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Abstract 
The Ravenscar profile defines a subset of Ada tasking 
that can be statically analysable fior real-time 
properties. The implications of the Ravenscar profile 
and other commonly used high-integrity restrictions 
fior developing device drivers are analysed in the 
paper, and some guidelines are provided based on the 
analysis. The technical contení of the paper is based 
on the authors' experience in developing 
communicatión drivers fior the Open Ravenscar real-
time Kernel (ORK) that are well suited fior space on-
board applications. A reference architecture fior 
device drivers is proposed, and two instances of 
drivers based on it are described. 
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1 Introduction 

The Ravenscar profile [5] defines a subset of Ada tasking 
that can be used to develop real-time systems with 
predictable, analysable temporal behaviour. It is aimed at 
high-integrity applications that can eventually undergo a 
certification process with respect to some domain-specific 
standard. The profile has been widely accepted in academy 
and industry, and a number of industrial-grade 
implementations are available which can be used to 
develop highly critical systems. All of them include cross-
compilation chain and a runtime system supporting the 
static tasking model defined by the profile. 

A Ravenscar runtime system typically includes a tasking 
kernel, as well as some basic device drivers, e.g. for one or 
more system clocks and a serial line for debugging 
purposes. However, embedded real-time systems usually 
include specific hardware devices for which appropriate 
drivers have to be developed, often as part of an application 
development process. Driver programming requires 
accessing device controller registers, even at the bit level, 
and synchronizing the I/O operations with the CPU, usually 
by means of interrupts [7]. The Ada language [12] includes 
a number of low-level constructs for this purpose, among 
which the main ones are: 

• Representation clauses can be used to represent 
hardware registers, including bit-wise structures and 
the addresses where they are located, by means of data 
types, data objects, and type and object attributes. 

• Protected procedures can be used as interrupt 
handlers. The enclosing protected objects may include 

data objects and other protected operations that can be 
used by the application tasks to interact with the 
device. 

Other useful low-level elements of the Ada language 
include storage address handling, machine code insertions, 
and shared variable control pragmas. 

The Ravenscar profile explicitly allows most of the above 
features, provided they are used in such a way that the 
structure of the program remains static (e.g. dynamic 
handler attachment is forbidden). However, the profile 
exeludes some useful elements that are part of common 
programming patterns for drivers, such as múltiple entries 
in protected entries and requeue statements (see e.g. [5]). 
Furthermore, since the profile only addresses the tasking 
aspeets of the language, additional restrictions are usually 
set on sequential constructs in order to enforce temporal 
predictability and support different kinds of static analysis 
in high-integrity applications [14]. Such restrictions may 
limit the use of some elements that are commonly used in 
device drivers (e.g. access types). Therefore, developing 
device drivers for high-integrity real-time systems may 
require additional effort from the programmer in order to 
overeóme the restrictions in the expressive power of the 
language that are imposed in order to comply with the 
predictability and reliability properties required from such 
systems. 

In the next section the overall difficulties in developing 
device drivers for high-integrity systems are analysed, and 
some general guidelines are proposed. Section 3 describes 
the authors' experience in developing drivers for a family of 
on-board embedded computers in the space domain, and a 
software architecture for device drivers is proposed. Two 
instances of communication drivers derived from this 
architecture are described in section 4. Finally, conclusions 
of the work and future work plans are explained in 
section 5. 

2 Device drivers and high-integrity 
restrictions 

2.1 Ravenscar restrictions 

The Ravenscar profile is defined by three pragmas and a set 
of restrictions [12]. The pragmas specify the dispatching 
and locking policies to be FIFO_With¡n_Prior¡t¡es and 
Ceiling_Locking, respectively, and require potentially 
blocking operations within protected operations to be 
detected. The restrictions define a static, analysable tasking 
model [13]. 



The profile explicitly allows protected procedure interrupt 
handlers to be declared using pragma Attach_Handler, 
forbidding only the use of the dynamic attachment features 
defined in the Ada.lnterrupts package. Therefore, the basic 
language elements for programming device drivers are 
available in Ravenscar programs, and most of the 
Ravenscar restrictions raise no problems in this respect. 

However, some common programming patterns for drivers, 
such as the simple two-step pattern shown in listing 1 are 
not allowed by the profile. This pattern uses two features 
forbidden by the profile, múltiple protected enfries and 
requeue, to perform an input-output operation in two steps: 
first StartJO is called to setup the device registers as 
needed. Then the cali is requeued to EndJO, awaiting the 
completion of the operation to be signalled by an interrupt. 
When the interrupt arrives, the handler opens the EndJO 
barrier and the operation completes. Notice that EndJO is 
prívate as it is only invoked by the requeue statement in 
StartJO and thus cannot be called by other program units. 

This pattern can easily be transformed into one that does 
not make use of requeue, as shown in listing 2, provided 
that the driver is only used by one application task. In this 
case the task can cali StartJO as a procedure and 
consequently exit the protected object. A second explicit 
cali to entry EndJO has to be made in order to await the 
arrival of the interrupt, which is handled as before. 

Listing 1 Two-step driver 

protected Driver is 
entry StartJO; 

prívate 
entry EndJO; 
procedure Handler; 
pragma AttachJHandler(lntJD, Handler); 
Ready : Boolean := True; 
Finished : Boolean := False; 

end Driver; 
protected body Driver is 

entry StartJO when Ready is 
begin 

Ready := False; Finished := False; 
requeue CompleteJO; 

end StartJO; 
entry EndJO when Finished is 
begin 

Ready := True; 
end EndJO; 
procedure Handler is 
begin 

Finished := True; 
end Handler; 

end Driver; 

Notice that allowing only one application task to use a 
device driver is quite natural in Ravenscar programs. 
Otherwise, two tasks might be queuing on the protected 
entry of the drive, which is forbidden by the profile. 

2.2 Other high-integrity restrictions 

In addition to the Ravenscar tasking restrictions, 
restrictions on the sequential part of the language are often 
enforced on high-integrity systems, in order to enhance 
their robustness and predictability and enable advanced 
verification techniques to be used [14]. Some common 
restrictions are: 

• No_Allocators 

• No_Unchecked_Access 

• NoJDispatch 

• No_Recursion 

• NoJO 

• NoJExceptions 

• No_Access_Subprograms 

Most of the restrictions in the above list do not raise any 
special problem for programming drivers. The last two 
ones, however, deserve some further attention. 
NoJExceptions prevenís exceptions to be used to handle 

Listing 2 Ravenscar-compliant two-step driver 

protected Driver is 
procedure StartJO; 
entry EndJO; 

prívate 
procedure Handler; 
pragma AttachJHandler(lntJD, Handler); 
Finished : Boolean := False; 

end Driver; 
protected body Driver is 

procedure StartJO is 
begin 

Finished := False; 
end StartJO; 
entry EndJO when Finished is 
begin 

end EndJO; 
procedure Handler is 
begin 

Finished := True; 
end Handler; 

end Driver; 



hardware errors in I/O operations. Since error detection and 
signalling is a key element of most device drivers, lower-
level mechanisms such as error status variables or error 
parameters in subprograms must be used. Some 
implementations (see e.g. [1]) allow a fine-grain control of 
exceptions by specifically restricting the use of exception 
handlers or exception propagation, but the results are 
roughly the same. As for No_Access_Subprograms, its 
implications are not obvious for simple drivers, but this 
restriction may cause problems for drivers with 
initialization-time configuration, as discussed in section 4. 

3 A generic driver architecture 
Computers are built up with a set of modules of three basic 
types: processors, memories and I/O devices, the latter 
being in charge of communicating with the computer 
environment through the so-called peripheral devices. 
Nowadays, the common way to interconnect computer 
components is by means of a computer bus or, more often, 
a computer bus hierarchy. The usual arrangement is to 
interconnect components on the same board with a local 
bus, and communicate different boards by means of a 
backplane bus. 

The I/O device interface from the processor side usually 
consists of several registers that can be classified as: 

• Status registers, which are used to store the status of 
the attached device. The processor can check the status 
of a device by reading its status registers. 

• Control registers, which accept commands from the 
processor that are decoded by the I/O module in order 
to issue the corresponding request to the peripheral 
device. 

• Data registers, which perform data buffering in order 
to decouple the different transfer rates of the main 
memory and the peripheral device. 

A device driver is a software module that provides 
application code with access to a peripheral device. The 
application code invokes driver operations in order to 
interact with the device by means of commands that are 
sent to the device. When the device sends data or control 
information back to the driver, it completes the operation at 
the application level by returning from the cali or by 
invoking other routines in the application. Device drivers 
al so provide for interrupt handling and other 
synchronization operations. Due to their strong interaction 
with the device, device drivers are hardware-dependent and 
operating systems-specific in nature. 

In order to enable the driver to interact with the device, the 
I/O registers must be allocated a unique address in an 
address space that can be made accessible to the processor. 
For port-based addressing architectures, the I/O registers 
can be accessed by subprograms including assembly code 
instead. 

In a similar way, interrupt and DMA (Direct Memory 
Access) request lines have to be properly set and identified. 
Real-time modular computers are commonly based on 

Figure 1 Generic driver architecture 

standard backplane buses, such as VME, EISA or PCI, 
where processors, memory modules, and I/O boards are 
plugged. Some backplane buses provide jumpers or micro-
switches for manual configuration of the addresses in each 
board. Other modular buses do not provide such low-level 
mechanisms, and the board configuration is done by 
reading board parameters and writing the settings on board 
registers, using a sepárate configuration address space. In 
this case, an initialization routine has to be developed as 
part of the device driver, which is commonly called a "plug 
and play" routine. Such a routine typically includes 
locating I/O devices by exploring boards that are connected 
to the system, calculating proper settings for the device, 
and writing them onto the configuration registers. 

Once initialized, the main functions of a device driver are 
translating higher-level commands into device-specific 
commands, reading device states, synchronizing the 
operation of the device with the processors, and 
transferring data transfer to or from main memory. 

The software architecture should ideally reflect this 
organization, by providing sepárate components for 
handling peripheral devices and buses. Figure 1 shows a 
generic architecture for a device driver that uses an AMBA 
bus [2] as a local bus, and a PCI bus [18] as a backplane 
bus. It is modelled after other software architectures that 
have been successfully implemented for other devices [4], 
[15], [17]. 

4 Communications drivers for ORK+ 
and LEÓN computers 

4.1 Introduction 

Two communication drivers for a particular platform used 
in space systems are described in this section to illustrate 
some concepts that must be taken into account for 
developing device drivers for high-integrity systems. The 
hardware platform is based on a LEON2 computer [3], a 
radiation-hardened implementation of the SPARC V8 
architecture [19]. The software platform is based on the 
GNATforLEON compiler1 and ORK+, the current versión 
of the Open Ravenscar real-time Kernel [8] [20]. 

1 www.adacore.com 

http://www.adacore.com
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Figure 2 GR-CPCI-AT697 CPU board block diagram (reproduced from [10]). 
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Figure 3 RASTA interface board block diagram (reproduced from [11]). 

4.2 Hardware platform 
GR-RASTA is a development and evaluation platform for 
LEON2 and LEON3-based spacecraft avionics built on a 
Compact PCI (cPCI) backplane bus. The computer has two 
cPCI boards: 

• GR-CPCI-AT697: this is the processor board. It 
includes a LEON2 processor and memory. Its structure 
is shown in figure 2. The board has a PCI bridge to 
access the cPCI backplane bus. 

• GR-CPCI-XC4V: this is an interface board based on a 
FPGA which has several I/O modules, including three 
SpaceWire links. Its design is based on an AMBA2 bus 
to which the units are connected. It also has a PCI 
bridge to access the cPCI backplane bus. The structure 
of this board is shown in figure 3. 

System software is usually unaware of the bus hierarchy, 
aside from the startup configuration of the plug-and-play 
feature. However, it is important to take into account the 
"endianness"' of the different buses of the hierarchy as it 

The Advanced Microcontroller Bus Architecture (AMBA) is a system 
and peripheral bus widely used in System-on-a-chip (SoC) designs. 

has a strong influence on the definition of device registers. 
The SPARC v8 architecture, and therefore LEÓN, is big-
endian. This is also the byte ordering of the AMBA buses 
in LEÓN processors. However, the PCI bus is little-endian, 
as it was mainly developed for Intel x86 processors. In this 
way, I/O device multibyte registers will suffer byte twisting 
as shown in figure 4. This issue must be taken into account 
for PCI I/O device multibyte registers as well as for DMA 
transfers. Accordingly, PCI hosts and PCI DMA I/O 
devices must be properly initialized. 

4.2 The SpaceWire Device 
The Gaisler SpaceWire (GRSPW) core handles the lower-
level layers of the SpaceWire protocol [9]. It is an 
intelligent I/O device with Direct Memory Access (DMA) 
and interrupt-based synchronization with the CPU. The 
interrupt service routine (ISR) is expected to read the status 
registers so as to check if the operation has been 
successfully completed. 

The GRSPW core has three main parts: 

• The link interface, which handles the communication 
on the SpaceWire network and consists of a 
transmitter, receiver, and FIFO interfaces. FIFO 
interfaces are provided to the DMA engines and are 
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Figure 4 AMBA to PCI bus byte rwisting. 

used to transfer a number of characters (N-Chars in the 
following) between the AMBA and SpaceWire 
domains during reception and transmission 

N-Chars are sent when they are available from the 
transmitter FIFO and there are credits available. The 
credit counter is automatically increased when flow 
control tokens (FCT) are received and decreased when 
N-Chars are transmitted. Received N-Chars are stored 
to the receiver N-Char FIFO for further handling by 
the DMA interface. 

• The AMBA interface, which consists of the receiver 
and transmitter DMA engines. 

The receiver DMA engine reads N-Chars from the N-
Char FIFO and stores them on a DMA channel. 
Reception is based on descriptors located in a 
consecutive área in memory that hold pointers to 
buffers where packets should be stored. When a packet 
arrives it reads a descriptor from memory and stores 
the packet to the memory área pointed by the 
descriptor. 

Before reception can take place, a few registers need to 
be initialized, such as the node address register, which 
needs to be set to hold the address of this SpaceWire 
node. The link interface has to be put in the run state 
before any data can be sent. Also, the descriptor table 
and control register must be initialized. 

The transmitter DMA engine reads data from the 
AMBA bus and stores them in the transmitter FIFO for 
transmission on the SpaceWire network. 

• The RMAP handler is an optional part of the GRSPW 
and handles incoming packets which are determined to 
be RMAP (Remote Memory Access Protocol) 
commands. 

4.3 SpaceWire Driver Architecture 

Figure 5 contains a diagram of the software organization of 
the GRSPW driver, which is an instance of the generic 

architecture described previously (see figure 1). The driver 
has four main components: 

• The PCI driver component, which provides data type 
definitions and operations for reading and writing the 
PCI configuration registers. 

• The AMBA driver component, which provides data 
type definitions and operations for scanning the 
AMBA configuration records. 

• The RastaBoard driver component, which provides 
a common interface for drivers using the GR-
RASTA board, as well as hooks for interrupt handlers 
to be called upon reception of the single hardware 
interrupt issued by the board. 

SpaceWire 

Parameters * HLInterface Registers 

Core 

Handler 

RastaBoard 

Handler 

I 

PCI 

Registers 

AMBA 

Figure 5 SpaceWire driver architecture. 



• The SpaceWire driver component, which provides all 
the software items required by application programs to 
initialize and use the SpaceWire cores included in the 
GR-RASTA computer platform. 

The components of the SpaceWire driver are: 

• HLInterface: contains the higher-level interface for 
application programs, consisting of type definitions 
and operations initializing the SpaceWire devices, 
setting their node addresses, and sending and receiving 
data packets. 

• Parameters: contains the definitions of all the 
parameters that can be configured by the application 
programmer. 

• Core: contains all the code that interacts with the 
device registers in order to implement the I/O 
operations. 

This component exports a set of interface operations, 
which are used to implement the HLInterface 
operations. The component implements all the device 
operations in terms of the device registers and other 
hardware characteristics. 

• Handler contains the device interrupt handler, which is 
invoked on the completion of I/O operations. There is 
a single interrupt for all the three SpaceWire 
devices, and a synchronization object for each of the 
transmit and receive sections of each SpaceWire 
hardware device.3 Each occurrence of the interrupt is 
signalled to the appropriate synchronization 
object by identiíying the device and function that has 
caused the interrupt. 

• Registers: contains register and bit field definitions, as 
well as other data definitions that may be required to 
interact with the device. 

4.4 Serial driver 

There are two UARTs (Universal Asynchronous Receiver-
Transmitter) in the RASTA board that provide an interface 
between an APB bus and a RS-232 serial line. Each UART 
provides the ñinctionality for asynchronous serial 
Communications, supporting data frames with 8 data bits, 
one optional parity bit, and one stop bit. As usual, it is also 
possible to configure the baud rate and the flow control. 

UART devices are not message-oriented as SpaceWire 
devices, but character-oriented devices, i.e. an UART I/O 
operation involves just one character. Nevertheless, higher 
level software usually needs to send or receive a set of 
characters which builds up a message. In order to provide 
this ñinctionality, the driver includes two sepárate memory 
buffers for storing messages: 

• Transmit buífer: when higher level software sends a 
message, the corresponding data are pushed into this 
buffer and then the transmission starts until the buffer 

3 The GR-RASTA interface board has three SpaceWire devices. 
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Figure 6 UART buffers arrangement. 

is empty. The interrupt service routine is in charge of 
transferring data from the buffer to the transmitter 
register. 

• Receive buffer: when a data item is received, the 
interrupt service routine transfers it from the receiver 
register to this buffer. In this way, higher level 
software can receive messages by getting the data from 
this buffer. 

These intermediate buffers are stored in main memory, and 
their sizes can be specified with the Buffer_Size parameters 
(declared in Uart. Parameters). If the valué of these 
parameters is changed, the driver needs to be recompiled. 
Figure 6 shows the data flow between the UART registers 
and the intermediate buffers. 

It must be noticed that the two-step driver pattern would 
have been useful when calling the driver's high level 
operations HL.Write and HL.Read. Both operations deal 
with messages and they try to read or write a set of 
characters from or to intermediate buffers. A cali to 
HL.Read can be made with a message length greater than 
the currently stored in the receive buífer and thus the 
calling task may have to wait for the arrival of the rest of 
the message. As shown in section 2, this can be done in full 
Ada by using a requeue statement, but it has to be must be 
transformed into the altérnate pattern shown in listing 2 in 
order to comply with the Ravenscar profile. 

Figure 7 contains a diagram of the software architecture of 
the GRUART driver, which is an instance of the generic 
architecture described in section 3. 
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5 Conclusions 

The main issues related to writing device drives in 
Ravenscar Ada have been examined in the paper. A first 
conclusión is that the low-level mechanisms of the Ada 
language make it comparatively simple to develop device 
drivers in a high-level language. Features such as 
representation clauses and protected interrupt handlers 
allow the designer to build high-level abstractions of the 
hardware and greatly simplify writing the functional code 
of the drivers. Using record fields to ñame register bit 
groups improves the code readability compared to the 
lower-level bit mask approach used by other languages. 

The good news is that these useful mechanisms are 
compatible with the Ravenscar profile, and thus can be 
used to build device drivers for high-integrity embedded 
real-time systems. The only potential problem that has been 
identified is the inability to use the requeue statement to 
write interrupt drivers using the well-known two-step 
synchronization pattern. However, a simple workaround 
has been proposed that only requires the restriction that a 
protected entry can only be called by one task. 

A software architecture that can be used to develop device 
drivers for LEÓN computers has been introduced in the 
paper. Two driver instances for communication devices 
have been built based on the architecture. The authors' 
experience has been very positive, and is currently being 
continued with the developing of additional device drivers 
for the ORK+ real-time kernel and the GR-RASTA LEÓN 

computer boards within ESTEC, the European 
Research and Technology Centre of ESA. 
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