
Resource Management for Enhancing Predictability in Systems with Limited
Processing Capabilities

Alejandro Alonso
Dept. Ingenierı́a de Sistemas Telemáticos

Universidad Politécnica de Madrid
aalonso@dit.upm.es

Emilio Salazar
Dept. Ingenierı́a de Sistemas Telemáticos

Universidad Politécnica de Madrid
esalazar@dit.upm.es

Jorge López
Dept. Arquitectura y Tecnologı́a de Sistemas Informáticos

Universidad Politécnica de Madrid
jlopez@datsi.fi.upm.es

Abstract

There is an increasing demand for computing systems
composed by heterogeneous computers, connected by dif-
ferent types of networks, and that allow for accessing a
wide range of services in a seamless way. Some of those
computers are mobile or embedded and have limited re-
sources, and can be overloaded when trying to handle
their users demands. Then it is not possible to ensure a
proper behaviour of the running applications. This can be
an important problem when dealing with critical events in
healthcare, home surveillance, or forest monitoring.

Resource reservation is a valid basis for handling this
issue. It allows for guaranteeing a certain resource share
for applications that are important for the proper behav-
ior of a given system. This paper describes an implemen-
tation of a resource management component and its in-
tegration in the Linux kernel. This piece of software has
allowed to assign CPU budgets to standard Java threads,
which is an important facility, given the widespread of this
programming language. This implementation has been
validated on service oriented middleware, where relevant
services are executed by thread with guaranteed budget,
to improve its predictability.

1 Introduction

Computer systems are increasingly part of our daily
life. They are integrated into everyday objects and ac-
tivities. It is common to carry one or more devices with
computing and communication capabilities, or to rely on
computers for the correct behavior of our daily used ap-
pliances and objects. This also implies that there are im-
portant requirements on their correct behavior.

The current trend is to use these devices as the mean
for accessing a wide range of remote services, interact

with powerful servers, or get contextual information from
other devices. There are a large number of efforts trying
to facilitate the development of such type of applications.
Some examples can be found by just looking at research
projects funded by the European Union, such as:

• MORE [12]: This project has developed a network-
centric middleware intended to develop heteroge-
neous distributed systems that must collaborate in or-
der to provide a given service to the end user. Its
main features are to facilitate communication and
distributed intelligence between groups and users, to
provide a middleware appropriate for embedded sys-
tems that facilitates the relation with persons, and to
provide an API that hides the underlying complexity
in the communication between embedded devices to
the developer.

• SMEPP [17]: This project has developed a network-
centric middleware oriented towards peer-to-peer
embedded systems. In this scenario, all the elements
of the network are symmetrical. The middleware
should be secure, generic and highly customizable,
allowing for its adaptation to different devices (from
PDAs and new generation mobile phones to embed-
ded sensor actuator systems) and domains (from crit-
ical systems to consumer entertainment or communi-
cation).

• EMMA [3]: This project tried to deal with the trend
that networks link smart devices, in addition to peo-
ple. These devices share information, knowledge and
services anywhere anytime. These networks of smart
devices can be mission critical for application do-
mains, such as transport. The project will developed
a middleware intended to hide the complexity of the
underlying infrastructure while providing open inter-
faces to third parties. It also fosters cost-efficient am-
bient intelligence systems with optimal performance,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148656981?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

high confidence, reduced time to market and faster
deployment.

• HYDRA [6]: This project aimed at providing a mid-
dleware that allows the incorporation of heteroge-
neous physical devices into their applications by of-
fering easy-to-use interfaces for controlling any type
of physical device. The middleware intends to allow
transparent communication means and to support dif-
ferent types of communication protocols. It is based
on web services and provides means for basic op-
erations, such as device and service discovery, P2P
communications and diagnostics.

The type of applications targeted by these projects
has some common characteristics, such as : i) enabling
the connection to a potentially large number of embed-
ded, mobile or powerful computers, ii) getting informa-
tion from different devices, for composing a relevant view
of a given context, iii) detecting and handling meaningful
events, iv) showing the information and services that the
user is interested anytime, v) allowing access to all this
facilities from mobile devices.

These mobile and embedded devices use to have lim-
ited resources, which implies that there are situations
where it is not possible to ensure a proper behavior of all
the running applications. This is the case when the re-
sources required are larger than those available. In this
situations, there are critical applications that may behave
in an undesirable way.

There are initiatives for using this type of systems
for supporting applications with safety and dependabil-
ity requirements, such as healthcare, forest monitoring,
or home control. In these applications, there are events
that must be handled in a predictable and dependable way.
As an example of a healthcare application, the mobile
phone can be connected with devices for measuring blood
pressure or blood glucose level for patients with diabetes.
These measurements can be sent to a hospital, in order to
follow the patient evolution remotely. If a certain value
means a potentially dangerous situation for the patient, it
should be handled properly. There are other examples,
such as fires detected by forest monitoring equipment,
alarm situations on home surveillance systems, etc. In
summary, there is a trend to develop applications that will
help to improve home safety, prevent or attenuate natural
disasters, and extend healthcare assistance. In some cases,
they have to react in a predictable way in order to deal with
potentially dangerous situations.

The traditional approach for providing a safe, pre-
dictable, and timely behavior is to use specific operating
systems, communication protocols, and programming lan-
guages, with real-time and safety features. However, this
alternative poses additional problems, as they may prevent
the use of development tools of common use (libraries,
protocol stacks, languages, etc.), that in some cases do
not have a real-time/safety counterpart.

The purpose of this paper is to describe the experience

of providing resource management facilities on a standard
Java Virtual Machine. In particular, a CPU budget is as-
signed to relevant threads. In this case, resource manage-
ment is implemented on top of standard operating systems
and programming languages, while improving the relia-
bility and predictability of the applications. The basis is
to guarantee some resource usage percentage, that would
applications to perform their main duties in a predictable
way.

This paper describes a simple framework that has been
developed for supporting resource budgets. The main em-
phasis in its design an implementation has been simplicity,
efficiency, and facilities for experimenting with different
resource management approaches. This framework has
been put together with a standard Java Virtual Machine
(JVM), in order to provide CPU reserves to standard Java.
Finally, an use case is used to validate the interest of the
approach, that has been developed in the context of the
MORE project.

1.1 Related Work
The concept of using resource shares for improving

predictability was first introduced in the RT-Mach kernel
[10] [11]. The accounting facilities were tightly coupled
with the kernel. Portable RK [14] provided an implemen-
tation that was more independent from the kernel, to facil-
itate its porting to other platforms.

The interest of the topic has motivated a large num-
ber of works. As an illustration, The FRESCOR project
[4] supports adaptive real-time systems by by creating
a contract model that specifies which are the applica-
tion requirements with respect to the flexible use of the
processing resources in the system. There is quality of
service management that adapts itself to the application-
domain concepts of quality, requesting the required infor-
mation from the underlying system in a transparent way.
The OCERA project [13] provides an integrated execu-
tion environment for embedded real-time applications. It
is based on components and combines the use of two ker-
nels, Linux and RTLinux-GPL to provide support for crit-
ical tasks (RTLinux-GPL executive) and soft real-time ap-
plications (Linux kernel). These works provide advanced
means for dealing with quality of service and resource
management, although they usually provides a more com-
plex framework than required for the type of systems tar-
geted in this work. In addition, they are usually done for
a particular operating system.

There are a number of additional works, such as [15],
[9], or [2]. However, they are target towards a particu-
lar functionality and more complex than required in this
framework. The aim of the work presented in this pa-
per was to make the simplest possible component for re-
source usage accounting and enforcing. Portability and
reusability are topics of primary concern. The goal is to
port or integrate the proposed framework in existing op-
erating systems and to experiment with higher level and
more complex budgets models, which does not need to

be included in the kernel and that does not depend on a
particular operating system, as they only interact with the
mentioned resource manager.

2 Developing Applications with Depend-
ability Requirements

Safety systems [8] are usually defined as those which
failure may cause important damages to the environment
and to persons. However, the development of safety sys-
tems implies a set of very strict design and development
rules. Among them, it can be required the use of specific
language subsets that allows for performing a set of ex-
haustive tests to ensure proper system operations. There
are language features that prevent some of these tests and
must be avoided. There are safe subsets of programming
languages such as Ada. With respect to Java, there is cur-
rently a working group defining a safe language profile.
However, this type of subsets limits the range of applica-
tions that can be developed. Then, they are not suitable
for systems where applications with some safety require-
ments coexist with standard ones.

Time requirements are also common in systems with
some safety implications. Real-time systems are those
which correctness depends not only on their outputs, but
on the time when they are produced as well. A good re-
sult that is obtained late can be a failure in this type of
systems. It is important to note that the main issue is not
about performance, but on predictability of the timeliness
of the results. The applications sketched before may also
have time requirements.

The development of real-time systems highly pre-
dictable implies the use of specific techniques and proto-
cols: languages with appropriate programming constructs,
operating systems with real-time scheduling algorithms,
communication protocols, careful designs avoiding un-
bounded delays, etc. However, the use of this technology
would have implications when developing the type of sys-
tems targeted at this paper. For example, several libraries
of common use are not available for them, real-time com-
munication protocols are only used in specific domains,
and there is lack of proper standards. On the other hand,
in the type of applications subject of this work, time re-
quirements use to be soft: a occasionally missed deadline
causes little harm.

The use of modern resource management techniques
can be used for improving system predictability. One
helpful facility is the use of resource budgets, which can
be referred to CPU, memory, bandwidth, etc. In this pa-
per, emphasis is put on CPU budgets, that are defined by
three main parameters:

• Usage time: Maximum time that a thread (or cluster
of threads) is allowed to use the resource associated
to the budget, in this case the CPU, with the given
priority.

• Period: Usage time is replenished at a fixed rate, de-
fined by this parameter.

• Priority: Relative urgency of a real-time thread.

If the budget is exhausted, some actions must be taken
in order to ensure that other threads can use its budget.
Real-Time Java Specification provides real-time threads
with a behavior similar to that described. An important
innovation of this work is using this facility on a standard
Java Virtual Machine (JVM).

The approach relies on an implementation of CPU bud-
gets, that is described in the following section. It wpro-
vides a C interface and relies on some real-time facilities
available in the Linux kernel. In the use case, it is used
JamVM, which is an open source Java virtual machine
and, after a careful study of the source code, it was noted
that there is a one-to-one relation between a Java thread
and a Linux (POSIX) thread. Hence, the approach would
be to assign the budget to Java thread. Some successful
experiments have also been done with the Sun JVM. It
appears that also follows the one-to-one model, although
it has not been possible to check with absolute confidence
this fact.

3 Resource Management

The motivation of the work described in this paper was
to develop support for resource budgets, in a way that is
simple and portable. Simplicity was intended for making
it efficient and for being able to develop on top of it budget
models with higher abstraction level. This has converted
this platform in an excellent mean for experimenting with
different approaches for resource usage models, without
the need for developing from scratch support for them. In
addition, it has been possible to use it in different scenar-
ios, due to its facilities for being ported and adapted.

The resource management consists of two main com-
ponents:

• BACC (Budget Accountant): Provides the basic
means for enforcing and accounting for resource us-
age. It does not include the policies for budget re-
plenishment or handling overruns. In this way, it is
feasible to experiment with different options.

• RTC (Run-Time Control): Provides a higher-level
API than the BACC. It provides periodic budget re-
plenishment and a particular way of handling over-
runs, based on reducing the thread priority until bud-
get is available again.

This section describes the main design goals and deci-
sions taken with respect to these modules.

3.1 Budget Accountant
The main functions provided by the Budget Accoun-

tant (BACC) are the following:

• Management of task budgets: The BACC allows for
the creation/deletion of budgets. They are associated
to a particular thread or to a cluster of threads. As
budget replenishment is not automatically provided,
a function is provided for calling this operation from
an external component. In this way, it is possible
to experiment with different models. In addition to
the mentioned operations, budget parameters can be
modified dynamically. Changes are considered at the
beginning of the next refill period.

• Overrun detection. The overrun handling mecha-
nisms should be as simple and flexible as possible.
The BACC does not decide on the corrective actions
to take. The BACC interface allows for two possi-
ble options for dealing with overruns. One is to skip
them. The other is to perform a call to a function pro-
vided by the programmer. In this way, this event is
notified to a higher level software component, which
will take appropriate actions to handle it.

• Statistical information. The BACC keeps statistical
information in order to let monitoring applications to
check how a particular thread is behaving: whether
the assigned budget is appropriate for the functional-
ity to provide, how frequent are overruns, or which is
the mean percentage of the budget used. There is an
API that allows for activating and deactivating bud-
get accounting for statistical information, to retrieve
it and to reset this data.

The BACC accounting requires to get an external event
whenever a meaningful change in the task that is using a
resource occurs. Let suppose that the BACC is charging
the use of a resource to a specific thread. When the task
using this resource changes, the BACC needs to know it
in order to update the remaining resource usage time of
the previous task, and taking the required actions to start
charging the use of the resource to the new one and to de-
tect possible overruns. The most appropriate way to han-
dle this event is to arm a timer with the remaining usage
time of a task, when it starts using a resource. If the timer
expires before the task is deactivated, then an overrun has
occurred. In the case of the CPU, the event is a change of
context. The specific low level routines for resource ac-
counting are in charge of detecting the appropriate event
for each resource and notifying it to the BACC.

As a summary figure 1 shows the main events and in-
teractions in the BACC operation.

3.2 Run-Time Control
The Run-Time Control (RTC) is a software layer that

extends the basic functions provided by the BACC. In par-
ticular, it makes available a complete, whilst simple, sup-
port to CPU budgets. It relies on the BACC and adds two
main features:

• Periodic budget refilling. The BACC does not per-
form by itself budget refilling. It provides the basic

St a ti c in f orm a tio n
a b o ut t a sks a n d r eso urc es Re fill t a sk b u d g e t

Histori c a l
in f orm a tio n

N otifi c a tio n
o f o v e rrunC h a n g e in t a sk

usin g a r eso urc e

Tim e rs
m a n a g e m e nt

BA C C

Figure 1. BACC Events and interactions

mechanism, by including a function in its API, that
must be called externally. The RTC refills the active
budgets in a periodic fashion. When creating a bud-
get, it is needed to indicate the associated thread(s),
the resource usage time, the priority and the refilling
period. The RTC invokes the mentioned function pe-
riodically, to ensure that the defined utilization time
is assigned to the thread.

• Overrun handling: This is an important functional-
ity, as it is mandatory for guaranteeing CPU bud-
gets. When an overrun is detected, the main opera-
tion to perform is to prevent the corresponding thread
to continue using the CPU, at least with its origi-
nal priority. Once again, the policy provided by the
RTC is simple and efficient. When an overrun exists,
the priority of the thread is lowered to the minimum
available one. In this way, it is ensured that it will
not preclude other threads from using their budgets,
although it is possible to use spare computation time
when available.

This behavior is appropriate for systems targeted in
this work. Other alternatives, such as killing the
thread causing the overrun, are not required. How-
ever, it is always possible to restrict the execution of
threads trying to use the CPU more than budgeted in
a persisting way, by analyzing the statistical informa-
tion provided by the BACC.

4 Resource Management in Linux

This section describes the porting of the BACC and
RTC to the Linux kernel. If the system reserves resources
to some applications it is because they are considered
more important and their execution improves the final user
satisfaction. Then, a reasonable behavior for threads with
CPU reserves is to let them execute before or with higher
priority than the others.

The basic Linux scheduler is based on the well-known
quantum technique [1]. CPU time is divided into time
slices, and every process has a specified one. If the process
is not terminated or self-suspended when its current slice
expires, a process switch occurs and the CPU is granted to
another ready process. Processes are ranked according to

priority, which is a process parameter which may change
dynamically according to complex algorithms. This type
of scheduler is clearly not appropriate for the intended be-
havior.

Fortunately, Linux provides another type of scheduler,
in compliance with the POSIX standard [7]. The alternate
scheduler is identified as SCHED FIFO, and it is priority-
based and preemptive. For each process, it is possible to
specify the scheduling policy to be used and a fixed real-
time priority. Real-time priorities are always more urgent
than non-real-time priorities. The threads with available
budget receives real-time priorities, so they have prefer-
ence for using the CPU.

Given the required operation for the RTC and BACC,
they should be included in the kernel. The BACC has to
execute whenever there is a context switch or the account-
ing timer expires. The Linux scheduler was slightly mod-
ified to call the relevant function of the BACC when that
event happens. It is obvious that keeping the BACC out of
the kernel will increase the overhead.

In addition to provide a higher level interface to the
accounting facilities, the RTC performs the periodic refill
of budgets and the handling of the budget overrun as de-
scribed previously. The first operation is executed when
the accounting timer expires. The overrun handling is ex-
ecuted as a request of the BACC. For these reasons, it
was also advisable to include the RTC in the kernel. In
this way the implementation was easier and the overheads
were reduced, as a number of switches from the kernel
mode to user mode will be required otherwise. The final
design structure is depicted in figure 2.

20/4/10 ©2003 DIT/UPM 13

UPM Structure of the Porting to Linux

Kernel
level

Applications and libraries

Modules RTC-Linux Library

BACC-Linux Module

Linux kernel

User
level

RTC-Linux Module

Hardware

Figure 2. Components in the BACC imple-
mentation in Linux

The resolution of the Linux timer recent versions of
the kernel, it is enough for the requirements in this work.
However, it requires special hardware that older PCs does
not include. For this reason, it was kept an updated imple-
mentation of precise timers within the kernel, that relies
on the timer counter in the Pentium IV and later. Then, it
is possible to use older hardware, which is convenient for
some of the intended uses of this piece of software.

The communication between the user and kernel parts
of the RTC is done by means of a dynamic file system.

In particular, it is used the procfs, which is usually lo-
cated in /proc. In order to access to the RTC, it has been
created the directory /proc/driver/rtc-linux,
where resides the special file for issuing commands to the
RTC, plus some additional files with information of the
state of the modules, which are useful for debugging pur-
poses. The specific commands are called using the stan-
dard ioctl operation.

CPU budgets are assigned to Java threads in a straight-
forward manner. If a Java thread has a CPU budget, it
gets the corresponding PID of the Linux thread by using
native methods to invoke kernel operations. After that, it
invokes the proper operations in the RTC API, following
the mentioned approach.

5 Test and Validation

5.1 Testing of CPU Budgets
The efficiency and proper behavior of the implementa-

tion has been checked with a set of exhaustive tests. The
proper behavior of the Linux modules (BACC and RTC)
has been carried out by a set of tests in different program-
ming languages: Ada, Java y C.

Figure 3 shows the execution of a synthetic load com-
posed by a real-time thread (RTC, continuous line) and an-
other standard POSIX thread (NO RTC, dotted line). The
code executed in both cases is the following:

for i in 1 .. 50000000 loop
value := Sqrt (largeNumber);
value := value * value / (value - 1.0);

end loop;

tratamiento de una llamada a un método de un

servicio con requisitos de predecibilidad. Para

asegurar un tratamiento adecuado, ha sido necesario

asignar cutoas tanto a las hebras de la aplicación,

como a las hebras del software de intermediación.

3 EL NÚCLEO DE MORE

El núcleo de MORE (eu.more.core.cardinal) es el

software central del proyecto. Todos los nodos deben

ejecutar este módulo que proporciona entre otras

cosas:

• Comunicaciones transparentes

• Pool de hilos para ejecución de las tareas

En una primera aproximación al código de

eu.more.core.cardinal, parece que el funcionamiento

del código es el siguiente:

Existe un pool de hilos creados en la inicialización

del sistema cuyo propósito es ejecutar las diferentes

peticiones (sockets) recibidas de los clientes (véase la

clase org.mortbay.util.ThreadPool). Dichos hilos se

crean en la inicialización y se dejan suspendidos

hasta que exista algún trabajo para ejecutar (job).

Los trabajos pueden ser objetos de cualquier clase

que implemente la interfaz runnable.

Cuando aparece un trabajo para ejecutar, por

ejemplo, se ha recibido un nuevo socket, se pasa el

objeto a la clase ThreadPool quien decide en que hilo

pone a ejecutar el trabajo. Una vez asignado el hilo,

se ejecuta el método run del objeto job dentro del

hilo.

Debido a que el tratamiento de los mensajes parece

que se trata de forma íntegra en el mismo hilo (el que

trata el socket), se ha modificado la clase

org.mortbay.util.ThreadPool para que emplee los

hilos de BACC en vez de los de Java.

Para comprobar la eficiencia del sistema se han

realizado una serie de pruebas. En primer lugar, para

comprobar el correcto funcionamiento de los

módulos para el kernel de Linux desarrollados

(BACC) se ejecutaron una serie de pruebas

desarrolladas en Ada.

La siguiente gráfica muestra la ejecución de una

carga sintética en un hilo de tiempo real (BACC, en

azul) y otra con un hilo POSIX estándar (en rojo). El

código ejecutado en ambos casos es:

for i in 1 .. 50000000 loop

 res := Sqrt

(348734589720985720485729085720859.0);

 res := res * res / (res - 1.0);

end loop;

En la gráfica se muestran los tiempos de ejecución de

100 muestras:

Como se puede apreciar, la ejecución de la carga

sintética con el hilo de tiempo real es mucho más

constante, estable y rápida. También se puede

observar una clara interferencia por parte de algún

otro proceso del sistema operativo en la ejecución del

hilo POSIX, mientras que en el caso del hilo BACC,

los tiempos se mantienen constantes todo el tiempo.

Esta prueba demuestra que BACC funciona

correctamente con el sistema sin sobrecarga. Sin

embargo, el principal objetivo es que BACC permita

la ejecución de las tareas críticas incluso en casos de

sobrecarga del sistema.

Para verificar que esto es así, se vuelve a ejecutar el

mismo código con, además, 500 hilos java

(ejecutando el mismo código que los hilos en Ada) y

compilando un kernel en la misma máquina.

La gráfica muestra claramente el correcto

funcionamiento del sistema:

Figure 3. Comparison of the execution of
standard and BACC threads

It can be observed that the execution time of the real-
time thread is nearly constant, very stable and more effi-
cient. It is possible to see the interference of other activ-
ities of the system over the standard Linux thread. In the
case of the BACC thread, the execution time is more or
less constant over the different samples taken. This test

has been repeated a high number of times, with similar
results.

This test shows that the CPU budgets works properly in
a system with with few load. However, the main goal of
the BACC is to ensure the execution of threads with time
requirements in a more predictable way, even in situations
when the system is overloaded. In order to assess such be-
havior, a testbed has been created where the thread under
observation runs the code shown above, in concurrency
with five hundred threads running the same code, along
with additional system activities such as the compilation
of a large system. The overall system load was close to
100%. Figure 4 shows that the threads with CPU budget
run properly.

Figure 4. Execution of standard and BACC
threads

Results are much better for the BACC threads than for
standard thread. It can be observed in the figure that the
execution time of the BACC thread is nearly constant. The
variation with respect to the previous case is less than 1%.

On the other hand, standard Linux threads suffer a
high interference from other threads. Their mean exe-
cution times are raised up to 300% with respect to the
values measured with low system overhead. In addition,
response times are not very predictable, as the different
between the maximum and the minimum is about three
orders of magnitude higher than in the case of the BACC
thread.

In summary, the execution of the BACC is correct and
BACC threads shows a much better behavior in terms of
time response and predictability.

5.2 Use Case Evaluation
This use case has been performed in the context of the

MORE project. The Core Management Service (CMS) is
the most important component in the MORE middleware.
It relies on the Service Oriented Architecture. The CMS
is the central component. All nodes must execute this ser-
vice. From the behavioral point of view, it relies on a
thread pool for the execution of the remote invocations to
services in the given node. An in-depth study of the code,
shows that it is based on a set of threads that are created at

system initialization, which aim is to execute clients’ re-
quests. These threads are suspended, until a new request
arrives. Then, one of them is activated for handling it. Fi-
nally, the requested service is executed. Given that all of
this handling is performed by the same thread, the class
that serves for creating them has been modified in order
to use the threads provided by the BACC, instead of the
standard ones.

The ThreadPool class includes the implementation of
a threads pool that uses the CMS for handling the SOAP
messages that are received and the responses. It is a class
that belongs to Apache org.mortbay.jetty package. It is
called from the implementation of the DPWS [16] [5]in
the core.

A class has been included that encapsulates the Java
code required for performing calls to the methods in the
RTC module, which is the external interface to the CPU
budgets, and that is coded in C. This code, that has a very
low level, performs type conversions and parameter pass-
ing, required for the use of the shared libraries.

In summary, the most important modification has been
the change of the ancestors of the ThreadPool class, in
order to extend the BACC threads in Java, instead of the
native ones. BACC threads requires a more complex ini-
tialization. Special code has been added for hiding this
features to the applications developer.

The software configuration of the tests consists of a
computer that provides a set of services, some of them
with associated time or safety requirements. These ser-
vices execute a synthetic load, similar to that shown in the
previous section. A client is running in another computer.
It performs periodic invocations to the mentioned service.
The overall system load is close to 100%.

These tests have been executed in different computers.
The figures shown in the paper were obtained on a exe-
cution platform characterized by a Pentium IV at 3GHz
and 1GB of RAM memory. The operating system was a
Linux Debian with a 2.6.21 version of the kernel. It was
not possible to use JamVM in these experiments because
of problems encountered when using some libraries re-
quired by the MORE middleware. Instead, it was used a
Sun JVM 1.6.0.12.

A summary of a large set of executions can be shown
in figure 5. It can be observed that the execution time
of the services associated with threads with CPU budget
is not as clean as in the previous experiment. There are
peaks that implies larger response time than desired. This
is most probably due to the garbage collector and some
other internal operations of the JVM. The most obvious
way to deal with this issue is to use a RTSJ compliant vir-
tual machine, with a proper real-time operating system un-
derneath. However, as it has been previously mentioned,
this option is not viable for a large number of systems,
as it precludes the use of class libraries of common use
and requires of developers specialized in this development
platform.

However, the results are much better than when CPU

Los resultados son claramente mejores en el caso de

emplear los hilos BACC que empleando los hilos del

estándar POSIX. Como se aprecia en la figura, en el

caso de la ejecución con los hilos BACC los

resultados de tiempos de ejecución permanecen

constantes. De hecho, los tiempos de ejecución son

prácticamente idénticos (varían menos de 1%) a los

obtenidos en situación inicial sin sobrecarga.

The validation of the approach shows that

predictability of these types of threads is

improved with respect to normal ones. The use of

CPU budgets integrated with the Communication

Prioritization Services allows providing a certain

support to the time requirements in MORE.

Por el contrario, los hilos POSIX arrojan unos

resultados en los tiempos de ejecución muy poco

alentadores. En primer lugar, los tiempos medios se

disparan a más del triple (300%) respecto de los

valores obtenidos en la ejecución inicial sin

sobrecarga. Por otro lado, es evidente la poca

predictibilidad de los tiempos. La diferencia entre el

mínimo y el máximo es tres órdenes de magnitud

mayor que la obtenida en el hilo BACC. También

conviene destacar que existen gran cantidad de picos,

distribuidos aleatoriamente que hacen impredecible

el tiempo de respuesta del código cuando se ejecuta

en un hilo POSIX.

Una vez verificado que los hilos BACC funcionan

correctamente, se procede a realizar las pruebas en el

entorno Java.

Para la realización de dichas pruebas se emplea el

código Java:

while (i != 100)

 {

 SecureRandom random =

new SecureRandom();

 new BigInteger(8,

random);

 i++;

 }

El resultado de las pruebas queda reflejado en la

siguiente figura:

Los resultados de las pruebas en Java son más

complicados de interpretar. Se puede apreciar una

tendencia mucho más moderada en los tiempos de

ejecución del código en el hilo BACC, sin embargo,

al contrario de lo que ocurría en Ada, existen picos

que, suponemos, son debidos a la intervención del

recolector de basura y a operaciones internas de la

máquina virtual de Java.

No obstante, los resultados son significativamente

mejores en el caso del uso de BACC que en el caso

de los hilos Java (que a la postre, son hilos POSIX).

Si tenemos en cuenta el tiempo medio de ejecución,

en el caso de la ejecución con los hilos POSIX, en el

80% de las ocasiones el tiempo requerido es mayor,

mientras que sólo en el 20% de las ocasiones en las

que se emplean hilos BACC se supera el tiempo

medio de ejecución.

De modo que se puede concluir que la ejecución con

hilos BACC es un 60% más predecible que en el caso

de los hilos de Java.

Se está trabajando en mejoras a la implementación

actual. Por ejemplo, todo el pool de hilos emplea o

BACC hilos Java estándar. Una posible mejora sería

analizar el origen de cada socket (dirección IP,

contenido interno del socket…) para determinar si se

trata de un mensaje importante:

• En caso de tratarse de un mensaje importante,

establecer el hilo en el que se tratará como de

tiempo real, para garantizar (en la medida de lo

posible) la ejecución más rápida del mensaje.

Para ello, se requiere:

• Soporte de hilos de tiempo real en Java. De

momento, soportado en JamVM 1.5.1 para

Linux.

o Planificador de tiempo real en el sistema

operativo. De momento implementado

como módulo del kernel 2.6.21 de Linux.

• Si el mensaje recibido no es crítico, ejecutar su

tratamiento como un hilo de usuario.

Alejandro Alonso ! 15/6/09 18:02

Comentario: Colocar esto donde se deba

Figure 5. Original and modified CMS (RTC)

budgets are not used. If the mean response time is con-
sidered, when standard Java threads are used, the mean
execution time is 15% than the worst cases in an 80% of
the executions. On the other hand, when threads with CPU
budgets are used, this figure is reduced to only a 20% of
the total experiment executions.

In summary, it is possible to conclude that the use of
CPU budgets improves the predictability of the service
provision, reducing by a factor of four the number exe-
cutions that are not acceptable due to its large response
time. However, it is necessary to continue finding ways of
improving this figures using an standard JVM. The use of
programming models that reduce the intervention of the
garbage collector, will be of interest. The use of open
JVM will help to better understand the internal behavior
of the system and to try to modify it to avoid undesirable
interferences.

6 Conclusions

This paper describes the current state of the design and
implementation of two simple and portable components
for implementing resource budgets, which are a very in-
teresting way of enhancing predictability on systems run-
ning on standard operating systems. The proposed frame-
work allows the definition of resource budgets, associate
them to real threads, and to account for resource usage and
guarantee budgets at run-time.

This approach has been tested on the MORE middle-
ware, in such a way that threads running critical services.
CPU budgets are used as a mechanism for improving the
response time predictability in the system. BACC and
RTC are two Linux modules that allows to guarantee CPU
shares to threads. A number of classes has been devel-
oped in order to access these facilities from Java threads,
for providing some real-time support to urgent services,
within the limitation of the used execution platform.

References

[1] B. Daniel P. Bovet, M. Cesati, Understanding the
Linux Kernel, 3rd Ed., ISBN: 978-0-596-00565-8,

O’Reilly, 2006.

[2] S. Brandt, S. Banachowski, C. Lin, and T. Bisson.
Dynamic integrated scheduling of hard real-time,
soft real-time, and non-real-time processes. Proceed-
ings. 24th IEEE International Real-Time Systems
Symposium, pages 396407, December 2003.

[3] EMMA web site, http://www.emmaproject.eu/

[4] FRESCOR project web page, http://www.frescor.org

[5] Hyung-Jun Yim, Il-Jin Oh, Yun-Young Hwang,
Kyu-Chul Lee, Kangchan Lee, Seungyun Lee De-
sign of DPWS Adaptor for Interoperability between
Web Services and DPWS in Web Services on Uni-
versal Networks, International Conference on Con-
vergence Information Technology, 2007.

[6] HYDRA web site, http://www.hydramiddleware.eu

[7] 9945-2009 ISO/IEC/IEEE Information Technology
Portable Operating System Interface (POSIX) Base
Specifications, Issue 7

[8] I. Lee, J. Leung, S. Son. Handbook of Real-Time
and Embedded Systems. Chapman Hall, 2008

[9] A. Marchand and M. Silly-Chetto. Qos and aperiodic
tasks scheduling for real-time linux applications. 6th
Real Time Linux Workshop, November 2004.

[10] C. W. Mercer, S. Savage, and H. Tokuda, Proces-
sor capacity reserves: an abstrac- tion of managing
processor usage, in Proceedings of 4th Workshop on
Workstation Operating Systems (WWOS-IV), 1993.

[11] C. W. Mercer, R. Rajkumar, and J. Zelenka, Tem-
poral protection in real-time operating systems, in
Proc. of 11th IEEE Workshop on Real-Time Operat-
ing Systems and Software, 1994, pp. 79-83.

[12] MORE project web, http://wwws.ist-more.org/

[13] OCERA project web page, http://www.ocera.org/

[14] S. Oikawa and R. Rajkumar, Portable RK: A
portable resource kernel for guaranteed and en-
forced timing behaviour in IEEE REAL-TIME
TECHNOLOGY AND APPLICATIONS SYMPOSIUM,
pp. 111-119, IEEE Computer Society Press, 1999.

[15] N. Perng, C. Liu, and T. Kuo, ”Real-Time Linux
with Budget-Based Resource Reservation”, J. of In-
formacion Science and Engineer., 22, 31-47, 2006.

[16] A. Sleman, R. Moeller, “Integration of Wireless Sen-
sor Network Services into other Home and Industrial
networks; using DPWS”, International Conference
on Information and Communication Technologies:
From Theory to Applications, ICTTA 2008.

[17] SMEPP web site, http://www.smepp.org

