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Abstract—The cloud computing model aims to make large-
scale data-intensive computing affordable even for users with 
limited financial resources, that cannot invest into expensive in-
frastructures necesssary to run them. In this context, MapReduce 
is emerging as a highly scalable programming paradigm that 
enables high-throughput data-intensive processing as a cloud 
service. Its performance is highly dependent on the underly-
ing storage service, responsible to efflciently support massively 
parallel data accesses by guaranteeing a high throughput under 
heavy access concurrency. In this context, quality of service 
plays a crucial role: the storage service needs to sustain a 
stable throughput for each individual accesss, in addition to 
achieving a high aggregated throughput under concurrency. In 
this paper we propose a technique to address this problem using 
component monitoring, application-side feedback and behavior 
pattern analysis to automatically infer useful knowledge about 
the causes of poor quality of service and provide an easy way to 
reasonin about potential improvements. We apply our proposal 
to BlobSeer, a representative data storage service speciflcally 
designed to achieve high aggregated throughputs and show 
through extensive experimentation substantial improvements in 
the stability of individual data read accesses under MapReduce 
workloads. 

I. INTRODUCTION 

The emerging cloud computing model [1], [?] is gaining 
serious interest from both industry and academia for its pro­
posal to view the computation as a utility rather than a capital 
investment. According to this model, users do not buy and 
maintain their own hardware, ñor have to deal with complex 
large-scale application deployments and configurations, but 
rather rent such resources as a service, paying only for what 
is needed to solve their problem and nothing more. 

In this context, applications that perform complex data pro­
cessing (data mining, online transaction record management, 
simulations, etc.), initially reserved to governments and large 
corporations that could afford the underlying infrastructures 
to run them, now become accessible to a large public. In 
order to achieve scalable data processing performance, several 
paradigms have been proposed, such as MapReduce [2] and 
Dryad [3]. MapReduce quickly gained populanty and was 
hailed as a revolutionary new platform for large-scale, mas­
sively parallel data processing [4], attracting attention in the 
role as a service to be offered on the clouds [5]. 

Since MapReduce applications are mostly data-intensive, a 

critical component in this context is the underlying storage 
service, which needs to deliver a high aggregated throughput 
even under a heavy data access concurrency generated when 
the service runs for a very large number of clients. On clouds 
however, this alone is not sufficient, as múltiple users share 
the same infrastructure and need quality-of-service guarantees. 
The data storage service must not only be able to sustain a 
high aggregated throughput under heavy access concurrency, 
but also guarantee a stable throughput for each individual data 
access. 

In this paper we focus on improving storage services run-
ning on clouds to deliver a stable throughput for indivdual data 
transfers while still achieving a high aggregated throughput. A 
stable throughput guarantee is however an inherently difficult 
task, because a large number of factors is involved. 

First, MapReduce frameworks run on infrastructures com-
prising thousands of commodity hardware components. In this 
context, failures are rather the norm than the exception. Since 
faults cause drops in performance, fault tolerance becomes 
a critical aspect of throughput stability. Second, complex data 
access patterns are generated that are likely to combine periods 
of intensive 170 activity with periods of relative less intensive 
170 activity throughout runtime. This has a negative impact 
on throughput stability, thus adaptation to access pattern is a 
crucial issue as well. 

The sheer complexity of both the state of the hardware 
components and the data access pattern makes reasoning about 
fault tolerance and adaptation to access pattern difficult, since 
it is not feasible to find non-trivial dependencies manually. 
Therefore, it is important to automate the process of identify-
ing and characterizing the circumstances that bring the storage 
service in a state where there are significant fluctuations in the 
sustained throughput and to take appropriate action to stabilize 
the system. This paper proposes an innovative approach to this 
problem. We summarize our contributions as follows: 

We define a general methodology based on component 
monitoring, application-side feedback and behavior pattern 
analysis in order to discover and characterize the situations 
that lead to fluctuations of individual data access throughput. 
Our approach implicitly adapts itself to the hardware configu-
ration of the infrastructure, failure rate and data access pattern 
of the application. We then apply our proposal to improve 
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BlobSeer [6], [7], a data management service specifically 
designed to address the needs of data-intensive applications. 
BlobSeer is now subject to integration efforts with state-of-the-
art cloud toolkits such as Nimbus [8]. Finaly, we perform ex-
tensive experimentations in hard conditions: highly-concurrent 
data access patterns, for long periods of service uptime, while 
supporting failures of the physical storage components. We 
validate our approach by demonstrating substantial improve-
ments in individual throughput stability. 

II. PROPOSAL 

A. Overview 

We propose a general approach to automate the process of 
identifying and characterizing the events that cause significant 
fluctuations in the sustained throughput of individual IZO 
transfers. This enables the storage service to take appropriate 
action in order to stabilize the system. We rely on three key 
principies: 

In-depth monitoring: The storage service is usually de-
ployed on large-scale infrastructures comprising thousands of 
machines, each of which is prone to failures. Such components 
are characterized by a large number of parameters, whose 
valúes need to be measured in order to describe the state of 
the system at a specific moment in time. Since data-intensive 
applications genérate complex access-pattern scenarios, it is 
not feasible to predetermine what parameters are important 
and should be monitored, as this limits the potential to identify 
non-obvious bottlenecks. Therefore, it is important to collect 
as much information as possible about each of the components 
of the storage service. 

Application-side feedback: While extensive monitoring 
of the system helps to accurately define its state at a specific 
moment in time, it is not enough to accurately identify a 
situation where the throughput of individual I/O transfers 
fluctuates, because the perceived quality of service from the 
application point of view remains unknown. For example, 
in the context of MapReduce applications, monitoring the 
network traffic is not enough to infer the throughput achieved 
for each task, because the división of each job into tasks 
remains unknown to the storage service. Therefore, it is crucial 
to gather dynamically feedback from the upper layers that rely 
on the storage service in order to decide when the system 
performs satisfactory and when it does not. 

Behavior pattern analysis: Extensive monitoring infor­
mation gives a complete view of the behavior of the storage 
service in time. Using the feedback from the upper layers, it 
is also possible to determine when it performed satisfactory 
and when it performed poorly. However, the complexity of the 
behavior makes direct reasoning about the causes of potential 
bottlenecks not feasible. Intuitively, explaining the behavior is 
much easier if a set of behavior patterns can be identified, 
which can be classified either as satisfactory or not. This 
is so because once a classification is made, taking action to 
stabilize the system basically means to predict a poor behavior 
and enforce a policy to avoid it. The challenge however is to 
describe the behavior patterns in such a way that they provide 

meaningful insight with respect to throughput stability, thus 
making healing mechanisms easy to implement. 

Starting from these principies, we propose a methodology 
to stabilize the throughput of the storage service as a series of 
four steps: 

1) Monitor the storage service: A wide range of parameters 
that describe the state of each of the components of the storage 
service is periodically collected during a long period of service 
up-time. This is necessary in order to reliably approximate the 
data access pattern generated by the data-intensive application. 
An important aspect in this context is fault detection, as 
information on when and how long individual faults last is 
crucial in the identification of behavior patterns. 

2) Identify behavior patterns: Starting from the monitored 
parameters, the behavior of the storage service as a whole is 
classified into behavior patterns. The classification must be 
performed in such a way that, given the behavior at any mo­
ment in time, it unambiguously matches one of the identified 
patterns. The critical part of this step is to extract mean­
ingful information with respect to throughput stability that 
describes the behavior pattern. Considering the vast amount 
of monitoring information, it is not feasible to perform this 
step manually. Therefore, an automated knowledge discovery 
method should be applied. For this purpose, we adapted a 
global behavior modeling technique [9], [10] to identify and 
describe the behavior patterns in our context. Specific details 
are provided in Section II-B. 

3) Classify behavior patterns according to feedback: In 
order to identify a relationship between behavior patterns 
and stability of throughput, the application-side feedback with 
respect to the perceived quality of service is analyzed. More 
specifically, for each data transfer a series of performance 
metrics as observed by the upper layers is gathered. These 
performance metrics are then aggregated for all data transfers 
that occurred during the period in which the behavior pattern 
was exhibited. The result of the aggregation is a score that is 
associated to the behavior pattern and indicates how desirable 
the behavior pattern is. 

Once the classification has been performed, transitions from 
desirable states to undesirable states are analyzed in order 
to find the reason why the storage service does not offer a 
stable throughput any longer. This step involves user-level 
interpretation and depends on the quality of the generated 
behavior model. 

4) Predict and prevent undesired behavior patterns: Fi-
nally, understanding the reasons for each undesired behavior 
enables the implementation of prediction and prevention mech­
anisms accordingly. More specifically, for each undesirable 
state, the preconditions that trigger a transition to it are 
determined. Using this information, a corresponding policy 
is enabled, capable of executing a special set of rules while 
these preconditions are satisfied. These rules are designed to 
prevent this transition to occur or, if this is not possible, to 
mitígate the effects of the undesired state. It is assumed that 
the application is monitored throughout its execution and the 
storage service has accessed to the monitoring information. 



This makes the service able to predict when an undesirable 
behavior is about to happen and to actívate the corresponding 
policy. 

To illustrate our approach, we have chosen BlobSeer [6] as 
a representative storage service for MapReduce data-intensive 
applications. Our choice is mainly motivated by the ability of 
BlobSeer to sustain a high throughput under heavy access con-
currency significantly better [7] than HDFS [11], the default 
storage backend for the Hadoop [12] MapReduce framework, 
largely used on today's cloud platforms. While BlobSeer 
leverages the underlying networking infrastructure better, this 
also increases the likelihood of components being stretched to 
their limits and consequently the likelihood of variations of 
individual data-access throughput being noticed. BlobSeer is 
now subjects to integration efforts with the Nimbus [8] cloud 
toolkit, in cooperation with the Nimbus team. 

B. GloBeM: Global Behavior Modeling 

In order to identify and describe the behavior patterns of 
the storage service approach to model the global behavior of 
large-scale distributed systems [9], [10] (from now on it will 
be named GloBeM). Its main objective is to build an abstract, 
descriptive model of the global system state. This enables the 
model to implicitly describe the interactions between entities, 
which has the potential to unveil non-trivial dependencies 
significant for the description of the behavior, which otherwise 
would have gone unnoticed. 

GloBeM follows a set of procedures in order to build such a 
model, starting from monitoring information that corresponds 
to the observed behavior. These basic monitoring data are then 
aggregated into global monitoring parameters, representative 
of the global system behavior instead of each single resource 
separately. This aggregation can be performed in different 
ways, but it normally consists in calculating global statistic 
descriptors (mean, standard deviation, skewness, kurtosis, etc.) 
valúes of each basic monitoring parameter for all resources 
present. This ensures that global monitoring metrics are still 
understandable from a human perspective. This global in­
formation undergoes a complex analysis process in order 
to produce a global behavior representation. This process 
is strongly based on machine learning and other knowledge 
discovery techniques, such as virtual representation of infor­
mation systems [13], [14]. A behavior model presents the 
following characteristics: 

Finite state machine: The model can be expressed as a 
finite state machine, with specific states and transitions. The 
number of states is generally small (between 3 and 8). 

State characterization based on monitoring parameters: 
The different system states are expressed in terms of the origi­
nal monitoring parameters. This ensures that its characteristics 
can be understood and directly used for management purposes. 

Extended statistical information: The model is completed 
with additional statistic metrics, further expanding the state 
characterization. 

C. BlobSeer 

BlobSeer is an efficient distributed data management service 
specifically designed to deliver a high throughput under heavy 
access concurrency. Data is abstracted in BlobSeer as huge 
sequences of bytes called BLOBs (Binary Large OBjects). 
Each BLOB is manipulated through a simple versioning access 
interface that enables fine-grained reads, writes and appends 
of subsequences of bytes from/to the BLOB. 

Three key design factors enable BlobSeer to achieve a high 
throughput under heavy access concurrency: data striping, 
distributed metadata management and versioning-based con­
currency control. 

Data striping: Each BLOB is split into chunks that are 
distributed among data providers, which are responsible to 
store the chunks. To maintain data availability in spite of fail-
ures, each chunk is replicated on múltiple distinct providers. 
A configurable chunk distribution strategy is employed when 
writes and appends are issued in order to optimize chunk 
placement in such way that accesses to different chunks are 
as much as possible handled by different machines, effectively 
distributing the IZO workload. 

Metadata decentralization: BlobSeer uses a distributed 
metadata management scheme to avoid the bottleneck of 
accessing the same centralized node and prevent a single point 
of failure. 

Versioning-based concurrency control: Writes and appends 
to a BLOB never modify its contents, but rather genérate 
a new snapshot of it that looks and acts like the original 
BLOB save for the applied update. Only the difference is 
physically stored, with unmodified parts shared. This approach 
enables the concurrency control to isolate updates in their 
own snapshot, thus avoiding the need for synchronization 
significantly better than lock-based approaches, which greatly 
improves achieved throughput. 

D. Applying our approach to BlobSeer 

We illustrate our approach by implementing the proposed 
methodology for BlobSeer, as presented in Figure 1. For 
simplification purposes, we assume the only components of 
BlobSeer that can cause bottlenecks are the data providers. 
This is a reasonable assumption, as most of the I/O load 
falls on the data providers, while metadata is managed in a 
distributed fashion and incurs a minimal overhead [6]. For 
this reason, monitoring is performed for the data providers 
only. 

1) Monitor the data providers: We periodically collect a 
wide range of parameters that describe the state of each 
data provider of the BlobSeer instance. For this task we 
use GMonE [15], a monitoring framework for large-scale 
distributed systems based on the publish-subscribe paradigm. 

GMonE runs a process called resource monitor on every 
node to be monitored. Each such node publishes monitoring 
information to one or more monitoring archives at regular time 
intervals. These monitoring archives act as the subscribers and 
gather the monitoring information in a datábase, constructing 
a historical record of the system's evolution. 



Data providers 

Fig. 1. Our approach applied: Stabilizing throughput in BlobSeer 

The resource monitors can be customized with monitoring 
plugins, which can be used to adapt the monitoring process to a 
specific scenario by selecting relevant monitoring information. 
We developed a plug-in for BlobSeer that is responsible for 
monitoring each provider and pushing the following parame-
ters into GMonE: number of read operations, number of write 
operations, free space available, CPU load and memory usage. 
These parameters represent the state of the provider at any 
specific moment in time. Every node running a data provider 
publishes this information each 45 seconds to a single central 
monitoring archive that stores the monitoring information for 
the whole experiment. 

Once the monitoring information is gathered, an aggregation 
process is undertaken: mean and standard deviation valúes are 
calculated for each of the five previous metrics. Additionally, 
unavailable data providers (due to a failure) are also included 
as an extra globally monitored parameter. We cali the result 
of the gathering and aggregation the global history record of 
the behavior of BlobSeer. 

2) Identify behavior patterns: The historical data men-
tioned above is then fed into GloBeM in order to classify 
the behavior of BlobSeer as a whole into a set of states, each 
corresponding to a behavior pattern. Thanks to GloBeM, this 
process is fully automated and we obtain a comprehensive 
characterization of the states in terms of the most important 
parameters that contribute to it. 

3) Classify behavior patterns according to feedback: For 
each data transfer, we consider as relevant client-side quality 
of service indicators (i) the effective observed throughput and 
(ii) the number of times the operation was interrupted by a 
fault and had to be restarted. This information is logged for 
each data transfer, averaged for each state of the behavior 
model and then used to classify the states into desirable states 
that offer good performance to the clients and undesirable 
states that offer poor performance to the clients. 

4) Predict and prevent undesired behavior patterns: Fi-
nally, the challenge is to improve the behavior of BlobSeer 
in such way as to avoid undesirable states. This step is 

completely dependent on the behavioral analysis of the model 
generated by GloBeM. Since the model is tightly coupled 
with the application data-access pattern, the infrastructure used 
to deploy BlobSeer and the corresponding failure model, we 
detail this step for each of our experiments separately in 
Section IV. 

III. EXPERIMENTAL SETUP 

A. Application scenario: MapReduce data gathering and 
analysis 

We evalúate the effectiveness of our approach for simulated 
MapReduce workloads that correspond to a typical data-
intensive computing scenario on clouds: continuously acquir-
ing (and possibly updating) very large datasets of unstructured 
data while performing large-scale computations over the data. 

For example, a startup might want to invest money into 
a cloud application that crawls the web in search for new 
text content such as web pages in order to build aggregated 
statistics and infer new knowledge about a topic of interest. 

In this context, simulating the corresponding MapReduce 
workloads involves two aspects: i) a write access pattern that 
corresponds to constant data gathering and maintenance of 
data in the system and ii) a read access pattern that corresponds 
to the data processing (in most cases the final result of the data 
processing are small aggregated valúes that genérate negligible 
writes; moreover, intermedíate data is not stored persistently 
by MapReduce). 

Write access pattern: As explained in [16], managing a 
very large set of small files is not feasible. Therefore, data 
is typically gathered in a few files of great size. Moreover, 
experience with data-intensive applications has shown that 
these very large files are generated mostly by appending 
records concurrently and seldom overwriting any record. To 
reproduce this behavior in BlobSeer, we créate a small number 
of BLOBs and have a set of clients (corresponding to "map" 
tasks) genérate and write random data concurrently to the 
BLOBs. Each client predominantly appends and occasionally 
overwrites chunks of 64 MB to a randomly selected BLOB 
at random time intervals, sleeping meanwhile. The frequency 
of writes corresponds to an overall constant write pressure of 
IMB/s on each of the data provides of BlobSeer throughout 
the duration of the experiment and corresponds to the maximal 
rate that a single web crawler process can achieve under 
normal circumstances. 

Read access pattern: In order to model the data pro­
cessing aspect, we simúlate MapReduce applications that sean 
the whole dataset in parallel and compute some aggregated 
statistics about it. This translates into a highly concurrent read 
access pattern to the same BLOB. We implemented clients 
that perform parallel reads of chunks of 64MB (which is the 
default chunk size used in Hadoop MapReduce) from the same 
BLOB versión and then simúlate a "map phase" on this data 
by keeping the CPU busy. Globally, we strive to achieve an 
average 170 time to computation time ratio of 1:7, which is 
intended to account for the CPU time of both the "map phase" 
and the "reduce phase". 



We execute both the data gathering and data processing 
concurrently in order to simúlate a realistic setting where 
data is constantly analyzed while updates are processed in the 
background. We implemented the clients in such a way as to 
target an overall write to read ratio of 1:10. This comes from 
the fact that in practice múltiple MapReduce passes over the 
same data are necessary to achieve the final result. 

B. Platform description 

We performed our experiments on Grid'5000 [17], a highly 
configurable and controllable experimental platform for grid 
and cloud research. We used 130 of the nodes of Lille cluster 
and 275 of the nodes of Orsay cluster. The nodes are outfitted 
with x86_64 CPUs, and 2 GB of RAM. We measured raw 
buffered reads from the hard drives at 61.8MB/s on Lille 
and 53.2 MB/s on Qrsay, using the hdparm utility. Inter-node 
bandwidth is 1 Gbit/s (we measured 117.5 MB/s for TCP end-
to-end sockets with MTU of 1500 B) and latency is 0.1 ms. 

MapReduce- style computing systems are traditionally run-
ning on commodity hardware, collocating computation and 
storage on the same physical box. However, recent proposals 
advócate the use of converged networks to decouple the 
computation from storage in order to enable a more flexible 
and efficient datacenter design [18]. Since both approaches are 
used by cloud providers, we evalúate the benefits of applying 
global behavior modeling to BlobSeer in both scenarios. For 
this purpose, we use the Lille cluster to model collocation 
of computation and storage node by codeploying a client 
process with a data provider process on the same node, 
and the Orsay cluster to model decoupled computation and 
storage by running the client and the data provider on different 
nodes. In both scenarios we deploy on each node a GMonE 
resource monitor that is responsible to collect the monitoring 
data throughout the experimentation. Further, in each of the 
clusters we reserve a special node to act as the GMonE 
monitoring archive that collects the monitoring information 
from all resource monitors. We will refer from now on to the 
scenario that models collocation of computation and storage 
on the Lille cluster simply as setting A and to the scenario 
that models decoupled computation and storage on the Orsay 
cluster as setting B. 

C. Simulating node failures 

Since real large-scale distributed environments are subject 
to failures, we implemented a data provider failure-injection 
framework that models failure patterns observed in real large-
scale systems build from commodity hardware that run for 
long periods of time. We use the multi-state resource availabil-
ity characterization study described in [19] in order to genérate 
random failure scenarios for our experiments. 

IV. RESULTS 

We perform a multi-stage experimentation that involves: 
(i) running an original BlobSeer instance under the data-
intensive access pattern and failure scenario described, (ii) ap­
plying our approach to analyze the behavior of BlobSeer and 

TABLE i 
GLOBAL STATES - SETTING A 

parameter 
Avg. read ops. 
Read ops stdev. 
Avg. write ops. 
Write ops stdev. 
Free space stdev. 
Nr. of providers 

State 1 
68.9 
10.5 
43.2 
4.9 

3.1e7 
107.0 

State 2 
121.2 
15.8 
38.4 
4.7 

82.1e7 
102.7 

State 3 
60.0 
9.9 

45.3 
5.2 

84.6e7 
96.4 

State 4 
98.7 
16.7 
38.5 
7.4 

89.4e7 
97.2 

TABLE II 
GLOBAL STATES - SETTING B 

parameter 
Avg. read ops. 
Read ops stdev. 
Avg. write ops. 
Write ops stdev. 
Free space stdev. 
Nr. of providers 

State 1 
98.6 
17.7 
35.2 
4.5 

17.2e6 
129.2 

State 2 
202.3 
27.6 
27.5 
3.9 

13.0e6 
126.2 

State 3 
125.5 
21.9 
33.1 
4.5 

15.5e6 
122.0 

identify potential improvements and finally (iii) running an 
improved BlobSeer instance in the same conditions as the 
original instance, comparing the results and proving that the 
improvement hinted by the proposed methodology was indeed 
successful in raising the performance of BlobSeer. This multi-
stage experimentation is performed for both settings A and B 
described in Section III. 

1) Running the original BlobSeer instance: We deploy a 
BlobSeer instance in both settings A and B and monitor it 
using GMonE. Both experimental settings have a fixed dura-
tion of 10 hours. During the experiments, the data-intensive 
workload accessed a total of ~ 11TB of data on setting A, out 
of which ~ 1.3TB were written and the rest read. Similarly, 
a total of ~ 17TB of data was generated on setting B, out of 
which ~ 1.5TB were written and the rest read. 

2) Performing the global behavior modeling: We apply 
GloBeM both for setting A and setting B in order to gen­
érate the corresponding global behavior model. Each of the 
identified states of the model corresponds to a specific be­
havior pattern and contains the most significant parameters 
that characterize the state. Tables I and II show the average 
valúes for the most representative parameters of each state, 
both for setting A and setting B respectively. It is important 
to remember that these are not all the parameters that were 
monitored, but only the ones selected by GloBeM as the 
most representative. As can be seen, GloBeM identified four 
possible states in the case of setting A and three in the case 
of setting B. 

The client-side feedback is gathered from the client logs as 
explained in Section II-D. Average read bandwidths for each 
of the states are represented in Table III for both settings A 
andB. 

TABLE III 
AVERAGE READ BANDWIDTH 

Scenario 
Setting A 
Setting B 

State 1 
24.2 
50.7 

State 2 
20.1 
35.0 

State 3 
31.5 
47.0 

State 4 
23.9 

umts are MB/s 
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Fig. 2. Read faults: states are represented with different point styles 

Figures 2(a) and 2(b) depict evolution in time of the 
total number of read faults as observed by the clients for 
both scenarios. At this point it is important to remember 
that these are client related data and, therefore, neither read 
bandwidth ñor failure information was available to GloBeM 
when identifying the states. Nevertheless, the different global 
patterns identified correspond to clearly different behavior in 
terms of client metrics, as Table III and Figures 2(a) and 2(b) 
show. 

As previously described, the GloBeM analysis generated 
two global behavior models, each one corresponding to the 
behavior of BlobSeer in settings A and B. We performed 
further analysis using the effective read bandwidth and number 
of read faults as observed from the client point of view in order 
to classify the states of the behavior models into desired states 
(where the performance metrics are satisfactory) and undesired 
states (where the performance metrics can be improved). 

In the case of setting A, State 2 presents the lowest average 
read bandwidth (~ 20MB/s). It is also the state where 
most read faults occur, and where the failure pattern is more 
erratic. A similar situation occurs with setting B. In this case 
again State 2 is the one with the lowest average bandwidth 
(~ 35MB/s) and the most erratic read fault behavior. We 
conclude these states {State 2 in both settings A and B) to 
be undesired, because the worst quality of service is observed 
from the client point of view. 

Considering now the global state characterization provided 
by GloBeM for both scenarios (Tables I and II), a distinctive 
pattern can be identified for these undesired states: both have 
clearly the highest average number of read operations and, 
in the case of setting B specifically, a high standard deviation 
for the number of read operations. This indicates a state where 
the data providers are under heavy read load (henee the high 
average valué) and the read operation completion times are 
fluctuating (henee the high standard deviation). 

3) Improving BlobSeer: Now that the cause for fluctuations 
in the stability of the throughput has been identified, our 

objective is to improve BlobSeer's quality of service by 
implementing a mechanism that avoids reaching the undesired 
states described above (State 2 in both settings). Since the 
system is under constant write load in all states for both 
settings A and B (Tables I and II) we aim at reducing the total 
VO pressure on every data provider by avoiding to allocate 
providers under heavy read load to store new chunks generated 
by writers. 

This in turn improves the read throughput but at the cost 
of a slightly less balanced chunk distribution. This eventually 
affeets the throughput of future read operations on the newly 
written data. For this reason, avoiding writes on providers with 
heavy read loads is just an emergeney measure to prevent 
reaching an undesired state. During normal functioning with 
non-critically high read loads, the original load-balancing 
strategy for writes can be used. 

The average read operation characterization provided by 
GloBeM for State 2, which is the undesired state (both in 
settings A and B), is the key threshold to decide when 
a provider is considered to be under heavy read load and 
should not store new chunks. We implemented this policy in 
the chunk allocation strategy of the provider manager. Since 
data providers report periodically to the provider manager 
with statistics, we simply avoid choosing providers for which 
the average number of read operations goes higher than the 
threshold. We enable choosing those providers again when the 
number of read operations goes below this threshold. 

4) Running the improved BlobSeer instance: The same ex-
periments were again conducted in the exact same conditions, 
(for both settings A and B), using in this case the improved 
BlobSeer chunk allocation strategy. As explained, the purpose 
of this new strategy is to improve the overall quality of service 
by avoiding the undesirable states identified by GloBeM (State 
2 in both settings A and setting B). 

As final measure of the quality of service improvement, a 
deeper statistical comparison of the average read bandwidth 
observed by the clients was done. Figures 3(a) and 3(b) show 
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Fig. 3. Read bandwidth stability: distribution comparison 

the read bandwidth distribution for each experimental scenario. 
In each case, the valúes of the original and improved Blob-
Seer versión are compared. Additionally, Table IV shows the 
average and standard deviation observed in each experimental 
setting. 

TABLE IV 
STATISTICAL DESCRIPTORS FOR READ BANDWIDTH ( M B / S ) 

TABLE V 
KOLMOGOROV-SMIRNOV TEST RESULTS 

Scenario 
Setting A 
Setting A 
Setting B 
Setting B 

- Initial 
- Advanced strategy 

Initial 
Advanced strategy 

mean (MB/s) 
24.9 
27.5 
44.7 
44.7 

standard deviation 
9.6 
7.3 
10.5 
8.4 

The results seem to indícate a clear improvement (especially 
in setting A). However, in order to eliminate the possibility of 
reaching this conclusión simply because of different biases in 
the monitoring samples, we need further statistical assessment. 
In order to declare the results obtained using the improved 
BlobSeer implementation (depicted in Figures 3(a) and 3(b) 
and Table IV) as statistically meaningful with respect to the 
original implementation, we need to ensure that the differ­
ent monitoring samples are in fact obtained from different 
probability distributions. This would certify that the quality 
of service improvement observed is real, and not a matter of 
simple bias. 

To this end, we ran the Kolmogorov-Smirnov statistical 
test [20], on both the initial read bandwidth results and the 
improved read bandwidth results. This test essentially takes 
two samples as input and outputs a p-value, which must be 
smaller than 0.01 in order to conclude that they originate 
from two different probability distributions. The obtained p-
values, represented in Table V clearly shows that our results 
successfully passed the test. 

Finally, the results show a clear quality of service improve­
ment in both settings A and B. In setting A, the average 
read bandwidth shows a 10% increase and, which is more 
important, the standard deviation was reduced substantially. 
This indicates a lesser degree of dispersión in the effective 

Scenario 
Setting A 
Setting B 

p-value 
2.098e-14 
0.004529 

read bandwidth observed, and therefore a much more stable 
bandwidth (for which the difference between the expected 
bandwidth (the mean valué) and the real bandwidth as mea-
sured by the client is lower). As it has been said, these read 
bandwidth mean and standard deviation improvements indicate 
an significant increase in the overall data access quality of 
service. 

In setting B, the average read bandwidth remained stable, 
which is understandable given that, as explained in Section III, 
we are cióse to the máximum physical hard drive transfer rate 
limit of the testbed characteristics and, therefore, achieving a 
higher valué is very difficult. Nevertheless, the read bandwidth 
standard deviation was again significantly reduced, resulting 
in a much more stable data access and, therefore, improved 
data access quality of service. 

V. RELATED WORK 

Modeling and characterizing the behavior of large scale 
distributed systems has been approached in several other con-
texts. The most basic approach is benchmarking [21], which 
enables manual analysis of the behavior of a system under 
different workloads. Other approaches describe the system 
formally using Colored Petri Nets (CPN) [22] or Abstract 
State Machines (ASM) [23] in order to reason about behavior. 
Rood and Lewis [24] propose a multi-state model and several 
analysis techniques in order to forecast the resources avail-
ability, aiming at improving scheduler efficiency. Smith et al. 
[25] analyze the run times of parallel applications from past 
executions of similar applications. Barham et al. [26] propose 
Magpie, a toolchain for automatically extracting a system's 
workload under realistic operating conditions. Finally, in the 



same line Pan et al. [27] propose a tool for black-box diagnosis 
of MapReduce systems, aimed at discovering problems and 
bottlenecks. 

Compared to all this related work, our approach simplifies 
the analysis using a generic, global system model, therefore 
enabling an easier further decision-making. It also emphasizes 
less invasive monitoring and focuses on advanced knowledge 
discovery techniques that can directly be applied to improve 
the system. To the best of our knowledge, such an approach has 
not been investigated so far in the área of distributed storage. 

VI. CONCLUSIONS 

In order to adequately support MapReduce distributed data-
intensive applications on the cloud, the underlying data storage 
backend has to ensure besides a high aggregated throughput 
under heavy access concurrency also a stable throughput for 
each individual data transfer, which is a quality of service 
constraint. 

However the sheer complexity of the system's behavior 
makes reasoning about quality of service a difficult problem, 
because a lot of distinct factors affect the behavior simulta-
neously: highly-concurrent data access patterns, long periods 
of service uptime, failures of physical components, the highly 
distributed nature of the storage service itself, etc. 

This paper proposes a new approach to improve QoS in a 
distributed storage system, based on component monitoring, 
application-side feedback and global behavior modeling that 
can be combined to infer useful knowledge about potential 
bottlenecks, making reasoning about potential imporvements 
much easier. 

We have successfully applied our approach to improve the 
individual throughput stability delivered by BlobSeer, a repre-
sentative distributed storage service which aims at providing 
a high aggregated throughput under heavy access concurrency 
and thus is an ideal candidate as a MapReduce backend. 

Evaluations on the Grid'5000 testbed revealed substantial 
improvement in individual read throughput stability, thereby 
raising the overall quality of service provided by BlobSeer, 
both for the case of collocated computation tasks with data 
providers and decoupled computation and storage. 

In the near future, we plan to pursue the encouraging results 
found so far by adopting our approach for real MapReduce 
deployments (such as Hadoop [12]) which are backed up by 
real cloud middleware (such as Nimbus [8]). Furthermore, A 
stable throughput at the level of the storage service makes 
the cost of the 170 operations more predictable, which in 
turn has the potential to improve the efficiency of scheduling 
algorithms and reveal new options for quality of service 
management at the upper layers. Future work in this direction 
is planned as well in the long term. 
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