extensible.

The structure of the document is as follows: In the next section we will provide a

brief summary of the current state of the electronic invoice, paying special attention to

the particular situation of Spain. In section three we will describe a document-based

approach to the problem, After this, in section four we will describe the proposed

model-based solution. The next section will compare both approaches. Finally, in the

final section we will outline the conclusions we have reached and some future lines of

work.

2 Context

An electronic invoice is a transaction document that contains billing information in

an electronic format. They are the evolution of traditional paper invoices, and as such,

they must comply with the same legal restrictions and characteristics. They provide

some advantages over conventional invoices, being the more noticeable a reduction in

operation costs from not having to deal with big volumes of paper, and a reduction in

the time involving the cashing process.

However, there are hundreds of specifications for electronic invoices [1]. This

proves to be a major drawback and difficult the interoperability between different

countries. Traditionally, one of the most important standards has been the United

Nations/Electronic Data Interchange For Administration, Commerce and Transport

(UN/EDIFACT) [2]. The aim of this specification is to provide an invoice format

suitable for machine to machine (M2M) communications. This format considers

multi-country and multi-industry exchange. It was adopted by the International

Organization for Standardization (ISO) as the standard ISO 9735.

However, the pass of time led to the massive support of XML-based formats for

the industry, thanks to its interoperability capabilities for B2B. Therefore,

UN/EDIFACT has been losing traction in favor of newer specifications. Following

this trend, and taking into account that UN/EDIFACT is still widely used in Europe

an XML version called XML/EDIFACT [3] was released as ISO TS 20625.

Another evolution of UN/EDIFACT is ebXML [4]. ebXML has been designed by

UN/EDIFACT’s creators and OASIS. Although ebXML was designed to solve the

interoperability problems, the lack of implementations and enterprise support have

ruled it to the background.

After collaborating in designing ebXML, OASIS worked on their own electronic

invoice format, developing Universal Business Language (UBL [5]). UBL is based

upon the core components of ebXML but tries to solve its interoperability

problems[6]. Unlike ebXML, UBL is greatly supported by many northern European

countries such as Norway, Denmark or Sweden, which formed an alliance to adapt

UBL to their necessities creating NESUBL[7].

But even with the recent success of UBL, the problem of interoperability between

countries still exists, especially in Europe. For example, Spain uses the XML-based

standard Facturae [8] as its main electronic invoice format. Facturae is a format

developed entirely by request of the government of Spain, and it is used exclusively in

Spain. Moreover, this standard experiences continuous evolution, with three different

versions being released (v3.0, v3.1 and v3.2) in the 2007-2009 period. But this is just

an example, since Spain is the main country of interest for our research. Some other

European countries use their own invoice formats, for instance, Croatia uses its own

implementation of ebXML. Although there have been some initiatives to define a

common European XML invoice format, none of them have succeeded. At the time of

writing of this paper, if a Spanish company, for instance, wishes to issue an invoice to

a Danish company, its invoices could be invalid in Denmark as they are not in UBL

format. In addition to this problem, Enterprise Resource Planning (ERP) applications

are often tied to a single format, which means that companies can’t even work with

other formats than the one their ERP uses.

There are several research efforts dedicated to solve this problem. CENBII [9] is an

initiative to provide public interfaces for interoperability between UN/EDIFACT and

UBL. Pan-European Public Procurement Online (PEPPOL [10]) tries to provide an

interoperability environment so any company within EU borders can operate with

other. The Interoperable Delivery of European eGovernment Services to public

Administrations, Businesses and Citizens (IDABC) [11] also tries to establish a

common platform for electronic invoices across EU.

The problem of supporting multiple invoice formats is not only a matter of

documents which, but also mandates more complex operations, such as watch for the

accounting information correctness of the documents (taking into account aspects

such as local sums, types of taxes or discounts). The degree of support of those factors

widely differs among the different standards, as in many cases they are also related to

the national regulations.

Moreover, the security constraints of a financial further complicate invoice

management systems. To provide the adequate validation of an invoice content and

issuer, electronic invoices are digitally signed for assuring content integrity. The

problem with this process is that after signing the invoice, its contents and format

cannot be changed. Hence, to enable the conversion between invoice formats the

conversion has to be done before the signing and sealing of the invoice.

As we can see, there is a lot of interest in determining a full interoperability

environment. Eventually, common grounds will be reached and a unique standard will

be used. In the meantime, we are in a transition period in which interoperability is not

achieved.

3 Document-based invoice management system

In order to provide a clearer view on the management of multiple formats of

electronic invoices, we will present how traditional approaches address the problem..

We use the term document-based approach for these alternatives, as the central

elements are the XML invoice documents.

Electronic Invoices document the transactions between a seller company and a

buyer company. An invoice management system must allow the seller to issue the

invoice and the buyer to receive and accept it. In addition to supporting this workflow

and storing the information, these systems must also perform additional operations

over the process, such as checking the invoice document respects the correct format,

verifying the authentication credentials of the involved parties, and performing

additional validation functions, such as calculating partial and total aggregates,

evaluating deduction amounts, or verifying addresses are correct.

In the financial world, it is usually required for the issuer of an invoice to store

either the original invoice or information which would allow us to regenerate the

invoice. That information is also called the invoice matrix. The former is the easier

option to implement. In this case, the invoice is an XML document. Therefore, the

target of this architecture is the storage of an XML representing an invoice in a

database. However, since support of several invoice formats is needed, the

architecture should be able to convert between different invoice formats, previously to

storing the invoices.

Invoice transformation is a necessity in many scenarios, as it will be required

whenever the two companies involved in the transaction work with different invoice

formats. This way, the seller would either have to be able to issue an invoice using the

customer’s desired format or manage to convert their invoices to that format. This

way, we start with an invoice in one format and need a different format to be

produced and stored.

The following figure shows how to support the second option internally in the

system. Taking as input the XML document with the issued invoice, the invoice is

validated, transformed to the desired format, and then stored in the database. During

the whole process we are constantly working with XML documents.

Fig. 1. Document-centric approach.

In this process, the first step is to validate the input invoice. As it has been

previously mentioned, there are two types of validation which must be applied. The

first one is a syntactic validation, in which we check that the document complies with

the format dictated by the XSD schema. Thanks to the availability of these

documents, and the existence of mature Java XML libraries[12] this step is not

excessively difficult. On top of that, it can be easily applied to every supported

invoice format, as it only needs the schema specification.. However, the second

validation step, the accounting validation, presents more problems. Accounting

validation consists of checking several amounts, prices and quantities in the invoice in

order to rule out any financial problem. This step is extremely important, as once the

invoice is transformed to other format, it would be very difficult for the issuer’s ERP

to change data on an invoice in a format it does not know. On top of that, this process

is more complex than simply checking the invoice syntax. To perform this validation,

we need to have a deep knowledge of the format we are working with, since we need

to know exactly what fields we must check, and how. The relevant fields of the

invoice must be extracted using XML parsing libraries such as SAX or DOM, and

then some operations need to be carried out in the logic services to check the

correctness of the invoice (checking correct application of tax rates, totals, etc…).

Clearly, this must be handled separately for each supported invoice format.

After the invoice has been validated, we can proceed to transform it to the invoice

format desired by the customer. As current invoice standards are based on XML, we

can use XSLT [13] for this operation. XSLT is a W3C standard for transforming

XML documents. It uses a template which contains rules written using XPath syntax

and is able transform the original document into a new one. Hence, we need to create

an XSLT template to implement the transformation between every two invoice

formats. Again, this step requires a previous study of both the issuer’s format and the

customer’s format, in order to be able to map fields from one to the other. These

templates are not bidirectional, so another template is needed to reverse the

transformation. In sum, we need one template per pair of formats per direction. This

means that adding new formats to the mix involves creating several templates, whose

numbers grow with the number of supported formats exponentially. Since we used a

validated invoice as input and can trust the correctness of the transformation template,

we end with a validated invoice in the desired format.

After the transformation has been completed, the issuer must sign the invoice

before storing or sending it. These operations could not have been carried out before,

as even although the security information could be transferred to the transformed

invoice, the transferred invoice is a new file and the digital sign would not match the

contents of this new invoice.

Finally, the system must persist the generated invoice in a database. There are

several ways of performing this operation. The first one is to store the whole invoice

as a large binary object (BLOB) in the database. The problem with this solution is that

searches in the invoices cannot be performed, since the only way of distinguishing

one from another is to get all of them from the database and read its contents. Another

approach that eases searches consists in designing the database to mimic the data

schema of the format we want to store. That way, every data in the invoice can be

searched. The problem with this method is that making that design involves a lot of

work which is not reusable. Even more, only one format could be stored this way. A

third solution is a mixture of the previous ones. SAX could be used to extract a few

selected fields that enable some basic searches, common to all invoice formats. This

extracted common data can be then stored in the database linked to the invoice as a

BLOB.

4 Model-centric approach

After presenting the current state of electronic invoice formats and briefly outlining

the base functions which should be supported by an invoice management system, we

will describe in this section our proposed approach. In order to do so, we will first

introduce the Model Driven Engineering technologies which can be adopted in this

specific context. After that, we will describe our proposed solution.

4.1 Proposed MDE Technologies

We have already mentioned the challenges which must be addressed by invoice

management systems.. At this point we will present. the most interesting technologies

from the MDE[14] domain with respect to its applicability in this context. It must be

noted that our aim is not to apply a complete MDA process to the development of

invoice management systems (i.e. generate the complete system from a model, define

the PIM and PSM, etc.), but instead to apply MDE techniques for the key domain

functions (invoice generation, transformation, validation and persistence).

,In the context we explained that most of invoice formats are defined in XML.

Every XML document must follow the rules of an XML Schema Definition (XSD).

Therefore, for an XML document to comply with an invoice format, it must follow

the rules of that format XSDs. Considering this, to be able to use the definition of the

invoice format as provided (an XSD) we need a modeling language and a set of tools

that support the transformation from and to that language and an XSD.

From all the tools that provide this capability we have selected Eclipse EMF [15].

EMF is a modeling framework and a set of tools based on the Ecore language. Ecore

is a subset of MOF (Meta Object Facility), the metametamodeling language

standardized by the OMG to model UML, among others. EMF provides us a mature

set of tools built over a metamodeling language with a high degree of expressivity,

and with a large and participative community. Among the base features provided by

EMF it is of special interest to us is the capability to seamlessly transform between an

Ecore model, Java code and XML. This allows us to seamlessly obtain model

instances from the received documents and automatically perform the syntactic

validation to the handled elements.

Clearly, a mandatory characteristic of an electronic invoice is its validity. It is not

only needed for an invoice document to be syntactically correct against its XSD.

Other validations need also to be performed over an invoice to be sure that it is

correct. For instance, we must ensure that all the lines of products in the invoice,

when added, produce a result which is equal to the invoice total, taking into account

taxes. To perform validations like this over a model we need a language that enables

us to define rules that a given model has to comply with. For this task we have

selected OCL [16] (Object Constraint Language). Since OCL can be used with any

language written in MOF, any model created with EMF is eligible for its use. Another

option would have been Schematron [17], but it is more aimed to work with XML

documents. Although the invoices are easily convertible between EMF and XML, it is

preferable to use the models directly. This way, we support the validation of invoices

completely at model level.

For the development of the conversion between the different invoice formats we

need a transformation language. To this end we have selected ATL (ATLAS

Transformation Language). ATL [18] is an open source transformation language

developed by the Eclipse Project. ATL designed for extensibilityhas a modular model

transformation virtual machine and is therefore very easy to extend. The reason for

not using QVT (Query- View – Transformation) [19] instead of ATL is that the

former is centered in the Platform Independent Model to Platform Specific Model

transformation of MDA. ATL is more suitable to general purpose transformations like

the conversion of invoices from one format to another.

One of the most important non-functional requirements of enterprise applications is

the persistence of the information. To ease the process of storage of invoices and

other financial information using models we decided to use Teneo [20]. Teneo is a

database persistency solution for EMF. Starting from an Ecore model it uses

Hibernate to generate the relational structure and provide an easy interface for the

management of the persisted information.

4.2 Proposed approach

Our proposed approach consists in applying MDE techniques to support the

validation, transformation and persistence functions required by multi-format invoice

management systems. In order to do so, we will translate the original invoice provided

by the issuer’s ERP to a model using EMF, and we will work with said model during

the process, instead of dragging the original invoice document all over the operation.

The next figure shows how the previously described process can be executed using ae

model-centric approach.

Fig. 2. Model-centric approach.

The first step is to obtain a model instance from the initial invoice document. This

is supported with the EMF functionality that, starting from an XSD schema

automatically generates a corresponding Ecore metamodel. In addition to that, it can

also generate a marshalling / unmarshalling layer XML documents to/from ecore

instances. Therefore, the process of converting the original invoice into a model is

performed with little effort.

In this approach, taking into account that we are working at a higher level of

abstraction, we have opted for a more extensible approach by defining a common

invoice model, This common invoice model would be composed by elements

common to all invoices, and all the data that, although not common, is still relevant.

This way, every invoice specific model will be transformed to the common format as

soon as it is imported into the platform. The common model will be created using

EMF from scratch.

The definition of this model is the most time consuming step of the development of

this approach. A complex study has to be performed including all the formats that

want to be supported by the system. Common concepts have to be extracted from all

of them, and a special care has to be put in filtering the relevant fields and reaching a

satisfying definition. The transformation from and to this common model must not

incur in any loss of information.

With this common model created, we can transform using ATL from every format

into it and then perform any other operation with this common model. This greatly

eases the adoption of new formats, as only the model for that format and the

transformation from and to the common model need to be supplied.

Once we have the common invoice model object for a given invoice, validation can

be performed. Syntactic validation is no necessary since EMF automatically checks

the syntax when marshalling an invoice. Therefore, only accounting validation is

required. This validation is going to be always performed over the common invoice

model with OCL. With OCL this validation is performed directly over the model

information, using rules that can be easily expanded to include more complex or other

types of validations.

Concerning the storage of the invoice data, in the previous approach we stored the

invoice, but in this case what we store is the matrix that allows its creation; the

common model. For this step we decided to use Teneo, since it offers the opportunity

to persist EMF models automatically. This means that all the information in the

matrix can be stored in the database in properly structured tables. This way, the

information we can search for in the database is widely expanded, and we can

produce invoices in any of the supported formats from the data stored.

To do this we will perform the same steps as before, but in reverse order. This is

indicated in the figure with the two-headed arrows. The steps will be as follow: 1)

The matrix for a given invoice (common model) is obtained from the databases. 2)

The matrix is transformed into the desired target format using ATL. 3) The invoice,

now in the desired format in EMF, is marshaled into XML. 4) Finally, we perform

any remaining step like signing the invoice or sending it to the customer.

5 Comparative analysis

After introducing the two approaches, we will perform a comparative analysis

between them. This way, the strong and weak points of each approach can be detected

and an informed decision about which one should be implemented can be made.

For this analysis we are going to center in the following aspects: 1) Initial Effort

for implementing the approach. 2) Incremental effort for adding another format to an

already developed system. For the purpose of this analysis we are going to impose the

requirement for a format to be added to the system to be XML-based.

5.1 Initial implementation

Document-centric approach: The reusability for this approach is very low. The

effort of developing an initial system with support for several formats is almost the

same as the required for adding a new format as many times as format supported. The

only reusable bits are the basic underlying infrastructure (persistence driver, external

interfaces, GUIs) and the syntactic validation module. This way, the initial effort of

this approach can be equated to the number of formats supported.

Model-centric approach: One of the first concerns that need to be taken into

account if a model-centric approach wants to be implemented, is the learning curve

inherent to the MDE technologies. If the developers are not familiar with them, this

initial overhead can be very high. And, although this experience can be reused in the

future, it imposes an initial effort that should not be ignored.

But even when the developers are already familiar with these technologies, the

initial development of this approach is much more costly than the document-centric

one. The main effort is going to be the common invoice format. This development is

difficult, requires a good analysis of all the invoice formats, and has to be done by an

expert in the field of electronic commerce. In addition to this, OCL rules for

validating this model (accounting validation) must be defined and a database table

structure has to be created. Luckily, some of these tasks are greatly simplified thanks

to tools like Teneo.

5.2 Addition of a new format

Document-centric approach: In this approach the addition of a new format

imposes the following developments: 1) Syntactic validation of the XML document.

2) Accounting validation of the XML document. 3) Transformation to and from every

other supported format. 4) Persistence of the format.

In this case, the implementation of the syntactic validation is straightforward, since

the code existing for any other format can be reused almost completely. However, the

accounting validation presents a bigger problem. A profound knowledge of the new

format is required and this validation is costly to implement since it will be very

different to all the other formats validation.

Transformation presents a similar problem. Knowledge of the new format is

required. On top of that, two new transformations (one to and one from) must be

created for each other format already supported. This imposes even another

requirement: knowledge of not only the new format, but also every other format

already supported. This is the dominant cost factor with this approach.

Finally, concerning persistence of the new invoice format, this heavily depends in

which of the three solutions proposed have been adopted. If the invoice is stored as a

large binary object, the cost is negligible. However, if we need to extract some

information or, even worse, create a new table structure, the development effort could

be very high.

Model-centric approach:

For this approach the addition of a new format imposes only these two tasks: 1)

Generation of the EMF model for the new format 2) Transformation to and from

common invoice format.

From these two developments, the first one is the easiest. This can be done almost

automatically using the tools provided with EMF. Therefore, the effort is almost zero.

Consequently, the only real developments are the transformations to and from the

common invoice format. As in the previous approach, this requires knowledge of the

new format. But, unlike before, only knowledge of the common format (and not all

the other supported formats) is needed. On top of that, only two transformations need

to be created.

6 Conclusions

In this article we have presented the main challenges behind electronic invoice

management systems, and have presented a potential application of MDE techniques

and technologies for addressing them. This way, the management system architecture

is built on top of a set of functional elements which handle models of the electronic

invoices. At this abstraction level, generation, transformation, validation and

persistence are easily supported. This presents significant advantages when compared

to an approach which directly manages the base XML documents, thanks to the

increased expressivity an extensibility of the model layer.

Although this article is focused in an specific domain (electronic invoice

management), we believe the benefits of implementing the domain model and core

functional blocks of a system through the use of MDE technologies have greater

implications. At the current stage, languages and tools have reached a level of

maturity where these specific decisions can greatly improve overall productivity and

increase the overall quality of the resulting systems (in aspects such as extensibility or

maintainability).

Regarding future work, we intend to expand our model coverage so they don’t only

capture the electronic invoices but also cover the identity information of the

participating companies. This way, digital signature functions could be integrated into

the model workflow, and automated validation rules could be defined for the

information from each company.

Acknowledgements

The work presented here has been developed in the context of the project Factur@.

Factur@ is an IT innovation project funded by Telvent and Comunidad de Madrid.

The authors are grateful to Telvent for supporting this work..

References

1. Vanjak, Z.; Mornar, V.; Magdalenic, I.: Deployment of e-Invoice in Croatia. In: Cordeiro,

J., Shishkov, B., Ranchordas, A., Helfert, M. (eds.) ICSOFT 2008 - Proceedings of the

Third International Conference on Software and Data Technologies, vol. ISDM/ABF, pp.

348—354, INSTICC Press (2008)

2. Berge, J. : The EDIFACT Standards. Blackwell Publishers, Inc. (1994)

3. ISO/TS 20625:2002, Electronic data interchange for administration, commerce and

transport (EDIFACT) - Rules for generation of XML scheme files (XSD) on the basis of

EDI(FACT) implementation guidelines

4. OASIS’s ebXML specification, http://www.ebxml.org

5. OASIS’s UBL comittee, http://www.oasis-open.org/comittees/ubl/

6. Tolle, K.: UBL: The DNA of next generation e-Business. In: Information Technology and

Control, vol. 37, No. 1, pp. 38—42, Kaunas, Technologija (2008)

7. Northern European Subset, NES; specification: http://www.nesubl.eu

8. Government of Spain’s Facturae information: http://www.facturae.es

9. CENBII specification: http://spec.cenbii.eu

10. Pan-European Public Procurement Online, http://www.peppol.eu

11. IDABC commission information: http://ec.europa.eu/idabc/en/home

12. McLaughlin, B., Edelson, J.: Java and XML. O’Reilly Media; 3rd Edition (2006)

13. XSL Transformation specification: http://www.w3.org/TR/xslt

14. Kent, S.: Model Driven Engineering. Integrated Formal Methods. In: Lecture Notes in

Computer Science, volume 2335/2002, pp. 286-298, Springer Berlin / Heidelberg (2002)

15. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling

Framework. Addison-Wesley Professional (2008)

16. Richters, M., Gogolla, M.: OCL: Syntax, Semantics, and Tools. In: Object Modeling with

the OCL, vol. 2263/2002, pp. 447-450, Springer Berlin / Heidelberg (2002)

17. Dodds, L.:. Schematron: Validating XML Using XSLT. In: XSLT-UK Conference, Keble

College, Oxford, England (2001)

18. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., Valduriez, P.: ATL: a QVT-like

transformation language. In: Companion to the 21st ACM SIGPLAN symposium on

Object-oriented programming systems, languages, and applications, pp. 719-720, ACM,

New York, USA (2006)

19. OMG: MOF 2.0 Query / Views / Transformations RFP, OMG Document ad/2002-04-10.

(2002)

20. Eclipse Foundation. Teneo: http://www.eclipse.org/modeling/emft/?project=teneo.

http://www.ebxml.org/
http://www.oasis-open.org/comittees/ubl/
http://www.nesubl.eu/
http://www.facturae.es/
http://spec.cenbii.eu/
http://www.peppol.eu/
http://ec.europa.eu/idabc/en/home
http://www.w3.org/TR/xslt
http://www.eclipse.org/modeling/emft/?project=teneo

	06

