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Abstract. The globalized market pushes companies to expand their business 

boundaries to a whole new level. In order to efficiently support this 

environment, business transactions must be executed over the Internet. 

However, there are several factors complicating this process, such as the current 

state of electronic invoices. Electronic invoice adoption is not widespread 

because of the current format fragmentation originated by national regulations. 

In this paper we present an approach based on Model-Driven Engineering 

techniques and abstractions for supporting the core functions of invoice 

management systems. We compare our solution with the traditional 

implementations and try to analyze the advantages MDE can bring to this 

specific domain. 

Keywords: Electronic invoice, Model-Driven Engineering, Model 

Transformation, Enterprise Applications. 

1   Introduction 

Electronic commerce is not something new. The buying and selling of products via 

electronic means have been in use for a long time now. However, there are still some 

aspects which hamper its massive adoption, such as the widespread use of electronic 

invoices. This way, not only the transactions could be automated, but also the 

financial, accounting and payment processes. Recent advances in aspects such as 

XML Security and Encryption have made those innovations possible. Nonetheless. 

most companies, especially small and medium-sized, are still adapting their financial 

processes for the use of electronic invoices. 

Moreover, electronic invoice adoption presents additional problems because of 

even the smallest companies having to operate in a worldwide market: the myriad of 

standards existing in different countries for the management of invoices, governed by 

the national regulations. Therefore, the conversion from paper to digital format is 

being hindered by the need to support several standards and transform between them 

seamlessly. 

To address this problem we propose an alternative to the traditional architecture for 

an invoice management system that employs the Model Driven Engineering 

paradigm. Instead of managing documents of specific formats, we propose to define a 
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model layer for increased abstraction, expressivity and extensibility. With this 

paradigm, we believe that development of an efficient and adaptable invoice 

management system could be done with much less effort. Even more, the system will 

be more robust, comprehensible and extensible. 

The structure of the document is as follows: In the next section we will provide a 

brief summary of the current state of the electronic invoice, paying special attention to 

the particular situation of Spain. In section three we will describe a document-based 

approach to the problem, After this, in section four we will describe the proposed 

model-based solution. The next section will compare both approaches. Finally, in the 

final section we will outline the conclusions we have reached and some future lines of 

work. 

2   Context 

An electronic invoice is a transaction document that contains billing information in 

an electronic format. They are the evolution of traditional paper invoices, and as such, 

they must comply with the same legal restrictions and characteristics. They provide 

some advantages over conventional invoices, being the more noticeable a reduction in 

operation costs from not having to deal with big volumes of paper, and a reduction in 

the time involving the cashing process.  

However, there are hundreds of specifications for electronic invoices [1]. This 

proves to be a major drawback and difficult the interoperability between different 

countries. Traditionally, one of the most important standards has been the United 

Nations/Electronic Data Interchange For Administration, Commerce and Transport 

(UN/EDIFACT) [2]. The aim of this specification is to provide an invoice format 

suitable for machine to machine (M2M) communications. This format considers 

multi-country and multi-industry exchange. It was adopted by the International 

Organization for Standardization (ISO) as the standard ISO 9735. 

However, the pass of time led to the massive support of XML-based formats for 

the industry, thanks to its interoperability capabilities for B2B. Therefore, 

UN/EDIFACT has been losing traction in favor of newer specifications. Following 

this trend, and taking into account that UN/EDIFACT is still widely used in Europe 

an XML version called XML/EDIFACT [3] was released as ISO TS 20625.  

Another evolution of UN/EDIFACT is ebXML [4]. ebXML has been designed by 

UN/EDIFACT’s creators and OASIS. Although ebXML was designed to solve the 

interoperability problems, the lack of implementations and enterprise support have 

ruled it to the background.  

After collaborating in designing ebXML, OASIS worked on their own electronic 

invoice format, developing Universal Business Language (UBL [5]). UBL is based 

upon the core components of ebXML but tries to solve its interoperability 

problems[6]. Unlike ebXML, UBL is greatly supported by many northern European 

countries such as Norway, Denmark or Sweden, which formed an alliance to adapt 

UBL to their necessities creating NESUBL[7]. 

But even with the recent success of UBL, the problem of interoperability between 

countries still exists, especially in Europe. For example, Spain uses the XML-based 



standard Facturae [8] as its main electronic invoice format. Facturae is a format 

developed entirely by request of the government of Spain, and it is used exclusively in 

Spain. Moreover, this standard experiences continuous evolution, with three different 

versions being released (v3.0, v3.1 and v3.2) in the 2007-2009 period. But this is just 

an example, since Spain is the main country of interest for our research. Some other 

European countries use their own invoice formats, for instance, Croatia uses its own 

implementation of ebXML. Although there have been some initiatives to define a 

common European XML invoice format, none of them have succeeded. At the time of 

writing of this paper, if a Spanish company, for instance, wishes to issue an invoice to 

a Danish company, its invoices could be invalid in Denmark as they are not in UBL 

format. In addition to this problem, Enterprise Resource Planning (ERP) applications 

are often tied to a single format, which means that companies can’t even work with 

other formats than the one their ERP uses. 

There are several research efforts dedicated to solve this problem. CENBII [9] is an 

initiative to provide public interfaces for interoperability between UN/EDIFACT and 

UBL. Pan-European Public Procurement Online (PEPPOL [10]) tries to provide an 

interoperability environment so any company within EU borders can operate with 

other. The Interoperable Delivery of European eGovernment Services to public 

Administrations, Businesses and Citizens (IDABC) [11] also tries to establish a 

common platform for electronic invoices across EU. 

The problem of supporting multiple invoice formats is not only a matter of 

documents which, but also mandates more complex operations, such as watch for the 

accounting information correctness of the documents (taking into account aspects 

such as local sums, types of taxes or discounts). The degree of support of those factors 

widely differs among the different standards, as in many cases they are also related to 

the national regulations.  

Moreover, the security constraints of a financial further complicate invoice 

management systems. To provide the adequate validation of an invoice content and 

issuer, electronic invoices are digitally signed for assuring content integrity. The 

problem with this process is that after signing the invoice, its contents and format 

cannot be changed. Hence, to enable the conversion between invoice formats the 

conversion has to be done before the signing and sealing of the invoice. 

As we can see, there is a lot of interest in determining a full interoperability 

environment. Eventually, common grounds will be reached and a unique standard will 

be used. In the meantime, we are in a transition period in which interoperability is not 

achieved. 

3   Document-based invoice management system 

In order to provide a clearer view on the management of multiple formats of 

electronic invoices, we will present how traditional approaches address the problem.. 

We use the term document-based approach for these alternatives, as the central 

elements are the XML invoice documents. 

Electronic Invoices document the transactions between a seller company and a 

buyer company. An invoice management system must allow the seller to issue the 



invoice and the buyer to receive and accept it. In addition to supporting this workflow 

and storing the information, these systems must also perform additional operations 

over the process, such as checking the invoice document respects the correct format, 

verifying the authentication credentials of the involved parties, and performing 

additional validation functions, such as calculating partial and total aggregates, 

evaluating deduction amounts, or verifying addresses are correct. 

In the financial world, it is usually required for the issuer of an invoice to store 

either the original invoice or information which would allow us to regenerate the 

invoice. That information is also called the invoice matrix. The former is the easier 

option to implement. In this case, the invoice is an XML document. Therefore, the 

target of this architecture is the storage of an XML representing an invoice in a 

database. However, since support of several invoice formats is needed, the 

architecture should be able to convert between different invoice formats, previously to 

storing the invoices. 

Invoice transformation is a necessity in many scenarios, as it will be required 

whenever the two companies involved in the transaction work with different invoice 

formats. This way, the seller would either have to be able to issue an invoice using the 

customer’s desired format or manage to convert their invoices to that format. This 

way, we start with an invoice in one format and need a different format to be 

produced and stored. 

The following figure shows how to support the second option internally in the 

system. Taking as input the XML document with the issued invoice, the invoice is 

validated, transformed to the desired format, and then stored in the database. During 

the whole process we are constantly working with XML documents. 

 

 

Fig. 1. Document-centric approach. 

In this process, the first step is to validate the input invoice. As it has been 

previously mentioned, there are two types of validation which must be applied. The 

first one is a syntactic validation, in which we check that the document complies with 

the format dictated by the XSD schema. Thanks to the availability of these 

documents, and the existence of mature Java XML libraries[12] this step is not 

excessively difficult. On top of that, it can be easily applied to every supported 



invoice format, as it only needs the schema specification.. However, the second 

validation step, the accounting validation, presents more problems. Accounting  

validation consists of checking several amounts, prices and quantities in the invoice in 

order to rule out any financial problem. This step is extremely important, as once the 

invoice is transformed to other format, it would be very difficult for the issuer’s ERP 

to change data on an invoice in a format it does not know. On top of that, this process 

is more complex than simply checking the invoice syntax. To perform this validation, 

we need to have a deep knowledge of the format we are working with, since we need 

to know exactly what fields we must check, and how. The relevant fields of the 

invoice must be extracted using XML parsing libraries such as SAX or DOM, and 

then some operations need to be carried out in the logic services to check the 

correctness of the invoice (checking correct application of tax rates, totals, etc…). 

Clearly, this must be handled separately for each supported invoice format. 

After the invoice has been validated, we can proceed to transform it to the invoice 

format desired by the customer. As current invoice standards are based on XML, we 

can use XSLT [13] for this operation. XSLT is a W3C standard for transforming 

XML documents. It uses a template which contains rules written using XPath syntax 

and is able transform the original document into a new one. Hence, we need to create 

an XSLT template to implement the transformation between every two invoice 

formats. Again, this step requires a previous study of both the issuer’s format and the 

customer’s format, in order to be able to map fields from one to the other. These 

templates are not bidirectional, so another template is needed to reverse the 

transformation. In sum, we need one template per pair of formats per direction. This 

means that adding new formats to the mix involves creating several templates, whose 

numbers grow with the number of supported formats exponentially. Since we used a 

validated invoice as input and can trust the correctness of the transformation template, 

we end with a validated invoice in the desired format. 

After the transformation has been completed, the issuer must sign the invoice 

before storing or sending it. These operations could not have been carried out before, 

as even although the security information could be transferred to the transformed 

invoice, the transferred invoice is a new file and the digital sign would not match the 

contents of this new invoice. 

Finally, the system must persist the generated invoice in a database. There are 

several ways of performing this operation. The first one is to store the whole invoice 

as a large binary object (BLOB) in the database. The problem with this solution is that 

searches in the invoices cannot be performed, since the only way of distinguishing 

one from another is to get all of them from the database and read its contents. Another 

approach that eases searches consists in designing the database to mimic the data 

schema of the format we want to store. That way, every data in the invoice can be 

searched. The problem with this method is that making that design involves a lot of 

work which is not reusable. Even more, only one format could be stored this way. A 

third solution is a mixture of the previous ones. SAX could be used to extract a few 

selected fields that enable some basic searches, common to all invoice formats. This 

extracted common data can be then stored in the database linked to the invoice as a 

BLOB.  



4   Model-centric approach 

After presenting the current state of electronic invoice formats and briefly outlining 

the base functions which should be supported by an invoice management system, we 

will describe in this section our proposed approach. In order to do so, we will first 

introduce the Model Driven Engineering technologies which can be adopted in this 

specific context. After that, we will describe our proposed solution. 

4.1   Proposed MDE Technologies 

We have already mentioned the challenges which must be addressed by invoice 

management systems.. At this point we will present. the most interesting technologies 

from the MDE[14] domain with respect to its applicability in this context. It must be 

noted that our aim is not to apply a complete MDA process to the development of 

invoice management systems (i.e. generate the complete system from a model, define 

the PIM and PSM, etc.), but instead to apply MDE techniques for the key domain 

functions (invoice generation, transformation, validation and persistence). 

,In the context we explained that most of invoice formats are defined in XML. 

Every XML document must follow the rules of an XML Schema Definition (XSD). 

Therefore, for an XML document to comply with an invoice format, it must follow 

the rules of that format XSDs. Considering this, to be able to use the definition of the 

invoice format as provided (an XSD) we need a modeling language and a set of tools 

that support the transformation from and to that language and an XSD. 

From all the tools that provide this capability we have selected Eclipse EMF [15]. 

EMF is a modeling framework and a set of tools based on the Ecore  language. Ecore 

is a subset of MOF (Meta Object Facility), the metametamodeling language 

standardized by the OMG to model UML, among others. EMF provides us a mature 

set of tools built over a metamodeling language with a high degree of expressivity, 

and with a large and participative community. Among the base features provided by 

EMF it is of special interest to us is the capability to seamlessly transform between an 

Ecore model, Java code and XML. This allows us to seamlessly obtain model 

instances from the received documents and automatically perform the syntactic 

validation to the handled elements. 

Clearly, a mandatory characteristic of an electronic invoice is its validity. It is not 

only needed for an invoice document to be syntactically correct against its XSD. 

Other validations need also to be performed over an invoice to be sure that it is 

correct. For instance, we must ensure that all the lines of products in the invoice, 

when added, produce a result which is equal to the invoice total, taking into account 

taxes. To perform validations like this over a model we need a language that enables 

us to define rules that a given model has to comply with. For this task we have 

selected OCL [16] (Object Constraint Language). Since OCL can be used with any 

language written in MOF, any model created with EMF is eligible for its use. Another 

option would have been Schematron [17], but it is more aimed to work with XML 

documents. Although the invoices are easily convertible between EMF and XML, it is 



preferable to use the models directly. This way, we support the validation of invoices 

completely at model level. 

For the development of the conversion between the different invoice formats we 

need a transformation language. To this end we have selected ATL (ATLAS 

Transformation Language). ATL [18] is an open source transformation language 

developed by the Eclipse Project. ATL designed for extensibilityhas a modular model 

transformation virtual machine and is therefore very easy to extend. The reason for 

not using QVT (Query- View – Transformation) [19] instead of ATL is that the 

former is centered in the Platform Independent Model to Platform Specific Model 

transformation of MDA. ATL is more suitable to general purpose transformations like 

the conversion of invoices from one format to another. 

One of the most important non-functional requirements of enterprise applications is 

the persistence of the information. To ease the process of storage of invoices and 

other financial information using models we decided to use Teneo [20]. Teneo is a 

database persistency solution for EMF. Starting from an Ecore model it uses 

Hibernate to generate the relational structure and provide an easy interface for the 

management of the persisted information. 

4.2   Proposed approach 

Our proposed approach consists in applying MDE techniques to support the 

validation, transformation and persistence functions required by multi-format invoice 

management systems. In order to do so, we will translate the original invoice provided 

by the issuer’s ERP to a model using EMF, and we will work with said model during 

the process, instead of dragging the original invoice document all over the operation. 

The next figure shows how the previously described process can be executed using ae 

model-centric approach. 

 

 

Fig. 2. Model-centric approach. 

The first step is to obtain a model instance from the initial invoice document. This 

is supported with the EMF functionality that, starting from an XSD schema 

automatically generates a corresponding Ecore metamodel. In addition to that, it can 



also generate a marshalling / unmarshalling layer XML documents to/from ecore 

instances. Therefore, the process of converting the original invoice into a model is 

performed with little effort. 

In this approach, taking into account that we are working at a higher level of 

abstraction, we have opted for a more extensible approach by defining a common 

invoice model, This common invoice model would be composed by elements 

common to all invoices, and all the data that, although not common, is still relevant. 

This way, every invoice specific model will be transformed to the common format as 

soon as it is imported into the platform. The common model will be created using 

EMF from scratch. 

The definition of this model is the most time consuming step of the development of 

this approach. A complex study has to be performed including all the formats that 

want to be supported by the system. Common concepts have to be extracted from all 

of them, and a special care has to be put in filtering the relevant fields and reaching a 

satisfying definition. The transformation from and to this common model must not 

incur in any loss of information. 

With this common model created, we can transform using ATL from every format 

into it and then perform any other operation with this common model. This greatly 

eases the adoption of new formats, as only the model for that format and the 

transformation from and to the common model need to be supplied. 

Once we have the common invoice model object for a given invoice, validation can 

be performed. Syntactic validation is no necessary since EMF automatically checks 

the syntax when marshalling an invoice. Therefore, only accounting validation is 

required. This validation is going to be always performed over the common invoice 

model with OCL. With OCL this validation is performed directly over the model 

information, using rules that can be easily expanded to include more complex or other 

types of validations. 

Concerning the storage of the invoice data, in the previous approach we stored the 

invoice, but in this case what we store is the matrix that allows its creation; the 

common model. For this step we decided to use Teneo, since it offers the opportunity 

to persist EMF models automatically. This means that all the information in the 

matrix can be stored in the database in properly structured tables. This way, the 

information we can search for in the database is widely expanded, and we can 

produce invoices in any of the supported formats from the data stored. 

To do this we will perform the same steps as before, but in reverse order. This is 

indicated in the figure with the two-headed arrows. The steps will be as follow: 1) 

The matrix for a given invoice (common model) is obtained from the databases. 2) 

The matrix is transformed into the desired target format using ATL. 3) The invoice, 

now in the desired format in EMF, is marshaled into XML. 4) Finally, we perform 

any remaining step like signing the invoice or sending it to the customer. 



5   Comparative analysis 

After introducing the two approaches, we will perform a comparative analysis 

between them. This way, the strong and weak points of each approach can be detected 

and an informed decision about which one should be implemented can be made. 

For this analysis we are going to center in the following aspects: 1) Initial Effort 

for implementing the approach. 2) Incremental effort for adding another format to an 

already developed system. For the purpose of this analysis we are going to impose the 

requirement for a format to be added to the system to be XML-based. 

5.1   Initial implementation 

Document-centric approach: The reusability for this approach is very low. The 

effort of developing an initial system with support for several formats is almost the 

same as the required for adding a new format as many times as format supported. The 

only reusable bits are the basic underlying infrastructure (persistence driver, external 

interfaces, GUIs) and the syntactic validation module. This way, the initial effort of 

this approach can be equated to the number of formats supported. 

Model-centric approach: One of the first concerns that need to be taken into 

account if a model-centric approach wants to be implemented, is the learning curve 

inherent to the MDE technologies. If the developers are not familiar with them, this 

initial overhead can be very high. And, although this experience can be reused in the 

future, it imposes an initial effort that should not be ignored. 

But even when the developers are already familiar with these technologies, the 

initial development of this approach is much more costly than the document-centric 

one. The main effort is going to be the common invoice format. This development is 

difficult, requires a good analysis of all the invoice formats, and has to be done by an 

expert in the field of electronic commerce. In addition to this, OCL rules for 

validating this model (accounting validation) must be defined and a database table 

structure has to be created. Luckily, some of these tasks are greatly simplified thanks 

to tools like Teneo. 

5.2   Addition of a new format 

Document-centric approach: In this approach the addition of a new format 

imposes the following developments: 1) Syntactic validation of the XML document. 

2) Accounting validation of the XML document. 3) Transformation to and from every 

other supported format. 4) Persistence of the format. 

In this case, the implementation of the syntactic validation is straightforward, since 

the code existing for any other format can be reused almost completely. However, the 

accounting validation presents a bigger problem. A profound knowledge of the new 

format is required and this validation is costly to implement since it will be very 

different to all the other formats validation. 



Transformation presents a similar problem. Knowledge of the new format is 

required. On top of that, two new transformations (one to and one from) must be 

created for each other format already supported. This imposes even another 

requirement: knowledge of not only the new format, but also every other format 

already supported. This is the dominant cost factor with this approach. 

Finally, concerning persistence of the new invoice format, this heavily depends in 

which of the three solutions proposed have been adopted. If the invoice is stored as a 

large binary object, the cost is negligible. However, if we need to extract some 

information or, even worse, create a new table structure, the development effort could 

be very high. 

Model-centric approach: 

For this approach the addition of a new format imposes only these two tasks: 1) 

Generation of the EMF model for the new format 2) Transformation to and from 

common invoice format. 

From these two developments, the first one is the easiest. This can be done almost 

automatically using the tools provided with EMF. Therefore, the effort is almost zero. 

Consequently, the only real developments are the transformations to and from the 

common invoice format. As in the previous approach, this requires knowledge of the 

new format. But, unlike before, only knowledge of the common format (and not all 

the other supported formats) is needed. On top of that, only two transformations need 

to be created. 

6   Conclusions 

In this article we have presented the main challenges behind electronic invoice 

management systems, and have presented a potential application of MDE techniques 

and technologies for addressing them. This way, the management system architecture 

is built on top of a set of functional elements which handle models of the electronic 

invoices. At this abstraction level, generation, transformation, validation and 

persistence are easily supported. This presents significant advantages when compared 

to an approach which directly manages the base XML documents, thanks to the 

increased expressivity an extensibility of the model layer.  

Although this article is focused in an specific domain (electronic invoice 

management), we believe the benefits of implementing the domain model and core 

functional blocks of a system through the use of MDE technologies have greater 

implications. At the current stage, languages and tools have reached a level of 

maturity where these specific decisions can greatly improve overall productivity and 

increase the overall quality of the resulting systems (in aspects such as extensibility or 

maintainability). 

Regarding future work, we intend to expand our model coverage so they don’t only 

capture the electronic invoices but also cover the identity information of the 

participating companies. This way, digital signature functions could be integrated into 

the model workflow, and automated validation rules could be defined for the 

information from each company. 
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