
Evaluating non-functional properties globally

Javier Fernández Briones Alejandro Alonso
Miguel Ángel de Miguel Juan Pedro Silva Gallino

ETS Ingenieros de Telecomunicación

Universidad Politécnica de Madrid

jfbriones@dit.upm.es

Abstract

Real-time systems are usually dependable sys-

tems which, besides timing constraints, have

to meet some other quality criteria in order

to provide certain reliance on its operation.

For this reason, a key issue in the develop-

ment of this kind of system is to trade off

the different non-functional aspects involved

in the system e.g., time, performance, safety,

power, or memory. The success of the develop-

ment process is often determined by how ear-

lier we can make thorough assumptions and

estimations, and hence, take careful decisions

about non-functional aspects. Our approach

to support this decision activity is based on

treating non-functional properties and require-

ments uniformly, and still supporting specific

evaluation and analysis.

1 Introduction

Real-time systems are often dependable sys-

tems. Dependable systems are those on which

reliance can justifiably be placed on the func-

tionality they deliver. Reliance covers several

aspects such as reliability, availability, safety

and security; all of them can be characterized

using non-functional properties. Engineering

systems to the highest reasonably practicable

standards of dependability is a great challenge.

Failing to do it increases the likelihood of haz-

ards and malfunctions caused by those sys-

tems. The consequences range from merely

inconveniences, e.g. poor quality in a video

application, to the loss of human lives. Only

enough confidence can be placed on the sys-

tem being developed when functional and non-

functional specifications are completely de-

fined and a rigorous development process is

put in practice.

We claim that preliminary quality assess-

ments should be part of this rigorous pro-

cess. Within these assessments, engineers

study non-functional properties during the de-

sign of the system to estimate its probable de-

pendability attributes. The goal is to check

whether the system will be able to meet the

requirements on those attributes. Addition-

ally, this study will support engineers in rec-

ommend quality measures to increase reliance

on the system (e.g., supplementary require-

ments), and optimize the system according to

some of the non-functional aspects.

One of the key issues to tackle during the as-

sessment is to trade-off non-functional aspects

because they are often in contradiction. For

example, there might be no alternative to meet

all tasks’ deadlines that using a faster proces-

sor, but this will increase power consumption

and cost. That is why non-functional aspects

cannot be considered in isolation and need to

be studied simultaneously. This statement be-

comes more relevant when optimization is in-

volved. During optimization, at the time the

value of one non-functional property is im-

proved, other non-functional properties’ values

are being pushed towards its limits.

Our approach aims at performing prelimi-

nary quality assessments that take into consid-

eration all non-functional properties simulta-

neously, so that we support trade-offs solving.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148656997?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This work is based on a number of key points:
i) consider non-functional properties in an ho-
mogeneous way: typed variables with a given
domain; ii) formalize any dependency among
non-functional properties explicitly: mathe-
matical statements which define relations on
previous variables; iii) consider several value
specification models for non-functional prop-
erties: a steady value, or just a condition on a
number of non-functional properties.

Section 2 describes the concept of non-
functional property and the uses of the con-
cept, while section 3 shows how we repre-
sent and formalize them. Section 4 proposes
to quantify and formalize requirements. Sec-
tion 5 formulates the problem of checking re-
quirements satisfaction. Section 6 proposes
another specification model for non-functional
properties values, and section 7 reformulates
the problem using the new model. Last sec-
tion provides some concluding remarks.

2 Non-functional properties

We use non-functional properties (NFPs) to
represent those system, subsystem, or com-
ponent attributes which are not needed to
implement the desired functionality but, on
the other hand, they are required to obtain
a quality system and to lead a successful de-
velopment process. They may describe qual-
ity or dependability aspects of such function-
ality (e.g., security, availability or safety), but
also aspects not directly related to the imple-
mented functionality (e.g., adherence to stan-
dards and cost). Non-functional aspects have
been categorized in different works and stan-
dards e.g.: ISO/IEC 9126-1 [1], IEEE Std 830-
1998 [2], McCall and Matsumoto quality fac-
tors [3], Volere requirements taxonomy [4], or
Firesmith requirements taxonomy [5]. Exam-
ples of non-functional aspects often under con-
sideration are: availability, interoperability,
maintainability, performance, recovery, relia-
bility, scalability, security, safety, or usability.
It depends on the domain what non-functional
aspects are of interest; for instance, reliability
and timing properties are of great important
in the embedded systems domain.

There is an existing confusion about the
concept non-functional property due to the use
of the same concept with different meanings.
In fact, the confusion is around the value given
to the non-functional property.

• Measured. The value of the property
once the system is deployed and in oper-
ation. It is an empirical observation, and
hence it requires the implementation to
be completed; however, measured values
of reused subsystems/components can be
exploited during the development of new
systems. Measured values depend on the
instant of time when they are measured
and on the way they are measured. They
are usually accompanied by an accuracy
expression.

• Estimated. The value is just an estima-
tion so the value might not be held by the
non-functional property. Estimations are
typically made during development and
involve making assumptions about the en-
vironment, the design, and the compo-
nents used. Historical data and domain
engineers’ experience are means to ensure
right estimations.

• Calculated. The value is derived from
other non-functional properties. A calcu-
lated value is often a prediction because
it depends on estimated values and/or on
imperfect assumptions about how it is de-
rived.

We consider non-functional properties to be
fine-grained attributes. What properties are
to be used depend on the kind of value. For ex-
ample, to represent the arrival of events into a
system: i) the properties for a measured value
could be a list of time instants either using ab-
solute time or relative time (time elapsed with
the previous event); ii) after examining his-
torical data, an estimated value could use the
probability mean and the standard deviation
of a normal distribution; and iii) once some
calculations have been performed, we can ar-
rive at e.g., the minimum and maximum inter-
arrivals periods or the burst size and period.

Regardless of the kind of value to repre-
sent, each non-functional property is a vari-

48 III Simposio de Sistemas de Tiempo Real

able with a given type and explicit domain.
For instance, maximum and minimum period
are positive real numbers; burst size is a posi-
tive natural number; or the probability distri-
bution can take one of the literals in the set
{normal, exponential, poisson, bernouilli}.

Let xi be the typed variable representing the
non-functional property i and Dom(xi) the do-
main of the variable. Let pi be a specific value
taken for the variable xi. Let’s also define the
tuples x, to represent the collection of non-
functional properties in the system, and p, to
represent an assignment σ of values to all the
properties being considered in the problem.

x = (x1, . . . , xI)

p = (p1, . . . , pI) = σ(x)

pi = σ(xi) ∈ Dom(xi)

e.g., t = 3 ms.

3 NFPs representation

We are only concerned about non-functional
properties at development time. We would
like to express (reused-)measured values, es-
timated values and calculated values in an ho-
mogeneous way. For this reason, we will ex-
press non-functional properties using mathe-
matical statements O(x). They are equalities
with the non-functional property under con-
sideration at the left side. Measured and es-
timated values use statements that comprise
only one non-functional property. The follow-
ing are two examples for failure rate and time.

O1(r) ≡ r = 0.001

O2(t) ≡ t = 3 ms

Calculated values use mathematical state-
ments which depend on several non functional
properties. For example, the frequency is the
inverse of the period, or the failure rate of
a system composed by two components in a
pipeline architecture is given by the product
of the components’ failures rates.

O1(f, t) ≡ f = 1/t

O2(r, r1, r2) ≡ r = r1r2

Calculated values usually involve complex
compositional analysis models, which are not
the topic of our work. As an example, the
end-to-end latency can only be estimated tak-
ing into consideration: components arrange-
ment, processing times and buffering mecha-
nisms. The non-functional aspects with more
research are task scheduling, performance and
reliability. There is a lot of work trying to
predict non-functional properties of an as-
sembly, such as a component-based system,
from the known properties of their parts e.g.,
SEI’s work in Predictability by Construction
and its initiatives Prediction-Enabled Compo-
nent Technology (PECT) and Predictable As-
sembly from Certifiable Components (PACC).
Crnkovic et al. [6] classify non-functional
properties according to how they can be de-
rived from the properties of the components
involved. They can be: directly composable,
architecture-related, derived, usage-dependent
or system-environment context. However, the
authors acknowledge that it might be difficult
to model these dependencies. Our approach
aims at providing room to all these composi-
tional analysis models.

4 Requirements on NFPs

Whenever possible, requirements have to be
expressed quantitatively. Some of the bene-
fits of quantifying requirements are: i) to chal-
lenge, and thus improve, requirements, ii) to
formalize requirements in better ways e.g., us-
ing mathematical expressions, and iii) to en-
able validation and analysis of requirements.
To specify requirements quantitatively: first
we have to identify attributes of the require-
ments that are measurable, and then, to de-
fine a metric to express the attributes. In case
of non-functional requirements, this means to
identify the non-functional properties involve
in the requirements. Although quantifying re-
quirements can be difficult, several techniques
should help. In [7] two of the best tech-
niques for quantification are discussed: Vol-
ere’s method [4] and Planguage [8]. The au-
thor recognizes that none of them solves all
the problems of requirements quantification.

Sistemas distribuidos 49

Quantification is very important in the kind
of evaluation we propose. Typed variables
should enable the use of qualified properties,
however we acknowledge the need for a mech-
anism to determine the order relation of enu-
meration literals when dealing with optimiza-
tion.

A requirement comprises one or several non-
functional properties. As with non-functional
properties, we use mathematical statements
to formalize requirements. Requirements are
all boolean statements, so they will be also
called required constraints. R(x) defines the
condition to be held by the values of the non-
functional properties involved. In other words,
an assignment of values p will satisfy the re-
quirement when R(x) is true. The relation
R = {p|R(p)} consists of all the assignments
that satisfy the condition. The following are
two examples of requirement: the first one is
a restriction on the power consumption, and
the second one relates the inter-arrival time to
the execution period.

R1(p) ≡ p ≤ 3 mw
R2(t, T) ≡ t ≥ T

The concept of requirement on non-
functional properties is sometimes differenti-
ated from the concept required non-functional
property. This last concept is similar to the
concept of required functional interface of a
component. There is no difference between the
two concepts for the kind of assessment pro-
posed in this paper, and both are requirements
to be satisfied.

Sometimes, requirements cannot be fulfilled
all together. Altering the system architecture
might lead to different compositional analysis
models that enable to satisfy the requirements.
Nevertheless, this might not be possible and
one or more requirements have to remain un-
fulfilled. This is why a way to categorize re-
quirements should be made available to en-
gineers e.g.: firm/guarantee, soft/best-effort,
soft/threshold-best-effort. A better approach
would be to quantify the satisfaction level.

5 Problem formulation (I)

Only when system engineers have defined re-
quired constraints, they can check whether the
constraints are satisfied given the domain of
the non-functional properties. Engineers can
restraint the search space providing the value
specification of some non-functional proper-
ties. The problem is two-fold:

1. Is it possible to meet existing require-
ments knowing there is no value specifi-
cation for the non-functional properties?

∃p ∈ Dom(x) : ∧kRk(p)

2. Is it possible to meet existing require-
ments given that every non-functional
property is specified?,

∧kRk(p) = true

There are several concepts related to the
problem raised:

Valid observation. It stands for any assign-
ment p of values to the non-functional
properties that meets the required con-
straint.

Feasible region. It is the collection of every
valid observation.

Optimal configuration. Observations can be
compared if there exists a function
f(x)|x∈S to compare them. If we suppose
that the higher the function value the bet-
ter the observation, the optimal configu-
ration p∗ fulfills the following equation:

p∗ ∈ S | ∀p ∈ S : f(p∗) ≥ f(p)

6 NFPs specification models

A non-functional property can only hold a
value at a given time. However, we have seen
that the concept non-functional property is
used to represent a promised/potential value.
In this section, we would like to draw reader’s
attention into another type of specification
model for the values of non-functional proper-
ties. We call the model used so far single-value

50 III Simposio de Sistemas de Tiempo Real

specification of NFP, and the model in this sec-
tion multi-value specification (they are named
asymmetric and symmetric model in [9]).

At development time, it is important not
only to be able to specify a single value for a
non-functional property but also a set of values
for that property i.e., the set of values where
the developer promises the actual value will fit
in. This is useful for two reasons mainly:

• Actual values are often non-steady and
fluctuate during operation. In these sit-
uations, engineers are only able to define
a range or a condition about the actual
values

• We need to be able to express derived
properties independently of how the in-
dependent variables are specified. For ex-
ample, the inter-arrival time can be spec-
ified using either the minimum and max-
imum value, or the mean and maximum
deviation (jitter). The inter-arrival fre-
quency is the inverse of the inter-arrival
time, and we need to specify it indepen-
dently of the way time is formalized (ac-
knowledging time is a set of allowed val-
ues).

We represent the set of allowed values using
mathematical relations O = {x|O(x)}. O(x)
is a boolean mathematical statement that de-
fines the condition we ensure will be held by
the value of the non-functional property. An
assignment of values p will be allowed when
the mathematical statement O(x) is true, so p

belongs to the relation O. We call O(x) offered
or provided constraint. Offered constraints
can be used to express calculated values since
they can involve several non-functional prop-
erties.

The following is an example of single-value
specification of non-functional properties. The
main problems of this specification model is:
verbosity and usability.

O1a(tmin) ≡ tmin = 2.9ms
O1b(tmax) ≡ tmax = 3.1ms

O2a(tmax, fmin) ≡ fmin = 1/tmax

O2b(tmin, fmax) ≡ fmax = 1/tmin

And the following is an example of multi-value
specification of non-functional properties.

O1(t) ≡ 2.9 ms ≤ t ≤ 3.1 ms
O2(t, f) ≡ f = 1/t

7 Problem formulation (II)

The use of the multi-value specification model
demands to change the formalization of the
problem. Now, when a property is specified,
required constraints have to be satisfied for
all the values meeting that value specification.
We need to ensure the satisfaction of all the
required constraints for every potential value
the property might hold. The second formula-
tion of the problem becomes:

∀p ∈ Dom(x) : ∧jOj(p) ⇒ ∧kRk(p)

This constraint is also valid for single-
value specifications: it degenerates into
(∧kRk(p) = true) in case of using single-
value specifications only (there will be only
one p to check since every variable has only
one assigned value)

8 Concluding remarks

We have formulated the problem of assess-
ing non-functional properties globally as op-
posed to evaluating each non-functional aspect
individually. Dealing with (and formalizing)
value specifications and requirements on non-
functional properties uniformly should be a
good step forward to leverage generic tools (in-
stead of current ad-hoc developments). How-
ever, we recognize that we do not ease the eval-
uation of the properties and we only support
decision-making about existing trade-offs be-
tween the different aspects.

After formulating the problem raised in this
paper, it is possible to study different solver
alternatives. The type and complexity of the
statement Oj(x) and Rk(x) are key issues to
decide the solver to use. The use of a single-
value specification model makes the problem
more tractable because evaluating for a single
value is easier than for a set. As an example,

Sistemas distribuidos 51

linear programming techniques could be of use
if mathematical statements comprise only lin-
ear functions and inequations.

Optimization is only possible when there is
a at least one unspecified variable (one degree
of freedom). The problem of providing value
specifications for non-functional properties is
that it might leave no room to optimization.
Some of our previous work [10, 11, 12] tack-
les alternative value specifications i.e., given
a number of value specifications from the do-
main how to choose the one that satisfies the
requirements. These choices can be used to
represent design alternatives, deployment op-
tions, operation modes or entities adaptability.
At the design-phase, they all can be considered
the same regarding our goal: the assessment of
non-functional requirements.

References

[1] “ISO/IEC 9126–1: software engineering
— product quality — part 1: Qual-
ity model,” International Organization
for Standardization/International Elec-
trotechnical Commission, Standard 9126-
1, June 2001.

[2] “IEEE Std 830: recommended practice
for software requirements specifcations,”
Institute of Electrical and Electronics En-
gineers, IEEE Standard 830, June 1998.

[3] J. A. McCall and M. T. Matsumoto,
“Software quality measurement manual,”
General Electric Company and Rome Air
Development Center, Tech. Rep. RADC-
TR-80-109 Part II, April 1980.

[4] S. Robertson and J. Robertson, Master-
ing the Requirements Process. Addison-
Wesley Professional, Aug. 1999.

[5] D. G. Firesmith, “Common concepts un-
derlying safety, security, and survivability
engineering,” Carnegie Mellon Software

Engineering Institute, Technical Note
CMU/SEI-2003-TN-033, December 2003.

[6] I. Crnkovic, M. Larsson, and O. Preiss,
“Concerning predictability in dependable
component-based systems: Classification
of quality attributes,” in Architecting De-
pendable Systems III, vol. 3549. Springer
Berlin / Heidelberg, 2005, pp. 257–278.

[7] N. Maiden, “Improve your requirements:
Quantify them,” IEEE Software, vol. 23,
no. 6, pp. 68–69, 2006.

[8] T. Gilb, Competitive Engineering: A
Handbook For Systems Engineering,
Requirements Engineering, and Soft-
ware Engineering Using Planguage.
Butterworth-Heinemann, Aug. 2005.

[9] A. R. Cortés, O. Martín-Díaz, A. D. Toro,
and M. Toro, “Improving the automatic
procurement of web services using con-
straint programming,” Int. J. Cooperative
Inf. Syst., vol. 14, no. 4, pp. 439–468,
2005.

[10] J. F. Briones, M. A. de Miguel, A. Alonso,
and J. P. Silva, “Modeling quality of
service adaptability,” in Enterprise Dis-
tributed Object Computing Workshops
(Advances in Quality of Service Man-
agement), International Conference on,
vol. 0. Los Alamitos, CA, USA: IEEE
Computer Society, 2008, pp. 50–27.

[11] ——, “Quality of service composition and
adaptability of software architectures,” in
12th IEEE International Symposium on
Object component service-oriented Real-
time distributed Computing, 2009.

[12] J. F. Briones, M. A. de Miguel, J. P. Silva,
and A. Alonso, “On the requirements for
quality composability modeling and anal-
ysis,” in MoBE, 2010.

52 III Simposio de Sistemas de Tiempo Real

