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A R T I C L E I N F O A B S T R A C T 

In this paper the extensión of the multigroup nodal diffusion code ANDES, based on the Analytic Coarse 
Mesh Finite Difference (ACMFD) method, from Cartesian to hexagonal geometry is presented, as well as 
its coupling with the thermal-hydraulic (TH) code COBRA-IIIc for hexagonal core analysis. 

In extending the ACMFD method to hexagonal assemblies, triangular-Z nodes are used. In the radial 
plañe, a direct transverse integration procedure is applied along the three directions that are orthogonal 
to the triangle interfaces. The triangular nodalization avoids the singularities, that appear when applying 
transverse integration to hexagonal nodes, and allows the advantage of the mesh subdivisión capabilities 
implicit within that geometry. As for the thermal-hydraulics, the extensión of the coupling scheme to 
hexagonal geometry has been performed with the capability to model the core using either assembly-
wise channels (hexagonal mesh) or a higher refinement with six channels per fuel assembly (triangular 
mesh). Achieving this level of TH mesh refinement with COBRA-IIIc code provides a better estimation of 
the in-core 3D flow distribution, improving the TH core modelling. 

The neutronics and thermal-hydraulics coupled code, ANDES/COBRA-IIIc, previously verified in Carte­
sian geometry core analysis, can also be applied now to full three-dimensional VVER core problems, as 
well as to other thermal and fast hexagonal core designs. Verification results are provided, corresponding 
to the different cases of the OECD/NEA-NSC VVER-1000 Coolant Transient Benchmarks. 

1. Introduction 

During the last years, the reactor physics group at UPM has 
been working in the development of the in-house nodal neutrón 
diffusion code ANDES (Lozano et al., 2007, 2008a). It is based on 
the ACMFD method developed by Y.A. Chao in 1999 (Chao, 
1999), and extended recently to 3D Cartesian geometry and multi-
groups (Aragonés et al., 2007). The code has been successfully ap­
plied to LWR cores, with square fuel assemblies. ANDES was also 
coupled with the thermal-hydraulics (TH) code COBRA-IIIc/MIT-2 
(Jackson and Todreas, 1981) allowing analysis of LWR at coarse 
mesh scale also for transient problems (Lozano et al., 2008b), 
Giménez et al., 2008). 

The ACMFD method in Cartesian geometry is based on two 
steps aimed to obtain an analytical solution of the multigroup dif­
fusion equation within homogeneous nodes. The first one is the 
decoupling of the multigroup diffusion equation by means of diag-
onalization of the multigroup diffusion matrix. This way we obtain 

a set of uncoupled diffusion equations over the modal fluxes which 
are linearly related to the physical fluxes. The second step consists 
in performing a transverse integration, to reduce the n-dimen-
sional diffusion equation into n one-dimensional equations, cou­
pled through the transverse leakage included as an external 
source term. 

The key feature of the ACMFD method is that it leads to a linear 
relation among the node-average fluxes and the interface inte-
grated fluxes and currents at any node face. Such relation is scalar 
only in the modal space of the eigenvectors associated to each 
eigenvalue of the multigroup matrix, becoming matrix-vector rela-
tions in the physical space of the group fluxes and currents, result-
ing in the "coupling" of all groups. This leads to a high order 
scheme since it includes the effects of the intranodal flux shape 
and spectral variation. 

Because of the excellent performance of the ACMFD method for 
the case of square fuel assemblies, now the objective is its exten­
sión to reactor cores with hexagonal fuel assemblies following 
the same guidelines. 

Different nodal codes have been developed for hexagonal geom­
etry applications, including the so mentioned ACMFD method 
(Chao, 1999). Some of them, such as the NEM (Ivanov et al., 
2006), use a transverse integration procedure over the hexagonal 



nodes taking advantage of the superior calculation efficiency of the 
transverse-integrated nodal methods. However, when applied to a 
hexagon, the transverse-integrated nodal diffusion equation con-
tains non-physical singular terms, as is explained in (Lawrence, 
1986) and (Wagner, 1989); then, some kind of approximation 
has to be introduced. These approximations significantly degrade 
the accuracy of the method. 

Consequently, most of the nodal codes avoid performing trans-
verse integration over the hexagon. However, the applied methods 
are not exempt of difficulties either. The method implemented in 
codes such as ANC-H (Chao and Shatilla, 1995), PANTHER (Knight 
et al., 1995) or MGRAC (Tomasevic and Müller, 2009), is based on 
conformal mapping (Chao and Tsoulfanidis, 1995) in order to 
transform the hexagonal 3D problem into a Cartesian 3D problem 
before applying transverse integration. In this technique, the map­
ping scale function modifies the resulting 1D transverse-integrated 
equation, making difficult to obtain the analytic flux profile. In the 
AFEN method (Cho and Noh, 1995) the multigroup diffusion equa­
tion is solved directly, by expanding the flux distributions within a 
node in nonseparable analytic basis functions satisfying the diffu­
sion equations at any point of the node. However, in this approach, 
the number of continuity conditions (and thus the number of un-
knowns) at the nodal boundaries needed to obtain the required 
accuracy, increases the computing time, specially in 3D hexagonal 
geometry. A variation of the previous method is the HEXagonal No­
dal Expansión Method (HEXNEM2) implemented in the DYN3D 
code (Grundmann and Hollstein, 1999). It is based on a two-
dimensional expansión of the intranodal fluxes in the hexagon 
using both 2nd order polynomials and exponential functions. 
Side-averaged and corner-point valúes of fluxes and partial cur-
rents are used for the coupling of nodes. 

Other methods like the TPEN implemented in PARCS (Downar 
et al., 2004) divide the hexagonal domain into six triangles; for 
every triangle, the radial flux is represented by using a 2D polyno-
mial expansión and forcing the solution to fulfill the necessary con­
ditions. This way they avoid transverse integration as in AFEN. 
However, the continuity conditions to be satisfied among the six 
triangles require to solve a complex linear system for each hexag­
onal node, greatly increasing the complexity of the calculation. 

In this paper, we demónstrate that the ACMFD method, involv-
ing transverse integration, can be satisfactorily extended to reactor 
cores with hexagonal fuel assemblies when dividing the hexagons 
into six triangular nodes. The extensión to triangular-Z geometry 
does not involve a substantial change in the procedure used for 
Cartesian geometry and consequently, the nodal equations remain 
essentially identical to those for rectangular nodes. 

There are several advantages in using triangular nodes: first, it 
eliminates the appearance of non-physical singular terms in the 
transverse leakage, reducing the complexity of the transverse-inte­
grated equations; second, it allows to refine the mesh any number 
of times (with hexagonal nodes it is not possible to subdivide the 
mesh); and, third, it allows to have a better modelization of the 
TH and burn-up effects. 

The details of the developed formulation, paying special atten-
tion to the transverse integration of the diffusion equation in trian­
gular geometry will be summarized in Section 2. The method has 
been implemented in the code ANDES, allowing WER core analy-
ses. The existing TH coupling has also been extended to hexagonal 
geometry with the capability to model the core using either assem-
bly-wise channels (hexagonal mesh) or a higher refinement with 
six channels per fuel assembly (triangular mesh). The new coupling 
scheme and its peculiarities will be explained in Section 3. In Sec­
tion 4, we verify the performance of the ANDES/COBRA-IIIc coupled 
system with the steady state cases specified in the V1000CT2-EXT2 
Benchmark (Kolev et al., 2007a) and the Exercise 2 of the OECD/ 
NEA WER-1000 Coolant Transient Benchmark (Ivanov et al., 

2004). The results corresponding to the transient calculation are 
provided and the influence of the mesh refinement is analysed. 

2. The analytic coarse mesh finite difference method in 
triangular-Z geometry 

Let us divide the hexagonal assemblies into six triangular right 
prisms, composed of five interfaces (two equilateral triangular 
bases and three rectangular sides). 

As explained in the previous section, the first step to obtain the 
ACMFD relation at each nodal interface is the decoupling of the 
multigroup diffusion equation; this procedure is independent on 
the geometry, so all details and notation explained in (Aragonés 
et al., 2007; Lozano et al., 2008a) are valid. However the second 
step, that is, the transverse integration process to reduce the 3D 
diffusion equation to three ID diffusion equations, requires addi-
tional developments. For triangular geometry, we will show that 
the expressions are more complex and further manipulation of 
the equations is needed. 

2.1. Transverse integration ofthe 3D diffusion equation in triangular-
prismatic nodes 

Let us start from the 3D neutrón diffusion modal equation with­
in our homogeneous triangular-prismatic nodal volume Vshown in 
Fig. 1: 

VVm(?) - ^Jr) = -sm(r); m = \,L,G (1) 

where lm is the modal eigenvalue, ij/m(f) the modal flux, sm(r) the 
modal external source and G the number of energy groups. 

The transverse integration procedure in the axial direction (z) is 
used to obtain the ACMFD relation at the top and bottom interfaces 
of the node, in the same way as in Cartesian geometry. However, 
let us see the form of the resulting equations when applying the 
transverse integration approach in the radial directions (x or y). 

Fig. 1. Node in triangular-Z geometry (height fíz, triangle side length l). 



Let us consider the transverse integration over the x direction. 
Integrating Eq. (1) over a slice of width dx perpendicular to the x 
axis. 

/ fm • dydz - í fm • dydz - í fm-ds-Xm í ^m(r) • dV 
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sm(r) • dV (2) 

where fm(r) -. . »m(r) and fm{f) is the component of the modal current 
perpendicular to the peripheral área P(x). Then it is easy to see that 
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Applying the Leibniz' rule to the first term of Eq. (3) we find that 

A(x) 

+ ^Jx, •dz (4) 

Substituting this expression into Eq. (3), we finally obtain the 
following equation over the flux integrated in the slice: 
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Lm(x) is a term equivalent to the transverse leakage in Cartesian 
nodes, although in this case it has a major complexity: 
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/
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ax 

dz 

(7) 

where f^ and fm are the modal flux derivatives along the tangential 
direction to the radial interfaces (see Fig. 2). 

As it can be seen, as occurs in Cartesian geometry nodes, the 
transverse-integrated flux is the unknown of the resulting ID dif-
fusion equation obtained after integration of the original 3D equa­
tion along a radial direction. It is important to clarify that, now, the 

Fig. 2. Components of the modal current in the XY plañe and magnitudes involved 
in the ACMFD relation. 

radial transverse leakage does not fit the net leakage through the 
side faces of the prism and a tangential component of current 
arises as a consequence of the non-constant transverse área. How-
ever, we will maintain its ñame as it plays the same role as in the 
case of Cartesian geometry. 

Following, it will be shown how the ACMFD relation at a radial 
interface in triangular-Z geometry can be derived, that is, how to 
relate both node surface currents and fluxes to node-average 
fluxes. 

2.2. The ACMFD relation at radial interfaces in 2D triangular nodes 

For simplicity, we will consider first the 2D geometry case, that 
is, the triangular node shown in Fig. 2. As it can be seen in Eq. (5), 
the transverse-integrated flux being solution of a ID diffusion 
equation can be expressed as a combination of a homogeneous 
solution (independent on the external source) and a particular 
solution (pm(x)) given by the function expansión of Lm(x). This 
can be seen in the following equation: 

^(x)=Ame^x + Bme-
j 2 

-Pm(x); 

dx-
-Pm{X) - ¿mPm{X) = Lm{X); (8) 

Particularizing expression (8) in the interface at the right side of 
the triangle (see Fig. 2) we realize that average flux at this interface 
can be related to constants Am and Bm as follows: 

L-\j/„ -- Amey + Bme r -Lam (9) 

In addition it is possible to particularize the first derivative of 
expression (8) at the same position. The objective of this opera-
tion is to get a relation between the interface average current 
and the constants Am and Bm. At this point, it is important to give 
more details about this derivation. On the one side it is possible 
to write: 

dtfffL 
d ? ¡ — = (Xm(Amey -B-me y)+p'JX^-L (10) 

On the other side we have to take into account from (6) that 
<AmD(x) ' s a n integral function with an interval (transverse área) 
depending on x coordínate. For this we will have to apply Leibniz' 
rule: 
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Simplifying the notation, the following expression is obtained 

3 dtf(f¿) 1 
dx 

••Wl + ^-Üml^L (12) 

where jm is the modal average current at the interface and i/>¿, 
and \¡/2

m are the modal fluxes at the corners adjacent to the 
interface. 

Equating expressions (10) and (12) and taking into account also 
expression (9), constants Am and Bm are constants that can be 
determined by imposing the following conditions: the modal inter­
face average flux at a radial interface \\im, the modal average current 
at the same interface jmand the modal fluxes at the corners adja­
cent to the interface i/4 and \¡/2

m. 
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Then, substituting in the node-average modal flux ¡j/m, the 
ACMFD modal relation at every radial interface in triangular mesh 
is obtained: 

Pm f ¿- cf 
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(14) 

where L is the triangle side length and <fm and C'm are the analytic 
coefficients defined as: 
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With the purpose of deriving a "half node" coupling equation, 
we only need to compute the average valué of the particular solu-

tion (pm) and the valué of the function (pm(^-L\ j and its deriva-

tive lp'mI^L\\ in the right extreme. All these valúes will be 

given by the approach taken for the transverse leakage profile. 
Let us compare expression (14) with the equivalent relation in 

Cartesian geometry, for the right side in a square node of width H: 

(<Am " PjH)) = Cf
m{i,m - pm) - T<?m(/m +Pm(«)) 

First, it is remarkable the difference in the terms containing the 
particular solution. In Cartesian geometry they are not divided by 
the triangle side as they come from a transverse-integrated equa­
tion already divided by the constant transverse área, so that the 
transverse leakage and the particular solution implicitly are also 
divided by H (transverse área in the 2D case). 

We can see that the main drawback in the triangular case is the 
presence of the modal fluxes at the two corners adjacent to the 
interface, which have to be computed with a level of accuracy 
appropriate to this high order method. 

2.3. The analytic relation at corners in 2D triangular nodes 

To obtain the modal flux at a córner, we proceed as follows. We 
can particularize expression (8) at the coordínate (x = 0), which 
corresponds to the triangle vértex opposed to the analysed 
interface. 
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If we focus on the valúes of the function (17) and its first deriv-
ative (18) at this coordínate and substitute them in the expression 
for the nodal average flux (19), then we will obtain the following 
relation between the flux at vértex and the nodal average flux 
results: 

*i-^m=^(h-2-f Pm(0) 
1 L 

(20) 

where B¡„ and ¡ím are analytic constants defined by the square root 
of the modal eigenvalue Xm and by the length of the triangle side (L). 
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2.4. Combination of the ACMFD relation at a radial interface with the 
analytic relations at the adjacent corners 

Until now, it has been demonstrated that, as occurs in Cartesian 
geometry nodes, it also exists an ACMFD relation for triangular 
nodes (14). Nevertheless, we have also found that the flux particu-
larized at adjacent vertexes takes part in such ACMFD relation. 

The most straightforward option to treat Eq. (14) would be to 
take the term of fluxes at vértex from the previous iteration, 
including them in the non-linear iteration loop (as done with the 
transverse leakage term). However, this option is unfeasible as 
the iterative process becomes unstable because of the excessive 
influence of the transverse leakage term. Other possibility would 
be to set, in addition to the nodal average fluxes, the vértex fluxes 
as unknowns in the linear system, by introducing the corner-point 
balance equations. Nevertheless, in order to preserve the efficiency 
of the ACMFD method in Cartesian geometry, where the linear sys­
tem includes the nodal average fluxes as the unique unknowns, the 
additional relation (20) is applied to elimínate the corner-point 
fluxes from the final linear system. 

Consequently, it is necessary to substitute the flux at vertexes in 
relation (14) by their corresponding relation with the nodal aver­
age flux (20). Computing and grouping together the transverse 
leakage terms, we obtain the following expression: 

O6) $m = (fmh '-i¿J* (22) 

where the Tm includes all terms related to the particular solution 
driven by the transverse leakages. 

This way we finally have an expression quite similar to the 
ACMFD for Cartesian nodes, that is, the nodal equations are essen-
tially the same in triangular and Cartesian geometries. In this case, 
the transverse leakage profile has a more complex physical mean-
ing than in the previous one. 

However, this approach (in which nodal average fluxes are the 
unique unknowns) will not lead to the level of accuracy achieved 
with Cartesian geometry. The reason of this assertion is that the 
accuracy of the analytic nodal method relies on a good estimation 
of the average valué of the transverse leakage. In Cartesian mesh 
this average valué only depends on the interface average currents 
whose errors vary from 0.1% to 1% in most of nodal solutions. Nev­
ertheless attending to the transverse leakage expression in triangu­
lar mesh (7), we can see that transverse leakage not only gathers 
the perpendicular component of current to the surface, but also 
the tangential one. This will forcé us to compute the flux at the 
three vertexes of every node. 

Basically the fluxes at corners are computed using the corner-
point balance equations, involving the intranodal flux distributions 
of the six triangular nodes adjacent to the considered vértex. With 
this aim we use the analytic expression (20) for each one of the six 
nodes, obtaining a relation between flux at a given córner and the 
six nodal average fluxes. Thus the córner fluxes are iteratively up-
dated in transverse leakage loop, once the nodal average fluxes and 
the interface average fluxes and currents have been computed. 

For both analytic relations at interfaces (14) and vértex (20) a 
polynomial profile has been assumed for the transverse leakage 



Lm(x). Particularly a cubic fit has been adopted, which has four 
coefficients that are determined guessing the valúes of 
Lm, Lm(0), Lm(j3-L\ and one of the valúes of L'm(0), L'm(^§L\. To 
compute these valúes a parabolic interpolation of the average cur-
rents at radial interfaces has been adopted. 

2.5. Extensión of ACMFD theory to 3D (triangular-Z geometry) 

In triangular-Z geometry, the main difficulties arise from the 
fact that the transverse área changes in the radial direction. Once 
provided the formulation for 2D triangular nodes, the extensión 
to the 3D case is not difficult. We will have to overeóme two addi-
tional aspeets. First, an ACMFD relation for axial top and bottom 
interfaces has to be derived. Second, the transverse leakage has 
to be redefined to include the axial component as well, that is, 
the neutrón leakage through the top and bottom interfaces has 
to be taken into account in the particular solution of Eq. (14), then 
the transverse leakage Lm(x) is modified. 

2.5.3. The ACMFD relation for axial interfaces 
As it has been explained in previous sections, the first step to 

obtain an ACMFD relation is to perform a transverse integration 
of the 3D diffusion equation. In this case the integration is over 
the triangular área perpendicular to the z axis. In axial direction, 
the transverse área is constant, so the procedure to obtain the 
ACMFD relation is the same as in Cartesian nodes. Starting from 
the 3D modal equations we obtain the ID modal equation over 
the ID averaged flux: 

dz¿ •tm+%(z) = -s™(z)+U(z) 

4 3 

V JL r = 1 

(23) 

where jmr(z) is the averaged outgoing current through radial inter­
faces at height z. 

Independently of the way we obtain the transverse leakage Lm 

(z), Eq. (23) leads to an ACMFD relation similar to the Cartesian 
one with the only particularity that the transverse leakage is com-
puted in a different way. 

2.5.2. Modifications of the ACMFD relation for radial interfaces in 3D 
nodes 

In 3D nodes, Eq. (7) can be written in the following way: 
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where LR and Lz refers to leakage through radial and axial interfaces, 
respectively. 

The transverse leakage profile in z-direction leads to an addi-
tional particular solution (pz). Then Eq. (8) is modified: 

tf (x) = Ame^x + Bme-^x + fm(x) + tfjx) 

fjx) - Xmfjx) = LzJx) 
(25) 

dx' 

Finally it is worthy to remark that if we want to assume a poly-
nomial profile for Lz

m(x), we will have to take into account that the 
integration length in (24) varies with x. 

2.6. The ACMFD methodfor kinetics problems 

Under transient conditions, both the time-dependent multi-
group diffusion Eq. (26) and the balance equations of the six neu­
trón precursors (27) have to be solved together. The idea is to treat 

the temporal dependence in such a way that it yields a fixed source 
problem (FSP), which can be solved utilizing the methodology al-
ready developed for the steady-state FSP. This methodology is 
independent on the geometry so it can be applied to triangular-Z 
nodes with slight modifications regarding Cartesian nodes (Lozano 
et al., 2008b). 

The neutron-kinetics equations can be written in a matricial 
way as follows: 

1 

dt ~ 
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(27) 

where A is the steady-state multigroup diffusion matrix, % and yd 

refer to the prompt and delayed neutrón spectrum, respectively, 
and the ig-jg element of the Fd matrix is defined as 

Fi(ig,jg)=g& The rest of terms are in standard notation. 

To treat the time dependence, the first step is to discretize the 
time domain into discrete time steps. Focusing on the neutrón pre­
cursor balance equation and using a finite difference implicit 
scheme for the time derivative (neutrón precursor concentrations 
are assumed to have smooth variations with time steps employed 
in-core transient analysis), we can obtain a relation between every 
precursor concentration and the prompt neutrón flux per energy 
group: 

Ck(t,f)-
Q(f - At, f) + Af • fkpY%=1 v£fe^(t, r) 

1 + XkAt 
(28) 

On the other hand, to approximate the time derivative of the 
neutron-kinetics equation, we use the method of exponential 
extrapolation, 4>g{r, t) = <¡>g{r, t) • ew^ , and then the time derivative 
of the form function <pg is approximated by an implicit linear for-
ward difference scheme, which is appropriate for most of the nodes 
(those that are far from moving control rods). Thus the neutrón 
flux time derivative can be written as follows: 

1 d<j>Jt,f) 
DgVg dt 
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—— H 
DgVg DgVgAt 

1 
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The frequeney mg is recursively computed for each node and en­
ergy group using the nodal average flux: 

0)„ 
At V ^ ( t - A t ) 

(30) 

The iterative process over the frequeney cog is performed until 
the required convergence in the fission source distribution is 
achieved. 

The use of the exponential extrapolation method strongly im-
proves the efficieney of the solver in transient calculations where 
the flux evolution follows the fundamental mode. This oceurs in 
all those phases of the transients when there are no relevant 
changes in neutronic properties (control rod movement, ther-
mal-hydraulic conditions, etc.). Henee, this approach allows to in-
crease the transient time steps in these phases. 

Regarding the spectrum of delayed neutrons, it is known that it 
is softer than the prompt fission spectrum. However, henceforward 
it will be assumed the same neutrón spectrum for prompt (x) and 
delayed neutrons (xd). as specified in the benchmark presented in 
this paper. 

Introducing those approximations into the balance equations of 
neutrón precursors and into Eq. (26): 
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We can see that Eq. (31) is a FSP having additional terms with 
respect to the steady-state FSP: the multigroup matrix is now 
A + Aián, and the external source has an additional term deter-
mined by both the flux spatial distribution and the precursor con-
centrations in the previous time step (<p°, C°). 

In order to obtain an accurate ACMFD relation for transient 
problems, the most important is to decide which terms are in-
cluded in the multigroup diffusion matrix (A + Aiá„) and the spatial 
distribution assigned to the terms included in the external source. 

3. The NK-TH coupling scheme for hexagonal problems 

The neutron-kinetics (NK) and TH coupling in ANDES/COBRA-IIIc 
was originally developed for 3D Cartesian geometry (Jiménez et al., 
2007, 2008), including the capability of refining the radial mesh by 
using both one or four neutronic nodes and one or four channels 
per fuel assembly. The use of the TH channel code COBRA-IIIc in 
LWR, provides an accurate estimation of the in-core 3D flow distri­
bution due to the modelling of the diversión cross flow and turbu-
lent mixing between adjacent channels, in the solution of the 
momentum equation in the radial direction. 

The next step in the coupling scheme development has been its 
extensión to WER cores by addressing the challenging hexagonal 
mesh geometry of this type of reactors. The objective is to maintain 
the capability of performing a radial mesh refinement (see Fig. 3), 
and to take advantage of the cross flow treatment to provide an 
accurate estimation of the 3D flows also in hexagonal geometry 
problem applications. 

With this aim, the NK-TH coupling extensión to hexagonal 
geometry has been recently carried out. The coupled ANDES/CO­
BRA-IIIc code has the capability to model the core using either 
assembly-wise channels (hexagonal channels) or six channels (tri­
angular channels) per fuel assembly if a higher level of refinement 
is required in the TH radial nodalization. Regarding the axial mesh-
ing, the only restriction to the node height is related to the stability 
of both NK and TH solvers. The required stability imposes a num-
ber of axial nodes varying between a mínimum valué of ten axial 
layers up to forty, depending on the strength of the feedback in 
the axial direction. In the TH core modelling of WER-1000 Coolant 
Transient Benchmark (Ivanov et al., 2004), most of participants 
considered just twelve axial layers and several fuel assemblies 

were represented by a single homogenized ID channel. The capa­
bility of the TH mesh refinement with COBRA-IIIc code allows to 
improve the TH WER core modelling, providing a better estima­
tion of the in-core 3D flow distribution. This will be demonstrated 
in Section 4. 

Regarding the NK-TH time coupling, it is carried out using a 
staggered altérnate time mesh scheme (Merino et al., 1993). The 
most remarkable fact of the algorithm employed is that the calcu-
lations of TH and NK variables do not coincide in time. By means of 
this scheme, the energy is conserved in first order. For linear vari-
ations of power, the energy is exactly conserved, while for sharp 
exponential variations, a factor must be included to correct the lin­
ear approximation. 

The time coupling scheme has been successfully implemented 
and shows an accurate and robust performance, with minimal dif­
fusion and oscillations. The time step size is supplied by the user 
through input deck. It allows the detailed analysis of the different 
transient stages by selecting small time step sizes as well as the 
acceleration of the calculation by using large time steps when 
the changes in NK and TH variables are not so relevant. A numer-
ical analysis has shown that the stability limit of this coupling 
scheme is reached when a time step bigger than approx. 0.8-
1.0 s is imposed for coupled calculations at nominal conditions. 

4. Verification results 

The verification of the ANDES/COBRA-IIIc extensión to hexagonal 
geometry and its adequacy to the analysis of coupled transient has 
been carried out using the V1000CT2-EXT2 (Kolev et al., 2007a) 
and the Exercise 2 of the V1000CT-1 Benchmark (Ivanov et al., 
2004). In order to model properly the fuel behaviour in the above 
exercises, a polynomial fitting for the fuel, gap and cladding prop-
erties (thermal conductivity and heat capacity) was developed 
from the benchmark specifications to take into account their 
dependence on temperature. Those third order polynomials were 
implemented as correlations within the code COBRA-IIIc. 

Table 1 presents the results corresponding to different HZP 
steady state situations proposed in the V1000CT2-EXT2 Bench­
mark (Kolev et al., 2007a). All the cases correspond to different 
control rod insertions. Two results are provided for each single 
case, one using six neutronic nodes per fuel assembly and another 
using 24 neutronic nodes per fuel assembly. A comparison is per-
formed using the average of the results given by PARCS (Downar 
et al., 2004) and DYN3D (Grundmann and Hollstein, 1999) codes 
as reference solution. 

From Table 1, it can be figured out that the agreement of our 
coarser solution (COBAYA 6N) with the reference is quite good, 
and also consistent with the refined solution (COBAYA 24N). 
Namely, the differences in ke¡j are lower than 30 pcm even in the 
cases "3" and "4" which are highly asymmetric due to a control 

Fig. 3. Different mesh refinement capability applied to triangular-Z mesh. 



Table 1 
Comparison of ANDES/COBRA-III results for the V1000CT2-EXT2 HZP cases versus 
PARCS and DYN3D. 

Case 

0 

la 

Ib 

3 

4 

Reference 
COBAYA 6Na 

COBAYA 24Nb 

Reference 
COBAYA 6Na 

COBAYA 24Nb 

Reference 
COBAYA 6Na 

COBAYA 24Nb 

Reference 
COBAYA 6Na 

COBAYA 24Nb 

Reference 
COBAYA 6Na 

COBAYA 24Nb 

Keff 

1.02987 
1.03006 
1.03003 

0.99750 
0.99773 
0.99764 

0.96203 
0.96223 
0.96216 

0.96855 
0.96884 
0.96869 

0.96854 
0.96883 
0.96868 

*xy 

1.339 
1.340 
1.340 

1.415 
1.418 
1.415 

1.385 
1.388 
1.383 

6.478 
6.544 
6.490 

6.485 
6.551 
6.495 

h 

2.955 
2.958 
2.962 

1.869 
1.871 
1.874 

2.340 
2.325 
2.334 

2.117 
2.099 
2.108 

2.112 
2.094 
2.103 

A.O. (%) 

80.33 
80.49 
80.57 

48.40 
48.69 
48.78 

63.70 
63.62 
63.91 

56.93 
56.36 
56.65 

56.75 
56.20 
56.49 

a 6N: 6 radial neutronic nodes per assembly. 
b 24N: 24 radial neutronic nodes per assembly. 

rod stuck out of the core cióse to the periphery. The error in the ra­
dial peaking factor (Fxy) is lower than 1% which is reduced to 0.2% 
with 24 nodes/FA. This demonstrates the high order of our ACMFD 
method, since it is possible to obtain very accurate results using a 
coarse mesh for hexagonal geometry (just six triangular nodes per 
fuel assembly). 

The coupled code ANDES/COBRA-IIIc was also applied to solve 
the Scenario 2 (with return to power) of the V1000CT2-EXT2 
Benchmark transient. This transient is initiated by a large MSLB 
at hot full power (HFP) which causes a deep and asymmetric core 
overcooling which is modelled by changing the TH boundary con-
ditions at the core inlet. It is followed by a scram that starts at 
0.36 s of the transient. The time for full insertion of the control rods 
is 4 s. Following the scram signal, two of the most reactive periph-
eral control assemblies remain stuck out of the core, cióse to the 
location of máximum overcooling. 

Figs. 4 and 5 show the ANDES/COBRA-IIIc results for this tran­
sient. They were obtained using six triangular nodes per assembly, 
1 hexagonal channel for the TH and 30 axial layers for the active 
core. 

ANDES/COBRA-IIIc solution is compared with the results of the 
OECD V1000CT-2 Benchmark participants (HEXTRAN/SMABRE, 
DYN3D/ATHLET, RELAP 3D) (Kolev et al., 2006, 2007b; Spasov 
et al., 2009). 

Note that HEXTRAN/SMABRE, DYN3D/ATHLET and RELAP 3D re­
sults in Figs. 4 and 5 are from Exercise 2 of the OECD V1000CT-2 
MSLB Benchmark, which is a vessel boundary conditions problem, 
and the V1000CT2-EXT2 Benchmark is a core boundary conditions 

A 
/ ^ 
/ / 

\ 

V 
K^ V? 

1 1 
— HEXTRAN-SMABRE - VTT 
— DYN3D/ATHLET - FZD 
— RELAP 3D-Pisa 
— COBAYA/COBRA 

^ 1 

0 100 200 300 400 500 

Time (s) 

Fig. 4. Time history of total power in Scenario 2 of the V1000CT-2 Benchmark. 
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Fig. 5. Time history of reactivity in Scenario 2 of the V1000CT-2 Benchmark. 

problem derived from V1000CT-2. The specifications of the two 
test problems are consistent but the core inlet TH boundary condi­
tions in V1000CT2-EXT2 are pre-calculated and specified, while in 
V1000CT-2 they are calculated by the corresponding system code, 
given the vessel boundary conditions. Besides this difference, the 
time history of the total power matches up with the other solutions 
during the fall of the power and also in the return to power. 

Next are presented the results obtained for the second exercise 
of the V1000CT-1 Benchmark (Ivanov and Ivanov, 2007). The stea-
dy states at Hot Zero Power (HZP) and Hot Power (HP) are summa-
rized in Table 2 and Table 3, respectively. From here on, we will 
consider the average result of the benchmark participants, with 
its associated standard deviation, as the reference solution for 
our comparisons. 

For the HZP steady state, our solution was obtained using ten 
axial layers within the active core plus two layers for the lower 
and upper axial reflectors. Furthermore six triangular nodes per 
fuel assembly were used for the neutronic radial nodalization. 
The results obtained for the HZP conditions show a very good 
agreement with the benchmark reference solution (they are within 
the standard deviation for all the parameters studied). Conse-
quently, the extensión of the nodal diffusion code ANDES to hexag­
onal geometry is demonstrated to be successful. 

Regarding the HP steady state, four different Results (A, B, C, and 
D) are presented in Table 3, changing the mesh refinement in both 
neutronic and thermal-hydraulic sides. Result "A" was computed 
with the coarse mesh, using ten axial nodes, six triangular neu­
tronic nodes and one hexagonal channel per fuel assembly. The re­
sults "B" and "C" had the same number of axial layers, 20, and the 
same TH meshing, one hexagonal channel per fuel assembly, but 
they had different neutronic nodalizations. Result "B" was obtained 
using six triangular nodes per fuel assembly while Result "C" used 
24 triangular nodes per fuel assembly. Finally, Result "D" was cal­
culated with the finest meshing, using forty axial layers, with trian­
gular channels (six channels per fuel assembly) and six triangular 
neutronic nodes per fuel assembly. 

Looking at Table 3, most of the discrepancies are in the axial 
power distribution, which is due to the different axial nodalization 
of the participants. Most of them just used twelve axial layers, 
which explains why the Result "A" (with ten axial nodes) compares 
better against the reference solution in terms of Axial Offset (AO.) 

Table 2 
ANDES/COBRA-III result for HZP steady state in Exercise 2. 

HZP case Keff Exy Fz A.O. (%) 

Reference result 1.00022 1.416 1.519 16.88 
(Standard deviation) (±0.00083) (±0.012) (±0.007) (±0.84) 
ANDES/COBRA-III 0.99979 1.407 1.521 16.44 
(Deviation from the Ref.) (-0.00043) (-0.009) (+0.002) (-0.44) 



Table 3 
ANDES/COBRA-IIIc results for HP steady state with several nodalizations. 

HP steady state 

REFERENCE RESULT 
(Standard deviation) 
Result A (6N/1TH/10Z)3 

(Deviation from the Ref.) 
Result B (6N/1TH/20Z) 
(Deviation from the Ref.) 
Result C (24N/1TH/20Z) 
(Deviation from the Ref.) 
Result D (6N/6TH/40Z) 
(Deviation from the Ref.) 

Keff 

0.99998 
(±0.00116) 
1.00056 
(+0.00058) 
1.00061 
(+0.00063) 
1.00055 
(+0.00057) 
1.00053 
(+0.00055) 

*xy 

1.341 
(±0.011) 
1.349 
(+0.008) 
1.349 
(+0.008) 
1.348 
(+0.007) 
1.347 
(+0.007) 

Fz 

1.406 
(±0.021) 
1.427 
(+0.021) 
1.431 
(+0.025) 
1.431 
(+0.025) 
1.433 
(+0.027) 

A.O. (%) 

16.29 
(±1.28) 
17.76 
(+1.47) 
18.23 
(+1.94) 
18.20 
(+1.91) 
18.44 
(+2.15) 

a (6N/1TH/10Z): 6 radial neutronic nodes, 1 thermal-hydraulics channel per fuel 
assembly, 10 axial layers. 
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Fig. 7. Time history of core average fuel temperature. 

and axial peaking factor (Fz). Those results show the strong depen-
dence of the axial profile on the TH feedback. 

Regarding the radial power distribution, a comparison of that 
magnitude extracted from the Result "B" (20 axial layers and one 
channel per fuel assembly) against the reference solution in one 
sector of the core is presented in Fig. 6. It can be seen that AN­
DES/COBRA-IIIc distribution is in good agreement with the refer­
ence solution under the HP steady state condition (our deviation 
is within the standard deviation for almost all the nodes). There-
fore, it is proved that the extensión to hexagonal geometry of the 
coupling scheme has been properly implemented. 

After the steady state cases, we have run the guided transient 
using the boundary condition files provided with the benchmark 
documentation. In those files, the mass flow rate, coolant temper­
ature and pressure conditions per fuel assembly versus time were 
specified. Because of the strong axial dependence of the TH feed­
back, in this exercise we used two different nodalizations: one 
using 20 axial layers and hexagonal channels, and other using forty 
axial layers and triangular channels. Both transients used the same 
neutronic nodalization radially (six triangles per fuel assembly). 
The computed results are presented in Figs. 7-9, where the mean 
valúes of the results obtained by the different participants in this 
transient exercise are also shown. 

-1.5 

— COBAYA 40 
-*- DYN3D FZR 
— PARCS-RELAP.FZK 

200 400 
time (s) 

600 800 

Fig. 8. Time history of máximum nodal average fuel temperature. 

The deviations of the results with respect to the mean valúes 
could lead us to conclude that the performance in the transient cal-
culation is not so good. To explain these discrepancies, we have in-
cluded in the figures some representative results to show the wide 
spread of the solutions provided by the different participants. For 
instance, the delta power change at 800 s varies from 21 to 
45 MW. Henee, it could be said that the mean valué can not be ta-
ken as a reference solution and that the coupled code ANDES/CO­
BRA-IIIc reproduces well the transient scenario. 

Fig. 6. Radial power distribution comparison for the HP steady state. 



Fig. 9. Time history of power. 

5. Conclusions 

The coupled neutronics-thermal-hydraulics ANDES/COBRA-IIIc 
code has been extended to hexagonal geometry applications. In 
contrast to most of hexagonal nodal methods, it is based on direct 
transverse integration. 

As for the neutronics, the extensión of the ACMFD method has 
been carried out using triangular-Z nodes, following the same 
guidelines of the method developed for Cartesian nodes. The used 
nodalization takes advantage of the mesh refinement capabilities 
implicitly when using this geometry instead of hexagonal nodes, 
and avoids the singularities that appear when applying transverse 
integration to hexagonal nodes. The results obtained for the HZP 
cases show the high order of our ACMFD method, since it is possi-
ble to obtain very accurate results using a coarse mesh for hexag­
onal geometry. The deviations in femare lower than 30 pcm and the 
relative error in the assembly power is below 1%. 

As for the thermal-hydraulics, the coupling scheme has also 
been extended to hexagonal problems, with the capability to mod-
el the core using either hexagonal or triangular mesh. The use of 
COBRA-IIIc code with this level of TH mesh refinement provides 
an accurate estimation of the in-core 3D flow distribution. 

The coupled code has been verified using two internationally 
well-known WER benchmarks. The numerical results obtained 
for different steady-state and transient calculations have shown a 
quite good agreement with the reference solutions. We have con-
firmed that ANDES has a good reliability for the kinetic calculations 
of reactor cores with hexagonal fuel assemblies, and we have 
proved that the extensión of the coupling scheme has been prop-
erly implemented. 

This verification of the coupled code system can be considered 
as a promising starting point for the development of a simulation 
tool for the proposed Gen IV advanced core designs using hexago­
nal fuel assembly configurations. 
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