
Experience in programming device drivers with the
Ravenscar profile
Jorge López, Ángel Esquinas, Juan Zamorano, Juan Antonio de la Puente

Universidad Politécnica de Madrid, ETSIT UPM, E 28040 Madrid, Spain

Abstract
The Ravenscar profile defines a subset of Ada tasking
that can be statically analysable fior real-time
properties. The implications of the Ravenscar profile
and other commonly used high-integrity restrictions
fior developing device drivers are analysed in the
paper, and some guidelines are provided based on the
analysis. The technical contení of the paper is based
on the authors' experience in developing
communicatión drivers fior the Open Ravenscar real-
time Kernel (ORK) that are well suited fior space on-
board applications. A reference architecture fior
device drivers is proposed, and two instances of
drivers based on it are described.

Keywords: Ada 2005, real-time systems, Ravenscar
profile, device drivers, low-level programming.

1 Introduction

The Ravenscar profile [5] defines a subset of Ada tasking
that can be used to develop real-time systems with
predictable, analysable temporal behaviour. It is aimed at
high-integrity applications that can eventually undergo a
certification process with respect to some domain-specific
standard. The profile has been widely accepted in academy
and industry, and a number of industrial-grade
implementations are available which can be used to
develop highly critical systems. All of them include cross-
compilation chain and a runtime system supporting the
static tasking model defined by the profile.

A Ravenscar runtime system typically includes a tasking
kernel, as well as some basic device drivers, e.g. for one or
more system clocks and a serial line for debugging
purposes. However, embedded real-time systems usually
include specific hardware devices for which appropriate
drivers have to be developed, often as part of an application
development process. Driver programming requires
accessing device controller registers, even at the bit level,
and synchronizing the I/O operations with the CPU, usually
by means of interrupts [7]. The Ada language [12] includes
a number of low-level constructs for this purpose, among
which the main ones are:

• Representation clauses can be used to represent
hardware registers, including bit-wise structures and
the addresses where they are located, by means of data
types, data objects, and type and object attributes.

• Protected procedures can be used as interrupt
handlers. The enclosing protected objects may include

data objects and other protected operations that can be
used by the application tasks to interact with the
device.

Other useful low-level elements of the Ada language
include storage address handling, machine code insertions,
and shared variable control pragmas.

The Ravenscar profile explicitly allows most of the above
features, provided they are used in such a way that the
structure of the program remains static (e.g. dynamic
handler attachment is forbidden). However, the profile
exeludes some useful elements that are part of common
programming patterns for drivers, such as múltiple entries
in protected entries and requeue statements (see e.g. [5]).
Furthermore, since the profile only addresses the tasking
aspeets of the language, additional restrictions are usually
set on sequential constructs in order to enforce temporal
predictability and support different kinds of static analysis
in high-integrity applications [14]. Such restrictions may
limit the use of some elements that are commonly used in
device drivers (e.g. access types). Therefore, developing
device drivers for high-integrity real-time systems may
require additional effort from the programmer in order to
overeóme the restrictions in the expressive power of the
language that are imposed in order to comply with the
predictability and reliability properties required from such
systems.

In the next section the overall difficulties in developing
device drivers for high-integrity systems are analysed, and
some general guidelines are proposed. Section 3 describes
the authors' experience in developing drivers for a family of
on-board embedded computers in the space domain, and a
software architecture for device drivers is proposed. Two
instances of communication drivers derived from this
architecture are described in section 4. Finally, conclusions
of the work and future work plans are explained in
section 5.

2 Device drivers and high-integrity
restrictions

2.1 Ravenscar restrictions

The Ravenscar profile is defined by three pragmas and a set
of restrictions [12]. The pragmas specify the dispatching
and locking policies to be FIFO_With¡n_Prior¡t¡es and
Ceiling_Locking, respectively, and require potentially
blocking operations within protected operations to be
detected. The restrictions define a static, analysable tasking
model [13].

The profile explicitly allows protected procedure interrupt
handlers to be declared using pragma Attach_Handler,
forbidding only the use of the dynamic attachment features
defined in the Ada.lnterrupts package. Therefore, the basic
language elements for programming device drivers are
available in Ravenscar programs, and most of the
Ravenscar restrictions raise no problems in this respect.

However, some common programming patterns for drivers,
such as the simple two-step pattern shown in listing 1 are
not allowed by the profile. This pattern uses two features
forbidden by the profile, múltiple protected enfries and
requeue, to perform an input-output operation in two steps:
first StartJO is called to setup the device registers as
needed. Then the cali is requeued to EndJO, awaiting the
completion of the operation to be signalled by an interrupt.
When the interrupt arrives, the handler opens the EndJO
barrier and the operation completes. Notice that EndJO is
prívate as it is only invoked by the requeue statement in
StartJO and thus cannot be called by other program units.

This pattern can easily be transformed into one that does
not make use of requeue, as shown in listing 2, provided
that the driver is only used by one application task. In this
case the task can cali StartJO as a procedure and
consequently exit the protected object. A second explicit
cali to entry EndJO has to be made in order to await the
arrival of the interrupt, which is handled as before.

Listing 1 Two-step driver

protected Driver is
entry StartJO;

prívate
entry EndJO;
procedure Handler;
pragma AttachJHandler(lntJD, Handler);
Ready : Boolean := True;
Finished : Boolean := False;

end Driver;
protected body Driver is

entry StartJO when Ready is
begin

Ready := False; Finished := False;
requeue CompleteJO;

end StartJO;
entry EndJO when Finished is
begin

Ready := True;
end EndJO;
procedure Handler is
begin

Finished := True;
end Handler;

end Driver;

Notice that allowing only one application task to use a
device driver is quite natural in Ravenscar programs.
Otherwise, two tasks might be queuing on the protected
entry of the drive, which is forbidden by the profile.

2.2 Other high-integrity restrictions

In addition to the Ravenscar tasking restrictions,
restrictions on the sequential part of the language are often
enforced on high-integrity systems, in order to enhance
their robustness and predictability and enable advanced
verification techniques to be used [14]. Some common
restrictions are:

• No_Allocators

• No_Unchecked_Access

• NoJDispatch

• No_Recursion

• NoJO

• NoJExceptions

• No_Access_Subprograms

Most of the restrictions in the above list do not raise any
special problem for programming drivers. The last two
ones, however, deserve some further attention.
NoJExceptions prevenís exceptions to be used to handle

Listing 2 Ravenscar-compliant two-step driver

protected Driver is
procedure StartJO;
entry EndJO;

prívate
procedure Handler;
pragma AttachJHandler(lntJD, Handler);
Finished : Boolean := False;

end Driver;
protected body Driver is

procedure StartJO is
begin

Finished := False;
end StartJO;
entry EndJO when Finished is
begin

end EndJO;
procedure Handler is
begin

Finished := True;
end Handler;

end Driver;

hardware errors in I/O operations. Since error detection and
signalling is a key element of most device drivers, lower-
level mechanisms such as error status variables or error
parameters in subprograms must be used. Some
implementations (see e.g. [1]) allow a fine-grain control of
exceptions by specifically restricting the use of exception
handlers or exception propagation, but the results are
roughly the same. As for No_Access_Subprograms, its
implications are not obvious for simple drivers, but this
restriction may cause problems for drivers with
initialization-time configuration, as discussed in section 4.

3 A generic driver architecture
Computers are built up with a set of modules of three basic
types: processors, memories and I/O devices, the latter
being in charge of communicating with the computer
environment through the so-called peripheral devices.
Nowadays, the common way to interconnect computer
components is by means of a computer bus or, more often,
a computer bus hierarchy. The usual arrangement is to
interconnect components on the same board with a local
bus, and communicate different boards by means of a
backplane bus.

The I/O device interface from the processor side usually
consists of several registers that can be classified as:

• Status registers, which are used to store the status of
the attached device. The processor can check the status
of a device by reading its status registers.

• Control registers, which accept commands from the
processor that are decoded by the I/O module in order
to issue the corresponding request to the peripheral
device.

• Data registers, which perform data buffering in order
to decouple the different transfer rates of the main
memory and the peripheral device.

A device driver is a software module that provides
application code with access to a peripheral device. The
application code invokes driver operations in order to
interact with the device by means of commands that are
sent to the device. When the device sends data or control
information back to the driver, it completes the operation at
the application level by returning from the cali or by
invoking other routines in the application. Device drivers
al so provide for interrupt handling and other
synchronization operations. Due to their strong interaction
with the device, device drivers are hardware-dependent and
operating systems-specific in nature.

In order to enable the driver to interact with the device, the
I/O registers must be allocated a unique address in an
address space that can be made accessible to the processor.
For port-based addressing architectures, the I/O registers
can be accessed by subprograms including assembly code
instead.

In a similar way, interrupt and DMA (Direct Memory
Access) request lines have to be properly set and identified.
Real-time modular computers are commonly based on

Figure 1 Generic driver architecture

standard backplane buses, such as VME, EISA or PCI,
where processors, memory modules, and I/O boards are
plugged. Some backplane buses provide jumpers or micro-
switches for manual configuration of the addresses in each
board. Other modular buses do not provide such low-level
mechanisms, and the board configuration is done by
reading board parameters and writing the settings on board
registers, using a sepárate configuration address space. In
this case, an initialization routine has to be developed as
part of the device driver, which is commonly called a "plug
and play" routine. Such a routine typically includes
locating I/O devices by exploring boards that are connected
to the system, calculating proper settings for the device,
and writing them onto the configuration registers.

Once initialized, the main functions of a device driver are
translating higher-level commands into device-specific
commands, reading device states, synchronizing the
operation of the device with the processors, and
transferring data transfer to or from main memory.

The software architecture should ideally reflect this
organization, by providing sepárate components for
handling peripheral devices and buses. Figure 1 shows a
generic architecture for a device driver that uses an AMBA
bus [2] as a local bus, and a PCI bus [18] as a backplane
bus. It is modelled after other software architectures that
have been successfully implemented for other devices [4],
[15], [17].

4 Communications drivers for ORK+
and LEÓN computers

4.1 Introduction

Two communication drivers for a particular platform used
in space systems are described in this section to illustrate
some concepts that must be taken into account for
developing device drivers for high-integrity systems. The
hardware platform is based on a LEON2 computer [3], a
radiation-hardened implementation of the SPARC V8
architecture [19]. The software platform is based on the
GNATforLEON compiler1 and ORK+, the current versión
of the Open Ravenscar real-time Kernel [8] [20].

1 www.adacore.com

http://www.adacore.com

JTAG l/F - ^

UART&
PIÓ l/F ™ 1 ^ LEON2-FT

EXPANSIÓN f ^ ^ i - i - w i * ^ . i i
1 ATG97E

- - I RS232 I - -
mw ITRANSCEIVERI mw

POWER AND
REGULATION

I

MEMORY
EXPANSIÓN

CONNECTOR

I 32 BIT PCI INTERFACE

•
T

ETHERNET l/F

Figure 2 GR-CPCI-AT697 CPU board block diagram (reproduced from [10]).

LVDS l/F LVDS l/F LVDS l/F

1 1 1
SpaceWire

Link
Intertace

AHB
CTRL

SpaceWire
Link

Intertace

SpaceWire
Link

Intertace

Logic
Analyzer

AMBA
Trace
Butfer

32-bit AMBA APB

32-bit AMBA AHB APB
CTRL

AHB-to-AHB
Bridge

AHB
CTRL

Memory
Controller
Intertace

CAN
2.0

Controller

Mil Slcl 1553
BC/RT/MT
Intertace

32-bit AMBA AHB

PCI
Initiator
Target

UART
Debug
Link

32-bit AMBA APB

APB
CTRL

JTAG
Debug
Link

UART
1

UART
2

GPIO
1

GPIO
2

rrTTTTT 1 TTTT
IRC)

CTRL

S
F^SPDR

R°A:CAN-20 M ™ 5 5 3 PCI RS232 JTAG RS232 RS232 l/O 1/0 PCI IRQ

Figure 3 RASTA interface board block diagram (reproduced from [11]).

4.2 Hardware platform
GR-RASTA is a development and evaluation platform for
LEON2 and LEON3-based spacecraft avionics built on a
Compact PCI (cPCI) backplane bus. The computer has two
cPCI boards:

• GR-CPCI-AT697: this is the processor board. It
includes a LEON2 processor and memory. Its structure
is shown in figure 2. The board has a PCI bridge to
access the cPCI backplane bus.

• GR-CPCI-XC4V: this is an interface board based on a
FPGA which has several I/O modules, including three
SpaceWire links. Its design is based on an AMBA2 bus
to which the units are connected. It also has a PCI
bridge to access the cPCI backplane bus. The structure
of this board is shown in figure 3.

System software is usually unaware of the bus hierarchy,
aside from the startup configuration of the plug-and-play
feature. However, it is important to take into account the
"endianness"' of the different buses of the hierarchy as it

The Advanced Microcontroller Bus Architecture (AMBA) is a system
and peripheral bus widely used in System-on-a-chip (SoC) designs.

has a strong influence on the definition of device registers.
The SPARC v8 architecture, and therefore LEÓN, is big-
endian. This is also the byte ordering of the AMBA buses
in LEÓN processors. However, the PCI bus is little-endian,
as it was mainly developed for Intel x86 processors. In this
way, I/O device multibyte registers will suffer byte twisting
as shown in figure 4. This issue must be taken into account
for PCI I/O device multibyte registers as well as for DMA
transfers. Accordingly, PCI hosts and PCI DMA I/O
devices must be properly initialized.

4.2 The SpaceWire Device
The Gaisler SpaceWire (GRSPW) core handles the lower-
level layers of the SpaceWire protocol [9]. It is an
intelligent I/O device with Direct Memory Access (DMA)
and interrupt-based synchronization with the CPU. The
interrupt service routine (ISR) is expected to read the status
registers so as to check if the operation has been
successfully completed.

The GRSPW core has three main parts:

• The link interface, which handles the communication
on the SpaceWire network and consists of a
transmitter, receiver, and FIFO interfaces. FIFO
interfaces are provided to the DMA engines and are

AHB bus 31-24

Address O Addiess 3

PCI off-chip bus

Address 3 Address 0

Figure 4 AMBA to PCI bus byte rwisting.

used to transfer a number of characters (N-Chars in the
following) between the AMBA and SpaceWire
domains during reception and transmission

N-Chars are sent when they are available from the
transmitter FIFO and there are credits available. The
credit counter is automatically increased when flow
control tokens (FCT) are received and decreased when
N-Chars are transmitted. Received N-Chars are stored
to the receiver N-Char FIFO for further handling by
the DMA interface.

• The AMBA interface, which consists of the receiver
and transmitter DMA engines.

The receiver DMA engine reads N-Chars from the N-
Char FIFO and stores them on a DMA channel.
Reception is based on descriptors located in a
consecutive área in memory that hold pointers to
buffers where packets should be stored. When a packet
arrives it reads a descriptor from memory and stores
the packet to the memory área pointed by the
descriptor.

Before reception can take place, a few registers need to
be initialized, such as the node address register, which
needs to be set to hold the address of this SpaceWire
node. The link interface has to be put in the run state
before any data can be sent. Also, the descriptor table
and control register must be initialized.

The transmitter DMA engine reads data from the
AMBA bus and stores them in the transmitter FIFO for
transmission on the SpaceWire network.

• The RMAP handler is an optional part of the GRSPW
and handles incoming packets which are determined to
be RMAP (Remote Memory Access Protocol)
commands.

4.3 SpaceWire Driver Architecture

Figure 5 contains a diagram of the software organization of
the GRSPW driver, which is an instance of the generic

architecture described previously (see figure 1). The driver
has four main components:

• The PCI driver component, which provides data type
definitions and operations for reading and writing the
PCI configuration registers.

• The AMBA driver component, which provides data
type definitions and operations for scanning the
AMBA configuration records.

• The RastaBoard driver component, which provides
a common interface for drivers using the GR-
RASTA board, as well as hooks for interrupt handlers
to be called upon reception of the single hardware
interrupt issued by the board.

SpaceWire

Parameters * HLInterface Registers

Core

Handler

RastaBoard

Handler

I

PCI

Registers

AMBA

Figure 5 SpaceWire driver architecture.

• The SpaceWire driver component, which provides all
the software items required by application programs to
initialize and use the SpaceWire cores included in the
GR-RASTA computer platform.

The components of the SpaceWire driver are:

• HLInterface: contains the higher-level interface for
application programs, consisting of type definitions
and operations initializing the SpaceWire devices,
setting their node addresses, and sending and receiving
data packets.

• Parameters: contains the definitions of all the
parameters that can be configured by the application
programmer.

• Core: contains all the code that interacts with the
device registers in order to implement the I/O
operations.

This component exports a set of interface operations,
which are used to implement the HLInterface
operations. The component implements all the device
operations in terms of the device registers and other
hardware characteristics.

• Handler contains the device interrupt handler, which is
invoked on the completion of I/O operations. There is
a single interrupt for all the three SpaceWire
devices, and a synchronization object for each of the
transmit and receive sections of each SpaceWire
hardware device.3 Each occurrence of the interrupt is
signalled to the appropriate synchronization
object by identiíying the device and function that has
caused the interrupt.

• Registers: contains register and bit field definitions, as
well as other data definitions that may be required to
interact with the device.

4.4 Serial driver

There are two UARTs (Universal Asynchronous Receiver-
Transmitter) in the RASTA board that provide an interface
between an APB bus and a RS-232 serial line. Each UART
provides the ñinctionality for asynchronous serial
Communications, supporting data frames with 8 data bits,
one optional parity bit, and one stop bit. As usual, it is also
possible to configure the baud rate and the flow control.

UART devices are not message-oriented as SpaceWire
devices, but character-oriented devices, i.e. an UART I/O
operation involves just one character. Nevertheless, higher
level software usually needs to send or receive a set of
characters which builds up a message. In order to provide
this ñinctionality, the driver includes two sepárate memory
buffers for storing messages:

• Transmit buífer: when higher level software sends a
message, the corresponding data are pushed into this
buffer and then the transmission starts until the buffer

3 The GR-RASTA interface board has three SpaceWire devices.

HLWrite HL.Read

\ Transmit Buffer Receive Buffer I

SRI

| Tx Reg. | | RX Reg. |

U
UART Line

Figure 6 UART buffers arrangement.

is empty. The interrupt service routine is in charge of
transferring data from the buffer to the transmitter
register.

• Receive buffer: when a data item is received, the
interrupt service routine transfers it from the receiver
register to this buffer. In this way, higher level
software can receive messages by getting the data from
this buffer.

These intermediate buffers are stored in main memory, and
their sizes can be specified with the Buffer_Size parameters
(declared in Uart. Parameters). If the valué of these
parameters is changed, the driver needs to be recompiled.
Figure 6 shows the data flow between the UART registers
and the intermediate buffers.

It must be noticed that the two-step driver pattern would
have been useful when calling the driver's high level
operations HL.Write and HL.Read. Both operations deal
with messages and they try to read or write a set of
characters from or to intermediate buffers. A cali to
HL.Read can be made with a message length greater than
the currently stored in the receive buífer and thus the
calling task may have to wait for the arrival of the rest of
the message. As shown in section 2, this can be done in full
Ada by using a requeue statement, but it has to be must be
transformed into the altérnate pattern shown in listing 2 in
order to comply with the Ravenscar profile.

Figure 7 contains a diagram of the software architecture of
the GRUART driver, which is an instance of the generic
architecture described in section 3.

Parameters •*

UART

HLInterface Sirgaras

Core

Handlej Revistera

RastaBoard

Handjgr Registeis

PCI

Registers

AMBA

Figure 7 UART driver architecture.

5 Conclusions

The main issues related to writing device drives in
Ravenscar Ada have been examined in the paper. A first
conclusión is that the low-level mechanisms of the Ada
language make it comparatively simple to develop device
drivers in a high-level language. Features such as
representation clauses and protected interrupt handlers
allow the designer to build high-level abstractions of the
hardware and greatly simplify writing the functional code
of the drivers. Using record fields to ñame register bit
groups improves the code readability compared to the
lower-level bit mask approach used by other languages.

The good news is that these useful mechanisms are
compatible with the Ravenscar profile, and thus can be
used to build device drivers for high-integrity embedded
real-time systems. The only potential problem that has been
identified is the inability to use the requeue statement to
write interrupt drivers using the well-known two-step
synchronization pattern. However, a simple workaround
has been proposed that only requires the restriction that a
protected entry can only be called by one task.

A software architecture that can be used to develop device
drivers for LEÓN computers has been introduced in the
paper. Two driver instances for communication devices
have been built based on the architecture. The authors'
experience has been very positive, and is currently being
continued with the developing of additional device drivers
for the ORK+ real-time kernel and the GR-RASTA LEÓN

computer boards within ESTEC, the European
Research and Technology Centre of ESA.

Acknowledgments

Space

This work has been funded in part by the Spanish Ministry
of Science, project TIN2008-06766-C03-01 (RT-MODEL),
and by the European Space Agency, ESTEC/Contract No.
21392/08/NL/JK.

References

[I] AdaCore (2009). GNATReference Manual.

[2] ARM (2003). AMBA 3.0 Specifwation.

[3] Atmel (2005). Rad-Hard 32 bit SPARC V8 Processor
—AT697E.

[4] D. Berjón (2005). Desarrollo de un subsistema fiable
de comunicación para sistemas de tiempo real.
Master's thesis, ETSIT- UPM. In Spanish.

[5] A. Burns, B. Dobbing and G. Romanski (1998). The
Ravenscar tasking profile for high integrity real-time
programs. In L. Asplund (ed) Reliable Software
Technologies—Ada-Europe'98. LNCS 1411,
Springer-Verlag, pp 236-275.

[6] A. Burns and A. Wellings (2007). Concurrent and
Real-Time Programming in Ada. Cambridge
University Press.

[7] A. Burns and A. Wellings (2009). Real-Time Systems
and Programming Languages. 4th edn. Addison-
Wesley.

[8] J.A. de la Puente, J.F. Ruiz and J. Zamorano (2000).
An open Ravenscar real-time kernel for GNAT. In
H.B. Keller and E. Plódereder (eds), Reliable
Software Technologies—Ada-Europe 2000. LNCS
1845, Springer-Verlag, pp 5-15.

[9] ECSS (2008). ECSS-E-ST-50-12C: Space
engineering — SpaceWire — Links, nodes, routers
andnetworks.

[10] Gaisler Research (2005). LEON2 Processor User's
Manual.

[II] Gaisler Research (2006). PASTA Interface Board
FPGA User's Manual.

[12] ISO/IEC: Std. 8652:1995/Amd 1:2007. Ada 2005
Reference Manual Language and Standard Libraries.
LNCS 4348, Springer-Verlag.

[13] ISO/IEC: TR 24718:2005. Guide for the use of the
Ada Ravenscar Profile in high integrity systems.
Based on the University of York Technical Report
YCS-2003-348 (2003).

[14] ISO/IEC: TR 15942:2000. Guide for the use of the
Ada programming language in high integrity systems.

[15] D.S. Morilla (1995). Programación en Ada del
LANCE Am7990. Master's thesis, FI-UPM. In
Spanish.

[16] PRAXIS Ltd (2008) The SPARKRavenscar Profile.

[17] J.E. Salazar, J.E.: Desarrollo de un driver para un
sistema espacial de alta integridad. Master's thesis,
FI- UPM. In Spanish.

[18] T. Shanley and D. Anderson (1999). PCI System
Architecture. 4th edn. Mindshare Inc.

[19] SPARC International (1992). The SPARC architecture
manual: Versión 8. Prentice-Hall.

[20] S. Uraeña, J.A. Pulido, J. Redondo and J. Zamorano
(2007). Implementing the new Ada 2005 real-time
features on a bare board kernel. Ada Letters, vol
XXVII no 2, p 61-66.

