
Analysis of quality dependencies in the
composition of software architectures

Javier F. Briones, Miguel de Miguel, Juan Pedro Silva, and Alejandro Alonso

Universidad Politécnica de Madrid
{jfbriones, mmiguel, aalonso, psilva}@dit.upm.es

Abstract. A dependable system has to meet some quality criteria in
order to provide certain reliance on its operation. The quality of a sys-
tem depends on the complex composition of the quality of its subsystems.
Specifications of non-functional properties are commonly used to describe
provided quality, required quality, resource usage and resource availabil-
ity. Enclosing these specifications along with architectural models allows
performing preliminary quality assessments (design-phase analysis). We
allow configuration choices for quality specifications to represent design
choices, deployment choices, or component adaptability. We focus on a
composition study that answers to: is it possible to meet system and sub-
system requirements given provided qualities? and, which configuration
allows satisfying the requirements? The contributions of this work are:
i) to formalize the composition based on quality levels and constraints,
ii) to analyze existing quality dependencies in such a composition, iii) to
show how we represent and evaluate dependencies in a model-driven en-
vironment.

Key words: non-functional properties, preliminary assessment, soft-
ware architecture, constraint satisfaction

1 Introduction

Dependable systems are those on which reliance can justifiably be placed on the
functionality they deliver. Engineering systems to the highest reasonably prac-
ticable standards of dependability is a great challenge. Reliance covers several
aspects such as reliability, availability, safety and security; all of them can be
characterized using non-functional properties. Engineers study non-functional
properties of the system to estimate its probable dependability attributes and
accordingly, recommend quality measures to increase reliance on the system (e.g.,
additional requirements). The study can be carried out at different granularity
levels, but the earlier in the development is accomplished the more valuable
the benefits. For instance, it could be applied during the design of the architec-
ture taking into account system and subsystem extra-functional requirements;
afterwards and throughout the refinement of the architecture, measures to im-
prove system’s quality are considered and allocated to the different subsystems
and thus responsibilities broken down. Only when functional and non-functional

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148657019?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


specifications of the whole system are completely defined and a rigorous develop-
ment process is put in practice, enough confidence can be placed on the system
being developed.

Let’s consider the following three examples: a) a service to perform image
processing may output data of different qualities according to the available pro-
cessing and memory resources, b) a control system component have three opera-
tion modes each one working on different ranges of values for the input data, and
c) a software driver for a motion-detection sensor whose accuracy depends on the
hardware used existing two options available. Image quality, resource availabil-
ity, operation mode, input data ranges, hardware characteristics and detection
accuracy should be part of the quality specification.

We claim that preliminary quality assessments should be part of the rigor-
ous process. The goal is to determine whether the system architecture will be
able to deliver the required quality before starting the implementation. We focus
on the composition of the different subsystems from a non-functional point of
view. We formulate the composition problem as a configuration problem based
on three main ideas: i) there are two types of quality specifications, offered and
required constraints, that have to be matched together, ii) quality specifications
are grouped into quality levels, iii) system configuration consists of selecting a
quality level for every configuration point. Configuration points represent design
choices (example c), deployment choices (b), or component adaptability (a).
There is no difference at an early design-phase from the point of view of evaluat-
ing non-functional specifications. And this is the main goal, not only attaching
non-functional specifications to model elements of the system architecture, but
evaluating these specifications.

To explain the critical importance of the difference between offered and re-
quired constraints let’s use a simple example. An entity can be set up according
to two modes: the first one causes the value for certain non-functional prop-
erty fr (a failure rate) to be in the range (0, 0.01), the second one in the range
(0, 0.05). There is a required condition to be held: fr < 0.03. This required con-
dition is satisfied for any value of the first range, but this is not true for the
second range. If the entity is configured using the second mode, the value of
the property could be lower than 0.03 but it might be greater and this is not
admissible.

We think our work is a novel contribution in many ways. Previous work
in quality of service management do consider quality levels to group specifica-
tions of non-functional properties but there is no offered-required matching. In
the domain of web service procurement, they do find the best provider based
on matching providers’ specifications with the client’s required specification;
however, this matching is far more simple (two configuration choices: the first
choice with only one level that includes only required constraints, and the sec-
ond choice with several levels but each level only contains offered constraints).
Additionally, our work is the only formalization aiming at evaluating specifi-
cations of non-functional properties, what should be a good step forward to
leverage generic tools (instead of current ad-hoc developments) for analyzing



non-functional issues. A tool has already been implemented as proof of concept
to evaluate architectural models.

After reviewing some related work, section 2 formalizes non-functional prop-
erties and quality constraints. Section 3 formulates the composition study based
on levels and constraints. Section 4 analyzes quality dependencies and how we
evaluate them within a model-driven environment.

1.1 Related work

Initial efforts dealing with non-functional aspects of composition have been un-
dertaken in the web-service domain ([9, 12, 7]). They cover extra-functional as-
pects such as availability, security, response time, throughput and cost. Most of
the approaches applied to web services rely on the dynamic view of the system
and they are commonly based on the study of the system workflow and exe-
cution paths. They use techniques of QoS aggregation seeking to ensure SLAs
since best-effort policies are not admissible for many applications.

In the domain of critical systems, the key issue found in the literature is to en-
force contracts between subsystems. [1] remarks the importance of determining
beforehand whether a given component can be used within mission-critical appli-
cations. A subsystem needs to provide a non-functional specification providing
a kind of contract with its clients. [11] considers contracts as a modeling tech-
nology to foster the assembly of component-based applications, using case tools
to check whether the contracts are fulfilled. For the authors, abstract contracts
identified during the analysis phase are transformed in more concrete contracts
to accommodate design, implementation, deployment and runtime phases; also
new contracts can emerge as the development process advances. [10] takes this
idea further promoting QoS-aware model transformations to gradually resolve
QoS requirements in order to deliver efficient code. [4] presents the contract-
ing system, ConFract, for an open and hierarchical component model, Fractal,
that dynamically builds contracts from specifications at assembly time. It distin-
guishes three types of contracts: contract between client and server interfaces,
external composition contract referring only to the external component inter-
face to express usage, and internal composition contract to express assembly
and internal behavior rules of the implementation.

Regarding QoS specification formalisms, QoS Modeling Language (QML [6])
and the UML Profile for Modeling QoS and Fault Tolerance Characteristics and
Mechanisms are the more popular. We [5] use an extended version of the profile
complemented with the use of the Object Constraint Language.

In our work, we formalize the problem of composition of non-functional prop-
erties in a generic way, not being limited to a specific domain or to a specific
dependability aspect. It does not consider contract/requirement transformations
and deals only with a single modeling phase: the desing phase. It deals with the
issue of matching offered and required quality constraints that, in our opinion,
has not been properly covered yet.



2 Concepts formalization

2.1 Entities

We use the generic term entity to refer to the design-phase representation of
a piece of the target system. Given that the study of non-functional properties
can be done with high-level design models, the concept of entity could apply
to software and hardware. It could apply as well to different software architec-
ture and programming styles, in particular, component-based, service-oriented
architectures or concurrent programming. An entity could be a hardware com-
ponent, a software component, a software service or a significant function of the
system specified from an analysis point of view (e.g., an operation, a task, a mes-
sage passing). An entity can also be a resource with non-functional properties
describing the quantity of resource, its availability or allowed access policies.

2.2 Non-functional properties

Non-functional properties (NFPs) cannot only be used to characterize depend-
ability aspects (e.g., security, availability or safety) but also aspects not directly
related to the implemented functionality (e.g., maintainability, adherence to
standards and cost). It depends on the domain which NFPs are of interest;
for instance, reliability and timing properties are of great important in the em-
bedded systems domain. Numerous properties can be used as quality indicators
(e.g., failure rate, throughput, latency) and most of them can be considered
at different levels of granularity (e.g., system, component, service, operation).
We use the term NFP to refer the development-time representation of a system
quality property and not the value taken/measured once the system deployed.

A non-functional characteristic may be expressed using one or more proper-
ties. For example the characteristic “Latency” could include the following prop-
erties: arrival pattern, minimum period, maximum period, jitter, burst interval,
burst size, requirement type, and output jitter. Each property has its own do-
main. For instance, maximum and minimum period are positive real numbers;
burst size is a positive natural number; or requirement type one among {hard,
soft, firm}. NFPs enable to deal with complex characteristics, like one that rep-
resent an aleatory variable and its characterize based on some of the parameters
of the variable. There are several existing taxonomies of NFPs. One of them is
the ISO general QoS architecture [ISO/IEC JTC1/SC7 N2059].

Let’s consider I non-functional properties. Let xij be the variable represent-
ing the occurrence j of the non-functional property i and Dom(xij) the domain
of the variable. Let pij be a specific value taken for the variable xij . There might
be several occurrences of a non-functional property when different entities take
into account the same property. The domain of the non-functional property i
does not need not to be the same for the different occurrences.

We also define the tuples x, to represent the collection of non-functional
properties in the system and p, to represent an assignation of values to all the



properties being considered in the system. p could be e.g., an observation of the
system.

x = (x11, . . . , x21, . . . , xI1, . . . )
x ∈ Dom(x11)× · · · ×Dom(x21)× · · · ×Dom(xI1)× . . .

σ(x) = p = (p11, . . . , p21, . . . , pI1, . . . )

2.3 Quality constraints

To design a system according to its specification, non-functional properties need
to meet existing constraints. Some of the sources quality constraints arise are:
i) service level agreements; ii) extra-functional requirements due to clients or
environment; iii) explicit limitations in the value of non-functional properties
(e.g., to increase system reliability); iv) specifications of QoS provided-interfaces;
v) extra-functional requirements declared by a component/service; vi) relations
between non-functional properties of the different system parts (e.g., inter-com-
ponent dependencies); vii) quality transformations performed by a subsystem;
viii) resource usage and resource availability; and any other system condition
that necessary constrains the value of one or more non-functional properties.

Simple constraints might be represented as ranges (e.g., [0, 0.001) and [64 kbps,
∞]). More complex constraints need additional methods for their expression as
they might imply, for instance, a dependency between non-functional proper-
ties. We will use mathematical statements to represent constraints. Statements
may include, for example: comparisons (≤, <,=, >,≥), arithmetical operations
(+,−, ∗, /), logical operations (¬,∧,∨,⇒,⇔), quantifiers (∃,∀), operations over
sets (∈,∪,∩), functions (log,max), variables of any domain (boolean values, real
numbers, set of integers, set of literals) or constants (π, any value). They could
also include any modal operator of a temporal logic (e.g., linear temporal logic
and computation tree logic). Certainly, statements must be well-formed and the
number and type of the operands involved in every operation has to be correct.

The variables of the mathematical statements are the non-functional proper-
ties. A statement does not need to involve all the existing non-functional prop-
erties, nor did it need to involve all the occurrences of a property. In those cases,
some of the elements of the tuple x are not included. A simple example of con-
straint could be: “the value of the property 9 in the entity 1 must be greater
than the value of the same property in the entity 2”, represented with the first
of the following statements.

A1(x) = A1(x91, x92) ≡ x91 > x92

A2(x) = A2(x14, x15) ≡ (x14 > 3) ∧ (x15 > 2)
A3(x) ≡ ∀j(x4j > min

j=1..J
(x7j))



2.4 Offered and required constraints

We justified the existence of offered and required constraints in the introduc-
tion. An offered constraint characterizes a property whose value may fluctuate
during operation provided that the offered constraint is met. That is, only the
satisfaction of the offered constraint is ensured but not a steady value for the
properties involved. On the other hand, a required constraint is a condition over
the values taken by one or more properties. Offered constraints might imply that
there is not a single value a property can take, and to check a required constraint
we need to do it for every value a property might take. Summing up, we need
to ensure that for every value that meets the offered constraint all the required
constraints are satisfied. Both, required and offered can be expressed as mathe-
matical statements, R(x) and O(x), but whether a statement represents an offer
or a requirement gives a special nuance to the statement that changes equations
and analyses. The relationship between offered and required constraints, in case
there is only one of each type, is as follows:

∀p : O(p)⇒ R(p)

2.5 Quality levels and level choices

In many situations, a constraint cannot be set up independently. For instance,
to set up an offered constraint there is a need to set up first a specific required
constraint (e.g., to provide data of a specific precision there is a demand on the
arrival data rate). A quality level is the set of offered and required constraints
that need to be set up together. We use the variable yj to represent a set of
alternative levels and lj for a selected level in the choice. lj is a pair of sets, the
first set includes the offered constraints in the level and the second one includes
the required constraints. When there are more than one choice, we use the tuples
y and l to collect choices and selected levels respectively.

y = (y1, . . . , yJ)

l = (l1, . . . , lJ) lj = (lOj , l
R
j ) = ({Oj1(x), . . . }, {Rj1(x), . . . })

We define the formalisms O(l,x) and R(l,x) to express the joint satisfaction
of all the offered or required constraints from the selected levels.

O(l,x)⇔ ∀O(x) ∈ ∪j=1..J lOj : O(x)

R(l,x)⇔ ∀R(x) ∈ ∪j=1..J lRj : R(x)

2.6 Constraints on quality levels

Up to now, we have only considered constraints on non-functional properties.
Nevertheless, constraints on level choices could be of use in many situations.



This type of quality constraint identify high-level dependencies. For instance,
the activation of certain quality level by an entity does require some other qual-
ity levels to be operative, of the same entity or other entities. As we did with
previous constraints, we express level constraints by means of mathematical state-
ments F (l) that may involve several quality level choices l. A simple example of
constraint on quality levels could be: “if level l1 is selected then l3 and l5 must
be selected”, that could be represented with the following statement.

F = {(y1, y3, y5) ∈ Dom(y1)×Dom(y3)×Dom(y5)|(y1 = l1 ⇒ y3 = l3 ∧ y5 = l5)}
F (y) = F (y1, y3, y5) ≡ (y1 = l1 ⇒ y3 = l3 ∧ y5 = l5)

3 Preliminary quality assessment

System engineers should define non-functional properties, quality constraints
and quality levels. Only when this is done, they can carry out a composition
study to check whether the different entities can be assembled from a quality
point of view. The problem formulation is three-folded: i) is it possible to meet
system and entity requirements given existing entities?, ii) which configuration
allows satisfying the requirements?, iii) which of these configurations is the best
one according to certain criteria? There are several concepts related to the the
solution of the problem raised:

Configuration A configuration is a set up of alternative constraints/levels for
system choices.

Admissible configuration It is a configuration that ensures that every re-
quired constraint in the configuration is satisfied. The collection of every
admissible configuration s will be represented with S.

Optimal admissible configuration Admissible configurations could be com-
pared if there exists a function f(s)|s∈S to compare them. If we suppose
that the higher the function value the better the system configuration, the
optimal admissible configuration s∗ fulfills the following equation:

s∗ ∈ S | ∀s ∈ S : f(s∗) ≥ f(s)

3.1 Composition based on quality levels

In the composition scenario raised in this paper, offered and required constraints
are grouped into quality levels. We aim at finding an admissible configuration
i.e., a combination of levels l that makes the system composable. A system can
be composed when for every p that meets the offered constraints of the selected
levels, all the required constraints of the selected levels are satisfied. The set S
includes every admissible configuration.

∃l∀p : F(l) ∧ (O(l,p)⇒ R(l,p)) (1)

S = {l | ∀p : F(l) ∧ (O(l,p)⇒ R(l,p)} (2)



4 Quality dependencies

We work in a model-driven development environment so we seek a way to include
quality information (i.e., non-functional properties and quality constraints) along
with system models, and the ability process that information in a model-driven
way.

We use constraint satisfaction techniques to find admissible configurations.
A constraint satisfaction problem (CSP) is defined as a triple (x, Dom(x),C(x))
where x is a set of variables, Dom(x) is a set of domains, and C(x) is a set of
constraints. The goal of a constraint satisfaction problem is defined as:

∃p ∈ Dom(x) : C(p) (3)

Due to the fact that everything is a constraint in a CSP, to model the compo-
sition problem as one of constraint satisfaction we need to find all the constraints
that enable to match equations 1 and 3. Consequently, besides offered O(x) and
required R(x) constraints, we have to find other constraints included in quality
dependencies. This section deals with all the quality dependencies found in the
composition problem.

The first approach to solve the composition problem was to use search algo-
rithms and constraint checking. The solver is a tree algorithm that traverses the
search space evaluating at each node those dependencies that can be evaluated
because all the variables of the dependency are assigned. This solver requires
a way to evaluate constraints, returning true or false, given an assignment for
all the variables of the dependency. It does not implement constraint solving
techniques so it does not evaluate constraints with unassigned variables; it is
easier, having the simple mathematical constraint x11 ≥ x12 + x13, to evaluate
the function for (x11 = 6, x12 = 2, x13 = 3) than calculating the value of x11 for
(x11, 2, 3).

4.1 Offered and required constraints

Offered and required constraints restrict the domain of allowed values for one
or more non-functional properties. A constraint that relates two (or more) non-
functional properties implies an explicit dependency between the properties e.g.,
a dependency between certain video quality property and a resource-usage prop-
erty. This explicit dependency is represented by the inclusion of more than
one property xij in a quality constraint O(x) or R(x). An example could be
R1(imgFrame,mem1) ≡ mem1 >= 32 ∗ imgFrame. Quality dependencies can
also be found when there are quality constraints on the same non-functional
properties, and these constraints need to be satisfied together. For instance,
if there is another constraint relating certain sound quality property and the
same resource-usage property, there is an implicit dependency between video and
sound quality. As a result, a component might be unable to deliver the highest
quality for sound and video at the same time because there are not enough re-
sources. This implicit dependency is represented by the joint satisfaction of con-
straints (tuple of statements) O or R. In the example, we add the constraints



R2(sndSample,mem2) ≡ mem2 >= 8 ∗ sndSample and R3(mem1,mem2) ≡
mem = mem1 +mem2

We [2] are currently using the OMG standard “UML Profile for Modeling QoS
and FT Characteristics and Mechanisms”. We categorize non-functional proper-
ties creating what it is called a QoSCatalog. Required and offered constraints are
modelled as QoSRequiredConstraint and QoSOfferedConstraint. Mathematical
statements used to specify these constraints are defined in the Object Constraint
Language. We reuse available OCL tools to evaluate constraints. We used the
Eclipse UML OCL plug-in to evaluate OCL expressions against instances of ele-
ments of the QoSCatalog, so we have to create these instances prior to evaluation.
Mathematical statements currently allowed are those that can be represented
with OCL expressions and are well-formed expressions.

4.2 Quality negotiations

We call quality negotiation to the set of offered and required constraints on
the same non-functional properties. We use the same term used in (run-time)
adaptable systems however, our negotiation occurs at design-time and the ne-
gotiation broker is the composition tool. For a configuration to be admissible,
every combination of NFP values that satisfy the offered constraints in the con-
figuration has to meet required constraints. For instance, a required transmission
rate greater than 2 Mbps is satisfied by an offered rate of 3 Mbps, but not by
one of 1 Mbps. During the composition required qualities need to match offered
qualities. A quality negotiation is a dependency that involves offered and re-
quired constraints on the same non-functional properties. This dependency is
included in the entailment O(l,p) ⇒ R(l,p) that synthesizes the relationship
between offered and required constraints. In the example, R11(tx) ≡ tx >= 2,
O21(tx) ≡ tx >= 3, and O21(tx)⇒ R11(tx).

We cluster constraints programmatically that is, system engineers do not
have to group related offered and required constraints. We use the QoSContext
of the constraints, an element of the QoS Profile that identifies which properties
are used by the constraint. To evaluate negotiations we check a set of required
constraints against a set of offered constraints. This is not a standard use of OCL,
so we had to create tool-support to allow this checking. The Eclipse UML OCL
plug-in was reused to parse and handle OCL expressions. Our evaluator checks
if for any NFP value satisfying offered constraints, the required constraints are
satisfied. Currently, we are able to evaluate quality negotiations which include
real and integer values and some operators (+, −, >, <, ≥, ≤, and, or). We are
extending the number of types (string , enumeration) and operators (=, ∗, /). We
need to study the viability of using other logical OCL operators (implies, forAll,
exists). Our final goal is to evaluate negotiations including any well-formed OCL
expression.



4.3 Quality functions and constraints on levels

A quality function describes how an entity internally behaves from a quality
point of view that is, how output quality is obtained from input quality (e.g.,
resource-usage). Some entities do not need a quality function, e.g, resources; to
model a network only its throughput should be specified as output quality and
there is no input quality. As opposed to quality negotiations, quality functions
need to be modeled by system engineers (typically by those who implement the
subsystem). We do not restrict how this function is modeled on the condition
that it is machine-processable e.g., i) a “low-level” statement relating input and
output NFPs (using required quality constraints), ii) a constraint expression that
needs to be satisfied by the quality levels selected (using constraints on levels).
The first approach does not need any additional implementation as functions are
expressed using required constraints. Nevertheless, we preferred to implement
the second approach as well. The main reason for this choice is that quality
functions are dependencies intra-entities and the developer of the entity has all
the knowledge to characterize it.

To better explain the use of constraints on levels to characterize quality func-
tions, let’s use as example a video compression software component that is config-
urable with different algorithms and where selected algorithm and compression
parameters are interrelated. Quality levels could be used to group: i) algorithms
and algorithm configurations, ii) resource-usage, iii) and other compression pa-
rameters. The design could call “Best algorithm” to a level that includes the best
algorithm in its best configuration, “Best compression rate” to a level including
the highest compression rate, and “Most efficient” to a level including the most
efficient resource-usage. For the component, only the “Best algorithm” provides
the “Best compression” and is the “Most efficient”. Other algorithms cannot
provide these two levels together. Quality functions expressed as constraints on
levels are explicit dependencies when more than one level yj are included in the
constraint F (y). In the example, F (y1, y2, y3) ≡ y2 = bestCompression ∧ y3 =
mostEfficient⇒ y1 = bestAlgorithm.

Some add-ons to the QoS profile were needed to allow modeling configuration
based on levels. For instance, there is a need to specify the choice that groups the
quality levels in a configuration point(see [3]). As with quality negotiations, we
had to create an evaluator to check level constraints. Quality functions do need
to be evaluated for a specific system configuration as opposed to quality negotia-
tions where required constraints were evaluated against offered constraints. The
evaluator overrides the default OCL evaluator to have contextual information
about the configuration that needs to be checked i.e., to check whether some
levels are active within a system configuration.

5 Conclusion

This paper, after explaining some required concepts, formulates the composition
problem based on quality levels by matching offered and required constraint.
Problem solving is simplified by using choices with a finite number of quality



levels what enables the use of constraint satisfaction techniques. These tech-
niques use search algorithms that are complete and optimal for the problem
formulated. Search algorithms transform the problem into evaluating dependen-
cies. This is the reason why quality dependencies were analyzed in detail. We
have developed a model-driven tool to analyze quality composition and this pa-
per provides some detail of how dependency evaluation has been implemented.
One of the main reason to use a model-driven approach is that quality informa-
tion is attached to system elements so consistency and traceability is achieved
seamlessly.

How is the problem solved if quality levels are not used? We have studied
how to solve the problem and there are different alternatives e.g., linear algebra,
linear programming, mixed integer programming, non-linear programming or
constraint satisfaction. All of the alternatives but constraint satisfaction highly
depend on the shape of the constraints/statements. Constraint satisfaction ex-
ternalize the evaluation of dependencies so that evaluators can be created for
the kind of constraints existing in the system. What kind of problems cannot be
solved using constraint satisfaction? Imagine a system composed by five sub-
systems and four of them have their non-functional properties defined. It is not
possible to know the range of values allowed for the last subsystem with con-
straint satisfaction. A workaround would be to fake some quality levels and check
quality composition but we still do not calculate the exact range. What kind of
problems cannot be solved using quality levels? Imagine a subsystem that is able
to offer any value of a range and each precise value signifies a different cost. For
example, if a deterministic network protocol allows making reservations of any
throughput rate and we fake a discrete number of levels, we could be wasting
network bandwidth forcing a higher rate than needed (we needed 53 and we are
obligated to 64 kbps).

As future work we want to allow including custom operators in OCL expres-
sions. Users will be able to create evaluator for the desired operators and plug
them into the tool. We are also exploring the use of constrain logic programming
to add constraint solving techniques such as propagation and pruning.

References

1. Antoine Beugnard, Jean Marc Jézéquel, Nol Plouzeau, and Damien Watkins. Mak-
ing components contract aware. Computer, 32(7):38–45, 1999.

2. Javier Fernández Briones, Miguel Angel de Miguel, Alejandro Alonso, and Juan Pe-
dro Silva. Modeling quality of service adaptability. In Enterprise Distributed Object
Computing Workshops (Advances in Quality of Service Management), Interna-
tional Conference on, volume 0, pages 50–27, Los Alamitos, CA, USA, 2008. IEEE
Computer Society.

3. Javier Fernández Briones, Miguel Angel de Miguel, Alejandro Alonso, and Juan Pe-
dro Silva. Quality of service composition and adaptability of software architectures.
In 12th IEEE International Symposium on Object component service-oriented Real-
time distributed Computing, 2009.

4. Philippe Collet, Roger Rousseau, Thierry Coupaye, and Nicolas Rivierre. A
contracting system for hierarchical components. In George T. Heineman, Ivica



Crnkovic, Heinz W. Schmidt, Judith A. Stafford, Clemens A. Szyperski, and
Kurt C. Wallnau, editors, Component-based Software Engineering, volume 3489
of Lecture Notes in Computer Science, pages 187–202. Springer, 2005.

5. Miguel Ángel de Miguel. QoS modeling language for high quality systems. In
WORDS, pages 210–216, Los Alamitos, CA, USA, 2003. IEEE Computer Society.

6. Svend Frolund and Jari Koistinen. Quality of services specification in distributed
object systems design. In COOTS’98: Proceedings of the 4th conference on
USENIX Conference on Object-Oriented Technologies and Systems, pages 1–1,
Berkeley, CA, USA, 1998. USENIX Association.

7. Michael C Jäger. Optimising Quality of Service for the Composition of Electronic
Services. PhD thesis, Technische Universitt Berlin, 2007.

8. Jean Marc Jézéquel. Model Driven Engineering for Distributed Real Time Em-
bedded Systems, chapter Real Time Components and Contracts. Hermes Science
Publishing Ltd, London, 2005.

9. Daniel A. Menascé. QoS issues in web services. IEEE Internet Computing, 6(6):72–
75, 2002.

10. Arnor Solberg, Jon Oldevik, and Jan Oyvind Aagedal. A framework for qos-aware
model transformation, using a pattern-based approach. In Robert Meersman and
Zahir Tari, editors, CoopIS DOA ODBASE 2, volume 3291 of Lecture Notes in
Computer Science, pages 1190–1207. Springer, 2004.

11. Torben Weis, Christian Becker, Kurt Geihs, and Noël Plouzeau. A uml meta-model
for contract aware components. In UML01: Proceedings of the 4th International
Conference on The Unified Modeling Language, Modeling Languages, Concepts,
and Tools, pages 442–456, London, UK, 2001. Springer-Verlag.

12. Liangzhao Zeng, Boualem Benatallah, Marlon Dumas, Jayant Kalagnanam, and
Quan Z. Sheng. Quality driven web services composition. In WWW ’03: Proceed-
ings of the 12th international conference on World Wide Web, pages 411–421, New
York, NY, USA, 2003. ACM.


