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ABSTRACT. The asymptotic values of a meromorphic func-
tion {of any order) defined in the complex plane form a Suslin-
analytic set. Moreover, given an analytic set A® we construct a
meromorphic function of finite order and minimal growth hav-
ing A* as its precise set of asymptotic values.

1. INTRODUCTION

A nonconstant meromorphic function f(2) in the plane has the aspmprotic value
a if there is a curve ¥ tending to o such that f(z) - aasz — =, 2 € y.
Let As(f) be the set of asymptotic values of f; for example, As(e?) = {0, o},
A classical result of Mazurkiewicz [13] asserts that As(f) is an analytic set in the
sense of Suslin [3, 16].

Recall that the order of f is given by

A = limsu log I'tr. f)
r oo logr

where T(r, f) is the Nevanlinna characteristic (when f is entire, T(v, £} may be
replaced by log M(v, f), with M (¥, f) the maximum modulus function).

Heins [11] showed that given an analytic set A*, there is a meromorphic
function f with As(f} = A* and, if 0 € A%, then A* = As{f) for some entire
function f. In general, Heins’s function has infinite order. For example, if

(1.1} A=A"\ {0} =A"NC,

and card(A) = co with A bounded, Heins produces a Riemann surface with in-
finitely many ‘logarichmic branch points’ over w = o, so by Ahlfors’s theorem
A = oo, Note that A, as the intersection of two analytic sets, is analytic.



Eremenko [8] produced meromorphic functions with A < e having As(f) =

€. In fact, if w(r) is a given increasing unbounded function, he could arrange
that

(1.2) T(r, f) < @wr)logr asv — o,

and so f even has order 0. The significance of condition (1.2) is that when ¢ (v) =
(1}, Valiron [17] showed that As{ f) contains at most one element.

Theorem 1.1. Given an analytic ser A* in € and A, 0 < X < oo, there is a
Junction f meromorphic in the plane of order X such that

As(f) = A™.

Indeed, given an increasing function p : RY — R*, @(r) — o0 as v — o0, one can
arvange that f satisfy (1.2).

Although questions of this type have been considered in various contexts for
many years, the definitive result for meromorphic functions requires additional
tools. Our final function f appears only indirectly, although the structure of
the asymptotic curves and the asymptotic values assigned to them is presented
explicitly. In contrast to [8], a full chapter (Section 4) is needed to show that no
other asymprtotic values oceur, and it requires new techniques. In [6] there is an
informal cutline of this work, and full derails are given here.

Since there are elementary examples with A* being empty or having one el-
ement, we assume A* has cardinality ac least two, and 0, co € A*. A key step is
to produce a meromorphic function g{z) whose growth also satisfies (1.2), with
As{g) = {0, 00}, with data on the curves on which g tends to its asymprotic val-
ues. We then follow ideas going back to Teichmiiller and apply quasiconformal
compositions to convert g (via the Belcrami equation) to a meromorphic f having
As(f) = A* with growth (1.2); even here, in Section 5 we must reformulate the
standard definition of analytic set.

This meromorphic function g arises by approximating a specific 4-subhar-
monic function U(2). The general form of U is very simple, based on the fact
that the function w(z) = A + BO (with @ = arg 2} is harmonic, and, if B # 0,

of least growth. In Section 2 we introduce a simple model {called U here} whose
inadequacies then point to the correct form of U in Section 2.2. Although our
final function is necessarily complicated, the analysis in Section 4.3 is based on
studying the elementary function w = sin z (despite that As(sinz) = @).

Throughout, C is a finite positive constant which may change from line to
line, unless specified otherwise, although the constants C" and Cp introduced in
(2.16} and Theorems 3.1 and 3.2 are absolute, associated to che data {A*, @} of
(1.1) and (1.2}. In additionto U = {z : Imz > 0}, S(+) = {|z]| = ¥}, we set
B(a,r) = {lz - al < 7}, B(r) = B(0,7), E the interior of E, E its closure, and
a A b =min{a, b}.



2. THE FUNCTION I7 AND ITS LAPLACIAN

2.1. The toy function U. We introduce U(z), asimplified version of U, first
for z in the upper half-plane U. Take 0 = @ < @) <+ -+ < O < Ogyy = W with
data L > 0, boundary values U) = Ure™) = 0 (# > 0) and constanc values
U(ret®t) on the system of rays argz = @p, 1 < £ < k, in U. Then for v > 0,
0 < @ < m,extend U to each sector {®p < argz < ©py1}, 0 < £ <k, by

(2.1)  Ue®) = minfU(re®t) + 1(0 — ©p), U(re®en) + L(Oy,, — O)1.

In what follows it will be assumed that data I7{(#¢'®) are chosen so that (2.1)
defines We, ) € [0,04,11, (0 < € < k) as the O-value ac which each pair of linear
functions coincide, and 7 has a local maximum in @ at each ¥¢,,. Thus U is a
piecewise-linear function in @, it vanishes on the real axis (other that at z = 0
where it is not defined), and it is monotonic on each 8-interval {®p < 8 < ¥y, 4,
{Wpi1 < 8 < Bp1, 0 = € < k. Figure 2.1 shows one possible graph on [0, 7]
with k = 3.
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FIGURE 2.1. Graph of U(re®®) for fixed v

The function U of {2.1) is 8-subharmonic in U (.e., AU is a signed measure
(charge)), zero on 2U\ {0}, and harmenic off the rays fargz = Oy, ¥y}, and so
may be extended to be §-subharmonic on €\ {0} by

(2.2) U-2)=-U(z) (zeW,

a rigidity we use henceforth, and without which the approximation arguments
(Section 4) would collapse {(2.2) is the key to (3.9)). It also produces respectively

k +1 and k rays in the lower half plane on which U has local minima and maxima
(in @) on §(r). For any function I} considered here {or, later, 7, let T be the

curves which are the locus of local minima in 8 of U{re) for fixed ¥ > 0, [*
those which are the locus of local maxima, and

[*=Tur*.

Thus for I7, T* is a network of 4k + 2 rays, with [# n (R \ {0}) = 0.



The Laplacian of U has a special nature {at least if 2 = O): AlJ(z) = 0 when
z=veif ¢ I'*, whereas if z € T*US(r), the formula Au = wyy ++ " Tuy +7 2 upep
shows that if z = ¥ei®, then

AU (ref®) = +2Lr~28,(8),

where 84,(8) is the Dirac function; the plus sign is used when z € T?, and the
minus sign when z € ['* (much as x| = 28,). [n summary,

(2.3) AUre®) = 2r L[ 3 See(8) - 3 5e+(0)].
go=re g er+

To obtain a mcromorphlc function g such that log|d(2)| mimics J(z), we ap-
proximate AU by a measure composed of {positive and negative) unit masses, the
principle being that
(a) if Av is a Borel measure consisting exclusively of unit point masses, then
v = logld| for some meromorphic function g,

and
{b) we can recover the asymptotic behavior of g from graphs as in Figure 2.1
at points at which |O(z) - log|g(z} | is small.

We see later (Lemma 4.4) that g attains its asymptotic values on curves in T, but
probably not on all curves.

2.2, Whar is wrong with Uz Suppose g 1s meromorphic with log|g| mod-
elled on U using (2.1} in U and {2.2) in €\ U. For v > 0, each S(+) NT* has
2(2k+1) points, so a straight forward computation in Section 7.1 (based on (2.3))
will show that

Tr,g) = (4k+2+0(1))log ¥ (= ™),

N 2. . \ .
Thus T(r,d)/log” v is bounded and in fact since U is bounded, we could not
expect 0 or o to be asymptotic values of g. To circumvent this, our function U is

a ‘limi¢’ of functions U as k, L 1 co. Then on each S(#)n U, the graph of U (ret®)
will be as in Figure 2.1, but with complexity increasing with +, in a manner that

llm inf U(z) = -, llm sup U(z) = +oo,
=80 §{¥) S(r}

The meromorphic function g for which log|gl appr0x1matcs U is obtained by

‘atomizing’ AU exactly as descrlbed in Section 2.1 for U.
We partition € into the disk Ag = {|z| < ¥o} and annuli Ay,

(2.4) Ap=ino <zl <n} (k=1),



for a rapidly-increasing sequence {#x} with ¥y > 1. The function U is defined on
C so that relative to each A it mimics a toy function U of increasing complexity.

Thus, in place of the constant L in (2.1), let L(#) 1 co be a smooth function
with L{¥) = 0 on [0,1], and for some fixed constant ', say C' = 20, suppose
that

lim v 71L(r) + v L' () + 7|17 (r)] = 0,
2.5) supr ' L) + 7L (r) + 2L () < C'.
¥=0

To satisfy (1.2), suppose that
(2.6) L) = o(p(r)) (¥ — )

(any large number would work in place of 21), and impose the compatibility
conditions

(2.7) log(¥rs1/¥%) > (k + Lo)L(rks1Y and L(ag) > (k + 1) (k=2 0),

for some value Lo large enough (for example taking Lo > ((3)*/3 = 1)7! gives
constant 10 in (3.2)).

Comment. Conditions such as (2.3) and, later, (2.13) play an important
role. A helpful way to visualize them is to choose, for each k, suitable num-
bers Ly and 8p > 0. Then we may arrange that Liry} — L{rk—1} = Li with
sup[,,k_l_rk]rL’(r) < Oy by increasing the ratio #¢/7%_1 as needed. In turn,
these conditions are compatible with supy,, ., 1#2IL" ()| being small, increasing
¥i/7r-1 if necessary.

Other restrictions will be given later. They will be of two types. Often the
ratios {¥x/¥r_1} will increase, but not the values {L{#2)}, so that (2.5}-(2.7)
remain valid. In addicion, Section 2.5 introduces additional conditions, many of
which might be avoided at the expense of complicating several arguments.

2.3. Graph of U. Our fundamental function U is modelled on (2.1} in
each Ay, For z € U n Ag, first set

(2.8) Urey=Lrmin{0,m-08} (0<r=<w, 0<0 <),

and then use (2.2) on Ag\ U. Since L} =0 on [0,1], U{z) = 0 for z € B{1).
Define, '
Ulrpe'®) = LOp)(mini0, m-0}) (0<@=<m)

onB{ry)nU = aﬂon’u_. When @ = /2,0 = m—8sothaaT* N (UNB(ry)) =
[* N (U nBlry)) = {re™2 1 <v < +}, and zp = iry will be the inidal poinc
of I n U.



Since U = 0 on R, and U is odd (see (2.2}) we need only define U on U N
{1z] = vo}. In face, relative to Ay, k = 1, U will depend on how it is specified on
the arcs of T% M (A N U). Hence (see Figure 2.1 or Figure 2.2}, for each k = 1,
mark k arguments @ on each of the two arcs of 2 Az N ‘U augmented by @y = 0,
O, = 1, with

0=07(k) <07 (k) <. <0, (k) <O, (k) =1 e Slr1),

(2.9) 0=87k)<0k) < <Ofk) <Of, (k) =1 cS(r).

Relative to Ay N U, the k arcs of T joining its boundary components connect
111801 oot 1 < £ < k. Since S(#x) = 3.4 N3 Ak, We require for
k =z 2 that the sets

(2.10) {0, (k) =105k - 1)},

which wich the second line of (2.9) forces (k) = @, (k) for (ac least} one
1 = € = £(k) < k; see (2.24) and Figure 2.2. {Notice the strict inequalities of the
second line of (2.9)).

Now suppose some given values are assigned to each of the points

(2.11) Ulrpe®t ™y, Ur,e®®e®y (pelk-1,k}, 0sf<sk+1)

in 24k N U so that whenever z € $(ry) has representations z = +ee!®8 %) and
2z = e’ &+ from (2.9), then

U(Tkef'?}}'(k)) - U('rke"e?’ (k+1)),

thus defining U unambiguously on I A (St N U

These boundary values (2.11} will be made explicit in Section 3, (5.8)-(5.10),
and depend only on the data A (the analyric ser) and ¢ (see (1.1), (1.2) and
Theorem 1.1). This means that we may choose {Ag} 1 oo depending only on data
A and ¢, and arrange @b initio that

mE‘-X|U(Tk€i6€)| < %L(m (k= 1),
(2.12) max |U (127 0%)y = Uag_1ePeTe1)y] < Ay,

Ak

gy S k)

if the ratios #x/¥x— (k = 1) are chosen large enough.
To extend U to Ay given its boundary values on I’ n (A4x n W), for each
¥ € (M—1,¥k) set Bo(r) = 0, Op(r) =1, and if 1 < € < k, select arguments



Op(r} with ©p(r) < Op, (v}, so thatasr | vy, Op(r)} - B (k) and as v 1 7y,
By(r) — 8 (k), while uniformly in £

(2.13) r|@9,) + 7205 ()] < 2L} 7% (roy <=7 < W),

so that @¢(r) is continuous at ¥ € [#g_1,7k]. The estimate (2.13) can be guar-
anteed if the ratios ¥i/¥x-1 (k = 1) are sufhciently large. Then, (recall (2.11)), we
define U on each {re®®¢) | <+ <1y} as

(2.14) U(re®t")y = Uy et®¢1h
. log(r jrx_1)

7 (¥ ef@g(l‘k} - eieé‘(?‘k—l} ,
lOg(?’k.!?’k.—U( " )= Ui )

and use (2.1), (2.2) to extend U to all of Ay (note from (2.10) chat ¥ is contin-
uous). We have already set zg = iry = #9e!®1 ), now viewing z; as a point of
e aﬂl .

As noted in Section 2.1, (2.1) also yields functions Ye(r), 1y < ¥ < 1,
1 <& <k+2with Ulre™") a local maximum in each S{r) n U.

2.4, On AU. Further progress depends on analyzing the charge AU.
Lemma 2.1, Ler U be continuous in C and

|oU /28| = L(¥) whenz e (S(r)n A)\T?, fork 2 0.

Let the ares of each Ay N TV = {rel®e) 3ot vy | < v < vy sarisfy (2.13)
and U be assigned on Ay using its values on T° N (8 A N U) as in (2.1), (2.2),
(2.11), and (2.14). Finally, let 54(8) be the Dirac function (peint mass) supported
atfd =a.
Then ifk = 0 and 2 € Ag, AU(z) may be represented as
(2.15)
AU@e®) =2r L) [ 3 80,(@) — Y Sex(8)] +H(r,0) + Halr,0).
&yl grer*

In (2.13), H is differentiable,

(2.16) P H@, @) < C, lim supir?|H(r, 8)|} = 0.
S

In addition, Ha(v,0) bas support on | JO Ak, with Ha(vy, 0) = &(0) its
density with respect to the Lebesgue measure on S(vy), where

(2.17) sup  |ex(@)] = 0(1) (k — o).

Fret? =S (ry)



Proof Since U = 0 for {|2] < 1}, (2.1) and (2.2) show that AU = 0 on the
real axis (including at z = 0). When z € I*n Ay, (2.3) produces the bracketed
term on the right side of (2.15) which is the main contribution to AU.

We first study the primary error term H{v, 8) in (2.15). Thus suppose that

z e (Un AT Asin Section 2.1, we compute using polar coordinates.
Assume for concreteness that

(2.18) Ulre'®) = Ulre® ™) + L(r)(0 - 0p(+)),
(see (2.1)). Then AU(re™¢(")) = 0 (recall (2.14)). Hence

AUre®)y = L (r )@ - @p(1r)) = 2L (1)0,(r) - L) (1)
+ ¥ UL ()8 - @p(r)) - L(r)B,(r)]
=H(r,8).

(with a change of sign when U(re®®) = U(ref®) — L(#}(8 — @p(r)})}). More-
over, since |8 — Gp(r)| < 7, we obtain (2.16) for 2 € ‘U by estimating viH(r, 8)
using {2.5), (2.7) and (2.13). For example, if ¥x_; < ¥ < ¥, then

¥ IL(n)10)(r)]) = Lx)r|@)(r)| < Lir)~H¢
=o(l}
and
I ()0, (r) = 0L )Ly %))
=o(1)

as k — . The second item of (2.16) follows again from (2.2), (2.5}, (2.7) and
(2.13).

[t remains to consider {2.17), so let Alk,n} = {z : ||z| —vx| < n}. Let
p < /2 and for z € A(k,n/2) we compute the Laplacian using the formula

1

1
AU(z) = lim —— [E

pre J (U(z + pe'®) - U(z))dqb] lim —=U,(2),
p—0

1
004 wp?

with (for the moment) z ¢ T'*. Since U, is a Lipschitz function for each p > 0,
(2.17) is a consequence of the estimate (uniform in p for z € Ak, 1n1/2))

(2.19} llm |p [ Atk }Up(z)-rd-rdé)‘ =0(1), (k— o),

To show (2.19), we follow Baernstein [2] and write, for z = Tefe, |z+pei®| =
r{P), arg(z + pel®) = a(P), so that re + pell@+d) = y(P)ei@+xdD Since



2o ¢ T*, we may assume that I/ is given by (2.18) near 2. Note that () =
r{—¢}, (a{@p) + a(—¢}} = 0, so on collecting ¢, —¢, the integrand in this

computation of A/ becomes
(2.20) Ur($)e' D) 4 Ulr(p)e!@~*®N) _ 2U(re'®)
= 2[UGr ($)e®e @) + L ($)(8 + (x() + a(~))/2) — B (r ()
— Utre'®))
= 2[Ur($)e™ @) —Ure™))) + Ure® ™)~ Ure™))
+ (L () (8 - 0,(r(¢h))]
=5 +I; + Is.

For concreteness take v = |z| > vx, z € A(k,n/2). Thenif|$| < /2, both
z and ¥ (p)eH8+¥d grein Ay, and so (2.14) applies. The main contribution
to {2.20) will be from I,. Our assumptions on z and «{¢) with (2.14) imply that

%lm = [U(r()e™(P0) — U(ret® |
B
+
Hence by (2.12)
Ak_+1 Ak+1 p
L= 2——1 LCr—7— —,
Il = log(r+1/71) gl P)T) < loglrpsr /1) 7%

where we have used that z € Ak, n/2), v{¢} > ¥ and |r —v{¢}| < p to obtain
the last inequality. If | — 7| < 71/2 and 7 + p < ¥, the same estimace holds for
I

When #x < v < #x + p, the point +{p)e @+&(®)) will be either in Ay or
Ag_1. In the former case, we repeat what was just done. Otherwise, the index
€ may change in the sense that Uz (¢$)e®**(@H) may be given by (2.18) using
@p: (¥ () with {perhaps) &' = £ ifr(gei®+aldl e 4, | However, since

U(T(Qb)ei@g—'(?’(ﬁb)}) _ U(.},eiez‘(?’))
— (U (@)e® 7)) _ Ulnet®m)) 4+ (Uree) — Utrer®)),

we still may arrange that

1 Ak Ak
§|11| < Wlog(‘?’k!?’(d))) + ng(‘?’f?’k)
Ay I

«Crm— . £
< loglri/re-1) 7%



since ¥(¢p) < ¥y < ¥,¥ —¥(¢h) < p, and (2.12).
Analogous estimates apply when +x — n < * < rp. We integrate this over
ALk, n}, whose area is G(¥yn), and recall that p < 1/2. Hence

_2 Ak. i
‘hrdrdd = C—— . -,
_L(kmp il log(ri/re-1) p

As for I and I5 from (2.20), (2.14) and (2.18) show that

%ug +13) = U e —Ure™®) + Lir (@))(0 — Op(r ()

= —Lr}0 - 0(r}) + Lr{Pp))(8 — 8,(r(P))
= (Lr(g)) —L(¥))(8 - Op(r{d))) + Lr)(Oy(r) — Oplr())).

The estimates of che first derivatives of L{(¥)}, ®¢{(+) from (2.5) and (2.13} are
exploited in a manner similar to that used in estimating Iy, and so

j p (L] + L drde = Lo(1), (k- o)
Alk.n) P

yielding the estimate (2.17).
{This argument also shows that the contribution to {2.17) from the O(k)
points of S{r} NT* can also be absorbed in this type of estimate.) O

2.5. Refined properties of U. That w = a be an asymprotic value of f on
a curve y requires information for all large ¥ = |z| € ¥, and one needs equally
precise information on a significant portion of the plane to ensure that if @ ¢
A*, then a cannot be an asymptotic value. To surmount problems arising from
the inevitable exceptional sets which arise in approximation theory, we impose
conditions on the functions {6} of (2.13). Some of these might be weakened or
perhaps avoided at the price of complicating the proofs of the key Theorem 3.9
(Section 3.6) and Lemma 4.3.

For each k = 1, define py_; by

(2.21) log(p-1/7rx-1) = LY4(ri-1),

so that S(pg_1} C Ag, while (2.7) shows that pp_1/¥y-1 = o{rr /¥ }. Note
from the first term in (2.5) and (2.21) that L{+g_1) = L{pr_1 }::

Liry1) < Lipr_1)
=L{rg-1) + o) loglpr—1/7rr-1)
=(1+0(1))L{rg_1).

In addition, we define 7., %', where pr_1 < ¥, <%, < ¥ so that
kPl k k

pr-1 =0y 1y =o'} v =oln).



In particular, let
log(+y,/px—1) = L3 (1),

and set

(2.22) K= =<lzl =3,
k

the core of |J Ay.
Note from (2.8) that U is known on Ay, and by (2.9) and (2.2}

card(S(r) N Ap NI = card(S) N Ay nTD +2 (k= 1).

Thus the condition (2.10} will be satisfied by requiring that two arcs {@¢(r)} in
Ay emerge from a common poinc of $(#y) N U (k = 2). Hence {I'°} undergoes a
bifurcation on S(r) U (in turn creating another bifurcation of T* on § (v )\ U).
The bifurcation points +2y € S(ry) are called nodes of T°, so that T° 1 U is a
dyadic tree. In Section 5 we identify the branches of I° N U in terms of the nodes
{2} through which they pass. As an arc y € T? recedes, its index &y relative to
A will also depend on k (see Figure 2.2 which represents TFinUn ¥ < 2| <
¥g}). On the outer boundary S(#¢) of each 84 N U, the arguments @5 in (2.9)
are chosen to have the form

£
- = — A .
(2.23) &y (k) ek 0=f<k+1)
We then locate the bifurcation node 2z € §(¥y), now viewed as the inner
boundary of Agy nUso thatif k =2" + p, 0 < p < 2" — 1, then

{

—n forlsf<2p+1,
(2.24) CHOES Fa
mﬂ' f0r2p+2£1‘?£k+2;

thus ®ps1 (k) = @)gﬁ,”(k), guaranteeing (2.9) and (2.10). We then use (2.11)—
(2.14) with (2.1} and (2.2} to extend U to T | 2| > +5} = Ursy Ar-

[n Figure 2.2 (not to scale) I'® is indicated with solid lines and I'* with dashed
lines. The symbols @¢(k) are labeling the nodes with argument ©4(k).

With p_; from (2.21), construce I'® n A with initial conditions {2.24) and
{consistent with {2.5)

(2.25) 105y (1) = =¥, (1) = L) (o <v < proy)s
) @, =0 ifl=2p+1,2p+2, (g <7 < pr_y),

(where * is differentiation with respect to ¥} as illustrated in Figure 2.2.



2

FIGURE 2.2, The trace of T¥,

I¢ follows using {2.25}, (2.21) and the first condition of (2.7) that

1©2p+1(pict) = O2pe ()| = L4 031)log (2L )
= (1+o(INLY2(pr_1).
Moreover, since (2.23) and the second property of (2.3) guarantee thac on S(rg)
distinct points of [? have angular separation

1t/(k + 1) > whing) ™10 > w1 + o (1) (px) 15,

the second line of {2.25) will show that if ¥e!T™?, #2™ = % 1 (S(+) N U),
then

(2.26) lT(r)— T () > L7 (r)  (pr <7 < 1ks1).

On recalling (2.1) and (2.13), it is not difhicult to see that (2.26) then holds as
wellon T* N S(r) when ¥, < ¥ < 4 except for @2p and Gyp41.
Finally, in the core {#), < |z| < )} of each Ay (recall (2.22)) we require that

(2.27) Q) =0 N<f<k+],rg<r<n).

3. APPROXIMATION BY A MEROMORPHIC FUNCTION

The idea thac the behaviour of a general d-subharmonic function U can be cap-
tured by another of the special form loglg| with g meromorphic goes back sev-
eral decades (a survey is in [6], additional interesting references are [18], [12], [9],
among others).



In our situation the error [log|g(2)| — Uiz}| must be carefully controlled
which is formalized in the next theorem.

Theorem 3.1, Let L(v) be a function which satispes (2.5), let the system { Ay} k=0
satisfy (2.4) and (2.7), where (1ncreasing each of the ratios Vi, [vi if necessary)

LS
(3.1) I L{tyt~1dt s an integer,
¥
and let U be constructed relative to the system {Ax) so that U(z) = 0 for z real and
z € B(0,1), U is assigned to the network T° 0 U as in (2.14) so that U is continuous
relative to T° N U, and then extended to each Ay using (2.1) and (2.2).
Then there is a meromorphic function g(z) and an absolute constant Co > 0 such

that if

(3.2) E = JB(Cp, ITpl/10LUT, 1))

with {Tp} the zeros and poles of G, then
{a) meas(EnS(r)) =or} (r — oo);
(b} iz ¢ E, then |log|g(2)] - U(2)] < Co;
(c) ifE’" is a component which contains one point-mass Cp, then for sufficiently
large v

loglg(2)| <« U(z) + Co, 2z €E', Tpzeroof g,
loglg(z)| 2 U(z) - Cy, z € E', ppoleofg.

The behavior of g on components E' of E which are not disks is more delicate
(see Section 3.6), and requires the additional structure introduced in Section 2.5.

Results such as Theorem 3.1 depend on analysis of the (signed) measure AU,
so we prove Theorem 3.1 as formulated in Theorem 3.2, Write AU from Lemma
2.1 as

(3.3) AU = — pu* + e,

with support on {|z] = 1}, where where gt = 0 is supported on o, u* >0
on I' and dy.(z) = H(r,0)rdrd@ + Halr,8)d8, with Ha supported on
Ug-Ak. Since g is meromorphic, Aloglgl| is a network of unit masses, so that
Aloglgl = o — 0* + 0y, each summand corresponding to a term of AU.

By construction, each component of I'* N Ay is an arc joining the boundary
components of Ag, relative to which AU becomes one of the terms in the first
two summands of (2.15). Using (3.1), each component y is the union of mutually
disjoint arcs {J} of ‘measure’ +1. Since L vanishes on [0, 1], pt + u™* + g vanishes
on B{0, 1}, and {2.2) shows that

(3.4) WSy =pu*(—S) forall measureable sers S.



Let J < I'? such that 4#{(J} = 1 and recall that the density dgt is given by (2.15),
that is dg ~ (2L{r)/¥)dr. Then conditions (2.5), {2.7) on the growth of L(#)
and (2.13), (2.25) and (2.27) (that show that J is almost a radial segment) imply
that

' 1 ¥ 3r
(3.5) Jc {r < |z| gr(] + L(r))} and L) < |JI =< TRt

for some v = ¥(J) > v. The same estimates hold when J € T* with y*{J} = 1.

3.1. A reformulation. The logarithmic potential of a signed measure I of
compact support Is defined as

P(z,5) = L log|1 — 2/Z] dS(Z),

which is §-subharmonic (subharmonic when T = 0). Our measures do not have
compact support which means the formula has to be carefully interpreted, which
we achieve by appropriate pairing of measures. We recall measures g, 4™ and (the
signed measure) ffe in (3.3) and follow a standard procedure (c.f. [6]) to “atomize”
the first two measures obtaining o and o*. This leads to the expressions:

(3.6) G(zy=U(z)+V(2),
where
V(z) = Vm{2) + Ve(2),
Ve (2) =Pz, 0 —u) — P{z, 0" — u™),
Vel(z) = =P(z, te).

We will show directly that V is well-defined: each of the two summands defining
Vr# converges, while not only does V, converge, but Ve(2} = 0(1). Thus there is
a meromorphic function in the plane g with G(2) = loglg(z)|. Our estimates
will show that for most z, [G(2)| is small, where we apply techniques such as in
[12], [14] or [6].

Recall that T# N Ay is a union of intervals J and J* so that y(J} = 1 and
u*(J*) = 1. To construct o we consider an interval J ¢ y < [% n Ag, with
p(J) = 1. Following [18] we place the associated point mass at its centroid Ty,

(37) L(r; ~ ¢ dp@) =0,

so that 8z, i1s a term of . The same principle yields {y+} € I'™* N Ay using u*.
Notice from (3.4} and (3.7) that the {Cy, Tj+) may be puc into correspondence
with

(3.8) Ly« ==L, when j*=—].



The measure p, does not need atomization since it is very small. The analysis of
Ve is presented in Section 3.3.

We thus restate the assertions of Theorem 3.1 in terms of these approximating
measures. To simplify notation, we often let I be a generic choice of J or J*. In
Theorem 3.2, the centers {Z,} of (3.2) are the {T;,Tj+}. Assertion (a) in these
theorems is equivalent, but assertions (b} and (d) of Theorem 3.2 correspond to
(b} in Theorem 3.1, and (¢) and {d) in Theorem 3.2 to (<) in Theorem 3.1.

Theorem 3.2, Under the assumptions of Theovem 3.1, let (L1} be the centrotds
of the intervals I, where I € T° or T*, Let E be as in (3.2) and Tp = Ty. Then

{a) meas(ENS(riy=olr), asv — oo,

(b) IVr(z)l < Co (2 €¢E),

(c) 3];2 € B(Ly, IT11/5LUT 1)) and BTy, 1T |/SLUTI)) 4s a component of E,

then

Ve (2) = Gy, if Ty azero of g,
Vie(2) = -Gy, ifTyapoleofg,

(d) 1Ve(2)] = 0(1) (z — oo).
Note, since L{r) 1 o0, that (2.26) and (3.5) imply that all balls

B(Zp, 1Tp | /SLUT,D) € X

(from (2.22)) are disjoint, and so {2.21) implies that {(d) holds in most of C. The
situation in € \ K is settled in Theorem 3.9 in Section 3.6.

3.2. Proof of Theorem 3.2(a). The description of I'* in Section 2 implies
that the number of points in S(#) NT* for v+ € A is at most 4k + 2, and the
angular measure of each ball in E is O(1/L{(#}). Thus the total angular measure
of ENS(r) forve <v < 1peq 1s OK/L(¥)), so (2.7) gives

meas(E N S(¥)) = OwL M3 =o(r) v — o0,
3.3. Proof of Theorem 3.2(d). It is simple to estimate V from (3.6). That

e is uniformly small follows from (2.16) and the first of (2.17). Hence assertion
(d} follows from the next lemma.

Lemma 3.3, The function Ve(2) satisfres
V()| = | [ logt - /€1 de@)| =01} (l21 = ).

Proof First consider the contribution to dpe from dul = H{r, 8)r dv d6.
Since (2.2) implies that H(r, 8) = —H{r, 8 + m) (0 < 8 < m).

| togi —zrg1dut@) = | doght — 2751~ logl1 + 272 deudy* @),



where (u})*(Z) is the positive part of pl(Z}. Standard estimates then yield that

zi¢ E v
| 1+zz’CH z CICI (2r < 1D,
(3.9
/g ; -l
| 1+zz’§H E =C = Q2lgl<r)

By (2.16), given &£ > 0 there exists ¥z with ¥?H < & for v > v;. Then when
¥ > 1e/E,

J{lCl:er}

dph (@)

dh @) + J{|c|«:-r;2'

= ¥i2

rig)
< Cer L.<:lt+E dt+C£ dt < Ce.
t2 v Jo ¥

Jar b Jrie)

Now dpt, is smooth and satisfies (2.16), and so

— 14+ _ _
J{|103|§f2||€|0g2}10g|1 2Tl d{p} (@) =0(l) (r — o).

Estimate (2.17) and the fact that the sequence {¥i}r=0 is rapidly increasing
give the same bound for the contribution to dpte from Ha4 (v, 8), with Ha from
Lemma 2.1. O

3.4. Proof of Theorem 3.2(b). Controlling Vr« is more complicared and
needs several lemmas. The first estimates a single term, with 2 not too near the
centroid, based on work from [7].

Lemma 3.4. Let J € T° be an interval of p-measure one. Let J* = —J € T*
and Cy and T+ the associated centroids as in (3.7). Denote by J the ordered pair
J=U,J*) and define

— 1_21{;) . 1_ZK§J* *
(3.10) hj(z)‘_JJlog T | ) L*log|—1_zm du* (D).
Then if
1
(3.11) ALy VL) = S,

there exists an absolute constant C > O with

|J1 ’
[hy(z)] 5C(|Z_§J|/\ |Z—§.I"’|) -




Proof Let B = B(Lj,8/2) be the smallest disk centered at Ty which contains
J. so that by (3.5), 6 = 2|C;I/L{ITs1). Then, by (3.11), z ¢ B(T;,8), so we
expand the function log({T — 2)/(T + z}} about T, with remainder of second
order. The first-order term drops out due to (3.7), and thus

@) - | Llog E

1
s(‘q““aﬁ”‘|(§+z>2 -2

_Lm—m?du(;).

However, | — sl < [JI, u(J) = 1 and the factor with the max is comparable to
{Iz=Tjl A lz— Tj«1)2. This proves the lemma. O

Lemma 3.4 leads to the main estimate.

Lemma 3.5. Let z € C satisfy (3.11) for all intervals J, J* in T* (50 by (3.2)
z ¢ E), let ] = (J,J*) and, using the notation in (3.10), write

Vrn(Z) = ZhJ(Z].
J

Then there exists an absolute constant C so that

Vie(2)] < D Ihy(2)] < C.
J

Proof. Since we are assuming (3.11) holds for all J, J*, let J = (J,J*) and
apply Lemma 3.4 to each term in the sum. Given v = |z[, divide the sum into
three groups: 7 contains the pairs of intervals that are in B(rL=3(#)), 7, those
pairs of intervals with null intersection with B(xL>(¥}}, and % the others.

The estimate for 7, follows routinely from grouping the pairs of intervals as
in the proof of Lemma 3.4 and using (3.9) combined with (2.15), (3.8) and the
face (cf. (2.7}) that O(L'3(#)) points of [* meet each S(r):

1-2/T) ‘1—21
J%.I 1l Jcs(g—im -L Og| 1 +Z!§J| 8| T+2/C (§)|
'),YL‘-"('.V)
< C[ Luj(t)f-(t)
S0

< CL7 %3 {r) = 0(1) (¥ — o).

Next, consider the pairs of intervals in 7z, and choose m € N with 2™ <
L3(r) < 2t m ~ Clogl3(r). For n = m, (2.7} shows that the annulus
Ay = {2 < |T| < 2""1v ) has O(LY3(2"r}} ares of T* joining its boundary



components, cach arc of which is the union of O(L(2"L(¥))) intervals of unit
p-mass. The first estimate (3.9) gives for each term

e

C > 0 an absolute constant and J < {z: |z]| > vL3{(r)}. The essential condition
(2.5) yields that

?,’+Z|_l §;+z‘d“@‘ C”J |C|d,u(tj)

L")y =L{r)+o(n).
Since u(J) = 1, (2.7) and 2™ > CL*(r), we have

1/3¢an n
[ lcld“(g) C Z L3 (2" )L(2™r)

H
nzm 2

Jollzl=vL3(rh}
Li13(2my) oL + o{m)N*3
2?’.‘? = 2!?1

C
L — ] —
< T o{l) (r — )

(the ratio of successive terms in the series is % +o(1}).

Consider now the pairs of intervals in 75. All these intervals intersect the
annulus {#L73(#) < || < ¥L3(¥)}, and (3.11) holds for each of them. These
pairs of intervals are apportioned into two groups. Take as 7; those pairs such that
both intervals are in the core B := {¥/2 < [{| < 2r}; those pairs remaining are in
1F.

First consider the contribution from #37, intervals in annuli A ) withn < -1
orl « n < Clogl3(r) = ClogL{r}). When n < —1 and J € Ay, then

IJI < C2MrfL(2™) and |z - sl A |z = T+ | > (% +0{1))¥ > r/4, so that

IF . C2%y  C2t
lz=CilAlz=Cp+| = #L(2%)  L(2%F)’

There are O(L(2"+)) intervals J on each component of I'* N Ay with n <
—1, and (2.7) again shows there are at most CLY3(27r) branches in A (y;. Thus

2

2 2 (lZ—CJI ElIZ—CJ*l)-

r<=1Jc Ay,

22?1 13 an
<C T<Z_1L(2"?’)L (2"r)

<C > L@ 2 =0(1) (¥ — o).

n=-1



Whenl <n < Clogl{r}and J € Ay, 12— Tyl A |z — Tyl 2 C27r, and
s0
I v ¢
lz-CilAalz=Cpl = 27vL(2%r)  L(27%)’
There are O(L{2"+)) intervals J in each component of ApynI* and O(LY/3 (2% )}
such components with n < ClogL(r). Hence

Clog(?‘) Z ( K )2

n=1 JcAm |Z - §J| A |Z - ;J*|

Clsl®™ sy logL(r)

=C Zl Loy = C 10

=o0(1) (¥ — o).

To complete the proof, we estimate the contribution from pairs of intervals
J € I; each of those intervals have nonempty intersection with B. We recall (2.7)
once again and divide this annulus into congruent regions {(wedges) obtained by
intersecting B with sectors of angular opening O(L~1/°(r}}, oriented so that z
itself lies on the bisector of one of these regions (wedges). As before, the number
of intervals of T* in each sector is O(L{(r}). Let £(2) be the wedge which contains
z.

If (JUT*)NE(z) = B, s0 2 is separated from Jand J* by 1 < £ < O(L!3(v))

sectors, then

1/
|z=CilAlz =Gy
and each sector contains O(L(¥)) intervals of I'*. For simplicity write J € (2) if

J = (J,J*) and either J or J* intersects ((z). Then summing for J € 13\ Q(z),
we have

2 £
LJ L(r) 1
Z (lZ_CI|/\|Z—C]*) ECW%@—O(U {z — o).

Jerniz

riL{r) C
= CHLAG T IR

Next, consider the sum over pairs of intervals such that one member of the pair
intersects (2}, Divide Q{z) into disjoint subregions Qp(z) using circles centered
at z of radius £¥/L(r), £ € M. Now since p{J} = 1 {or g*{J*) = 1), then
[Tl = |J*| = er/L{r} and therefore the number of intervals in each Opiz) is
uniformly bounded. Since (3.11) holds, we have £ = 2, and so

(3.12) T T ( LJ| )2

£22)004(2) lz=Tyln 1z =Tl

r/Lir) \? 1
- C&ZQ (ﬂrfL('r)) =¢ Z 7z




where again we write J € Qg(2) if J = (J, J*) and (J U J*) n Qp(2) + 0. O

Thar the estimate of Lemma 3.5 is not 0(1) is due to the term (3.12), but {3.11)
is replaced by the stronger (3.16) we get the more fexible (3.15), which is the key

to Section 4.

Corollary 3.6. For fixed K = 15 and fixed zo, with | 2| so large that
(3.13) 2K < L13(| 21},

ler

Di(zo) = {C: 1€ = zol < 5lzel/L{lzo)},

(3.14) D'(20) = {T : 1T — 20l < 10K|z0l/L{|201)},

and let

T ={J=(LJ"):D{zo)n (Ju J*) = 0}.
Then, with hy from (3.10),

(3.15)  |logla@)I-Uz) - ¥ hj(z)\ < CK' +0(1), zeD(zq).
)3t

Proof’ The only term in Lemma 3.5 not 0(1) is (3.12), so by increasing the
radius of the ball in {3.11) one gets a better estimate. Coneretely, if |zo| is large

enough and (J, J*) € 7* then d{z9, s W Cp+) 2 SKIT;|/L{IT;1) and therefore

SK|Tjl
2L0E; D

(3.16) d(z,TyuTy«) = (z e D{zo))

For z € D(zo), follow the proof of Lemma 3.5 but now summing over intervals
that are not in 7*. According to {3.16), £ > K in (3.12} so the sum over the
J € Q(2), where Q(2) is the wedge introduced in the lemma, is bounded by
CXp.x €72 = O(K™1) while the sums over all the intervals not in (z) remain
the same. Therefore

> Ihy(z)l = CK P+ o(1), zeD(z).
Je1!

Since

|loglat)l - Uz) - 3 (2| < 3 Iy(@)] +Vel2),
Je1 JeTt

Lemma 3.3 and the estimation above give (3.15). O



3.5. Estimates near the exceptional set E: Proaof of Theorem 3.2(c).
Lemma 3.7 below complements Lemma 3.4 when (3.11) fails. For now we still as-
sume that the component of E 3 z is a single disk, as in hypothesis (c). Together,
the two lemmas of this section imply assertion (c) of Theorem 3.2.

Lemma 3.7, Let z € & = B(T;, 31T/ LUT;1)) where J is an interval of
[° C T* of u-measure one. Let J* = —J and J = (J,J*). Then, with hy from
(3.10), hy(2) < C, C an absolute constant.

Equivalently, if z € B(Ty», 31T« /LTy« ), with J* € T* CT*, ler J = —J*
and ) = (J, J*). Then hy(z) > -C.

Note that the disk Q = Q(Z;) is somewhat larger than those in E (3.2); the
disks ((Z;}) are no longer disjoint.

Proof We consider only the first assertion, and note that there can only be an
upper bound, since hy(T;} = —oo.
Lec [z] = 7. Ivis elementary, from (3.5) and the fact that z, € Q, thac

(3.17) hy(z) = loglz - Ty - L loglz - Z1du(T) + o(1)
< 1ogLIfr) - JJ log|z — Cdu(Z) + O(1) (z € Q),

and since L log|z-C| du(T) is harmonic in Q\ J, Lemma 3.4 applies for z € 2Q2.

By the maximum principle, we need only bound the integral when z € J.

We suppose that J € R*, and let t € J. Set I = Jr~! (where |z] = 7} and
choose s € I with s = t¥~1. According to (2.15), dy = 2¢~!L(r) dv on J, and
$0

(3.18) L loglz - Cldp(L) = logr +2 LL(’F’S) logls = 1|5~ ds + o(1).

By (2.5) and (3.4), L(rs) = L(r) + o(1}logis/v) = L(r) + o(1)L{r)~!, the
o(lyuniformins € I. If I = [1 - ¢ /L{¥), 1 + ¢2/L{}], the condition p{J} = 1

implies that ¢; + ¢3 = % + O(L~1(r}). Since ulogu decreases for u < 71, we



have
0z ‘Ll(rs)logls - 1]s7ds
- (L) +o(1)L‘1(r))J‘I logls — 1s~! ds
= (L) +o (VLMD + 0L ) L logls — 1] ds
- L)+ o)) [ logls - 11ds
= (L) + O FL™ () log(L™ (1) + OL™ (1))
= (e1 + e2)logL™ (1) + O(1) = = logLr) + O(1),

which we then insert in (3.18) and chen {3.17}. O

Finally we consider the situation that z € Q, but not too near Tj.
Lewmma 3.8, For A > 0, lev z € Q as in Lemma 3.7 with

g 141 _ 7. gyl
(3.19) ;\L(lc}')slz Tilnlz—Cf |s3L(|CJ|).

Then |hy(2)| < C(A).

Proof. Let |z] = v and note that (3.19) shows that z € B(L;, 10v/L(¥)).

Thus
v

¥
L(r) L{r)

so the proof of Lemma 3.7 shows the expression in the first line of (3.17) is uni-
formly bounded. O

log - CA) < loglz - Tyl < log

+C,

3.6. Statement and proof of Theorem 3.9: Controlling bebavior on E.
We exploit the special forms of U and I'? near the inner boundaries of each Az, as
described in Section 2.5, to give bounds for V¥ on E for the situations not settled
in Theorem 3.1. The proofs rely on techniques used in Theorem 3.1 (Theorem
3.2).
Theorem 3.9. Let the assumptions and notation of Theorem 3.1 remain in force,
augmented by (2.23)—(2.26). Then we also have
{a) The components E' of E are either single disks or the union of three disks. In
the latter case, E' contains three point masses, one of which is a zero and one
a pole of g.

(b) Ifz € E' where E' is a component of E containing centroids Ty, Ty, Ck,
atoms of the approximating measure ¢ — @™, with {y a zero of @ and Ty a
pole, then with Cy the constant of Theorems 3.1 or 3.2



Ve (z) = Gy if |3 —z| < |Z; — 2| and Tg is azero of g,
Vie(z) =2 —Co  if[T; — z| < [Ty — 2] and Tk is a pole of g.

Proof Since (2.26) holds when z € K (K from (2.22)), if a component of E/
consists of more than one disc, it must intersect {¥i < |z| < pg) for some (large)
k. For convenience, let us assume that E” € U. According to (2.15), the centers
{Cp} of all disks concained in E” have the same modulus, and since (3.5) holds,
(3.2) shows that disks corresponding to point measures which incersect a single arc
y N Ay, ¥ € T*, are disjoint. By (2.253), three branches of I'* n A{ emerge from
each bifurcation node +zp € S(#+y) {since E' € ‘U, there are two in I'? and one
in I'*) and separate uniformly as + increases. Hence components E' associated to
these branches consist of one ball or cthree balls, in the laccer case two associated o
azero of g, and the other to a pole. This proves claim (a).

In considering (b}, let E* be the component of E containing centroids €y, T,
Tk, where Tj is a zero of g (i.e., I € TY where T centroid of I) and L a pole (i.e.,
J € T*). Let K be the interval in T* with centroid L, and finally consider the sets
of pair of intervals T, J and K formed by the intervals I, J, K and their negative
counterparts —I, —J, —K ordered as in Lemma 3.4. When E' C ‘U, g(Cx) = 0.
Using the nocation in (3.10) we show for some absolute constant C thatif z € E',
then

(3.20) h(z) + hy(z) + hg(2) < C, (z€E, ILr—2zl = |T5—zI)

with the opposite estimate when g(Tx) = co. Once (3.20) is proved, the estimate
in (b} follows from Lemma 3.5 together with (3.20) applied to the terms which
fail to satisfy (3.11), as we did at the beginning of Section 3.5 in Lemma 3.7.

Let + = |z|, ¥ be the arc of T? associated to T, and let £ € y, |Z| = . Then
S(t) meets arcs y' € T? " F (associated to Tj) and y* c T* " E (corresponding
to L5y at T', T*, and y, ¥’ and ¥* meet ar a bifurcation node zy of T'*. Since
we have assumed that |Z; — 2| < |Ty — 2|, the strict condition (2.25) near the
bifurcation node 2, ensures that

§J ‘ z-C* ‘
| =a(1), |l =O(1).
Hence |Z; — z| < |85 — 2| (< |k — z|) and so y(z) + hy(2) + hg(2) = hy(z) +
(1), The resule now follows from Lemma 3.7. O

4. ON THE IMAGINARY PARTS

4.1, Tivo key cases. To identify the possible asymptotic curves of g, it is
clear that more is needed than data on |g|. We prove the following resule.

Theorem 4.1. The only possible asymptotic values of w = g(z) are 0 and .
Moreover, if 1) is any asymptotic path for w = 0, then there is a curve y CT° C T# on



which g — 0, such that for each £ > 0, the set {1g{(2)| < £} contains a component
so that 1y and y ave in Q00 {12| > ¥'Y ifv’ is sufficiently large. Thus iy and 'y belong
to the same tract corvesponding to w = 0.

A similar statement holds with w = 0 replaced by w = o,

Thus consider a (hypothetical) curve i tending to z = o on which g(z) — a,
so that |g] is nearly constant on 17 (if @ # o). Using the notation from (3.14), we
consider a family of disks D'(zg), with 2z € K n 1 (recall (2.22)) through which
1 would have to pass. Let us denote by Dy such a family.

{The points zgy should not be confused with the first node zg of the network
ro)

Let K be fixed (and large) with z € S(ro) N K, 29| = #v so large that (3.13)
holds (#y should not be confused with the inner boundary of Ay from (2.4)).
Since 2o € K, (2.26) implies that D'(2) intersects at most one curve from r+.
Thus D'(z¢) meets at most two regions A in € \ ['*, and so for each disk D’ (zp)
there are two possibilities:

(a) D(zo) nT# = for D(zy) € D'(2) (see (3.14))
ot

{b) D{zg) contains an arc y < I'¥,
and then two situations could occur:

(1) There are infinitely many disks in Dy, for which possibilicy (a) holds.
(1) There are only a finite number of disks in Dy, for which (a) holds.

When # is far from T* {case (i)} and z € 1, we may suppose that log|g(2}|
is close to the model funcrion {cf. (2.18)) on §(|2]|) N D{z¢). When 1 is near
I'*, is far more delicate; details are in Section 4.3. Since the curves of T# are
asymptotically rays when z € X, we assume that y is the positive real axis.

4.2, Proof of Theorem 4.1 (start). Let g — aonacurve . Ifa =0, o,
we will associate a curve y € I'* ‘near’ 1 on which alse ¢ — a. To eliminate the
possibility @ = 0, oo is harder, and for that we need the rest of this section {for
case (1)) and che next {(case (ii}).

Now let 1 be an asymptotic curve of g, so that g{z) — @ as 2 - o on n.

First suppose @ = 0 or o0; say @ = 0. In case (i}, choose 1y large and zo €
1 N S{ro), so that (a) holds for D'{zp). We may assume using Theorem 3.1 or
3.2 that if S{r) n D(2p) * @, then in the component ({zo} of € \ T* which
contains 2o, log|g| is close to a model function U of (2.18), and thus is linear in
arg z. Hence we obtain an arc of $(#p) joining z € ${ry) Ny to I'* with U(ree™)
having its maximum at z and decreasing on this arc until reaching a minimum ac
['* (outside D(zp)). It follows that any component of {U < —M} which meets 1
on §(¥o) for large ¥y also intersects some curve y € I% and so if g — Oonn, then
g — 0 on y. Analogous comments apply when a = .

In case (i) an even easier argument works, since 17 is already close to a single
arc of T*.



More subtle is that 0, oo are the only possible asymptotic values. Let 17 be a
curve on which g — a % 0, o0

If case (1) applies, let D'(zp) be a disk for which (a) holds, then loglg| and
@ = arg z are harmonic in D'(2y). We suppose that near zo, U is given by (2.18).
Thus given £ > 0, if K and | 29| are large (20 € 1 N K), then by (3.15), (2.5) and
(2.13),

|loglg(z)| — (A +TL(10)8) | = e (2} <&  (2€D"(2)),

4.1
(1) largg(2) — (A" — TLirg) logr)| = |e(2})l <& (2 € D"(20)),

for suitable constants 4, A', T € {+11, and D’ (zp) the disk centered at zp with
radius half of that of D{2zy) (in fact, the first line holds in the larger D{(z0}). The
second line (which restates the first for the conjugate functions) holds in D" (zy)
since K is large. By hypothesis, log|g| = logla| + 0(1) on i and zg = rpe’ & .
Thus (2.18) and the first line of (4.1) show that |8 — 8] = O(sL~1(¥ry)) in
n N D" (zp). However, on {argz = 833 n D" (20}, the function log? increases by
more than 2/L(¥p). The second estimate of {(4.1) with & small and K large but
fixed then implies that argg(2) varies by at least /2 on 5 1 D" (24). In other
words, if @ # 0, o, 1 will contain points in D" (2y) whose g-images are well-
separated on {|w| = a}, and so g cannot be uniformly close to @ on n N D" (20).

4.3. Case (i), This situation is more dithcule. Again g(z) — a # 0, =
on #, but we assume that whenever zo € n N K with |2y| sufhiciently large,
D(zo) NT* = @. By (2.26} and (3.13) D(z¢) N T* consists of portions of one arc
y; for specificity, take y < I°. Due to (2.27), ¥ 1 D’(2¢} is a ray which contains
the centroids ; € D'(z¢) (see Figure 4.1, where y is shown horizontal).

In concrast to case (1), the geometry of 17 1s not apparent. An insightful exam-
pleis w = sin z, where [* = R. The level-set {|sinz| = 1} = {m/2tkm, k € Z},
is a ‘necklace’ of topological circles meeting tangenually ac the critical points.
Thus, by moving alternately in the upper and lower half-planes, we find a curve
which |sin z| = 1, but arg(sin 2) never varies more than 7.

Write y "D’ (25) = g1, where each I has mass one (this may require slightly
modifying 2D’ (z¢)). Since dy = 2r~1L(¥) on y, there are at most O(K) cen-
troids Cy with I € 7.

[t is also useful to extend y in both directions to separate € (as well as D" (20)
and D{2¢}} into two components: ¥ an interval on R.

Let D'"(zg), D'"(zg) be the two components of D'(zp) \ ¥, and in each
of D'*(zy) take branches of arg(z — ) (T € y), arglz - C;) (I € 7). Simi-
larly, lec D*(z9) € D'*(2s) be the components of D{2¢) \ y. Using notation
from Corollary 3.6 (Section 3.4), consider 7* = {I = {(I,—I) : I € 7} and write
H (2} = 24« hi(2) for z € D(20) and kg from (3.10). One utility of assumption
(2.27) is that we have explicit expressions for 4 and irs conjugate #, the lareer
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FIGURE 4.1. Intersection of D'{z¢} with y and n

defined in each component of D' (24 ):

H(zy =S (z) = Slog 1—3‘
T T Cf
21,1
- -t
2 yer’(zo)log 1 t| L(t)dt + o(1),
Hzy =Sz = Zarg(] - i)
T T Cf
- _Z 41
2 ymD!(zo)arg(l 2) ') de + o (1),

where 0(1} accounts for the contribution from —(y N D’ (24)), which lies far from
Z[.

Lemma 4.2. Let H* be a suitable branch in each component of D' (zo) \ 'y, and
letp, g€y noD'{zy). Then

| H o < 1/2,

4.2 - _ - -
*.2) (g +i0)— H*(p+i0) = —[FH (g — i0) — 5L~ (p — i0)].
Proof This is straightforward. Each function #* is a sum of a finite number
of terms hy from (3.10). [f T € y (possibly T = Z7, I € 1), thenarg(z - T) = 0
when z € y, z > € (using language inherited from viewing y < {Rez > 0}),
while arg(z — T) = £ when z € y, z < T; the sign depending on the function
H* under scrutiny. Thus, the boundary values of the conjugate k; of any single
term log|z = Tl - [ loglz = T1du(T) are zero for z € y \ {I}. This remark also

Jr
justifies the other assertion. O



To adapt (4.1) to the situation (i1), let K, 2o be large, zo € 1, subject to (3.13).
The left side of {(3.13) is harmonic in D'{zg), since H cancels the Riesz mass.
Hence we take conjugates, with constant A in D' (2o} and constants 4" in D'*(2,):

“3) |loglgl — (A + TLO)O) + H{(2)| =" (2)] < ¢ (z € D{20)),
) |largg(z) = (A" ¥ TL(¥) logr + HE2z)| =lez) <& (z&€D*(zp)).

Lemma 4.3, Let 1y be a curve on which g(2) — a such that n passes through
the center 2y of D(2) withT* N D(2y) = 0. Then n contains an arc ' on which

arg @(2) varies by at least 2. Hence if a + 0, oo, g cannot be uniformly close to a
on all of n.

Proof. Recall that we are in case (i1). We consider two possibilities.

First, suppose there 1s a subarc n1 C 1, with 111 Ny = # which is not insignifi-
cant, in the sense that its extremes are points Z1, €2 in D(zp) with log(182/T 1) >
471(L(ry)) ', We then consider the second estimate of {(4.3) at each T € n'
relative to D*(zg) as appropriate, using some branch of argg(T1}. We reach
a contradiction since L{#o)log? has changed by at least 3mr while (by (4.2))
1 || < 77/2. Once again, arg g(z) cannot be nearly constant on n’.

The more subtle case is when there is no significant subarc of 1 in any D' (20)\
y (as with w = sin 2). Let

Pin) =nnynDi(z).

With s > 0 small but fixed, we have that P(n) n (U; B(Zr,s}) = #, and may
assume that P(n} is discrete in y. Suppose i contains a subarc i’ having only its
endpoints €, &' (|€'| = [E[) in P(n), such that the {closure of the) domain (in one
of D* {20} or D™(2¢)) bounded by 1" and a subarc y C y contains at least one T,
say {Cr: T e’}

We claim that " contains a subare on which argg(Z'} varies by more than a
fixed amount. Thus, we compute argg(€’) — argg(€) in the second formula of
(4.3) in each of D*(z¢) \ y, since one of these computations is with the change of
argg on n’.

Lemma 4.2 shows that the change, on [§, £'] relative to D*(25), of the sum

—L{ro) logr + H*

in D" {zq) is the negative of that of the sum +L(¥p) logr + H~ in D (z). Buc
the second line of (4.3} shows that each of these is (up to 0(1)) the change of
arggiz}).

Finally, a closed curve consisting of simple arcs from € t € in D*(zo) and
then D7(zy) form a closed curve on which the change of argg 1s 27 card(Z").
That means that |argg(E') — arg g(€)], when computed relative to D*(2y}, is
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well-defined up to 0(1), and is at least 77 card(7"). Thus arg g(2) cannot be nearly
constant on all of ' if @ = 0, eo.
This completes the proof of Theorem 4.1. O

4.4, The asymprotic values. It is easy to guarantee that As(g) = {0, 00},

Lemma 4.4. Suppose there is a curve y CT° U, on whichU(z) — —oo. Then
As(g) = {0, co}.

Proof By Theorem 3.2, loglg(2)| <« U(2)+ Goitzey\EorifzeynE
and the component of E containing z consists of a single ball centered at a zero of
g. So by the construction in Section 2.5 we only need consider the situation that
the component E” of E containing z consists of three balls: E' contains two zeros
and one pole of g. Let z; € E' be the zero of g associated to y and zp € E' a
pole. Elementary geometry shows that [z, — z| < |zp — z| when z € y. Thus by
Theorem 3.9,

loglg(2)l Uz} + Gy, (z€y),

and since I - —o on y,
loglg(z)| = =00, (z— o0, z€y).

Now with y as above, let y' = —y be a second curve on I'* C I'*. Since U(z} =
—-U(-z) {see {2.2)), U — o on ¥', and our argument shows that log|g| — e on

Y -

Let T be the subnetwork of T° n U on which I — —oo. In the next chapter, we
guarantee that [ = 9.

5. COMPOSITIONS WITH QUASICONFORMAL TRANSFORMATIONS

In this section g will be transformed by means of compositions with quasiconfor-
mal mappings to produce a quasiregular function F with asymptotic values pre-
cisely A*. Recall that A = 4%\ {o0} is analytic, and until Section 8.2 A € B(0,2).

An analytic set A is obtained from Lusin’s operations:

(51) A=U ﬂsnl ..... Np»

of infinite sequences of (positive) natural numbers. Sierpinski calls A the nuclens
of the system Sy, n,,-

We need a very precise description of the sets Sy, n,, and the situation is
complicated since different authors often use different definitions. Qur formula-
tion uses the ideas of [16, Theorem 112] but our condition (2}, which is indis-
pensable here, is slightly different than in [16] and does not appear in [3]. For



convenience, we sketch a proof, and refer the reader to [16, Section 86) for full
details.

Let Np be the collection of all finite sequences (#1,...,1p).

Theorem 5.A. Let A < C be a nonempty analytic set in C, and let a decreasing
positive sequence 18}, &y | O be given. Then we may write A as in (5.1) where

(1) each Sn,,..n, i a closed set,

(2) diam(Sy,,.... np) < dp,

{3} Sny,mpip © Snynys

4y Sn,... =@ forall (ny...,np) in Ny,

Proof The original definition in Section 82 of [16] uses only (1) and (3), and
avoids (4). However, we are considering only nonempty analytic sets A. Thus for
the moment assume that A is as in (5.1), where only (1) and (3) hold; we call these
sets Sy e and convert them to ones which sacisfy (2) and (4) as well (in [16],

=1/p).

To secure (2), let the {6,) be given, and introduce for each p a countable

covering of C by closed balls {Mn } of diameter 8,/2 < diamMn < 8p. Then

for cach n € Z, take $¢ = My, and S =50, = = M2, This is augmented for
p>1by

) o o (EV}
bnl e Hep Sﬂl Hr,. ﬂgp_l - Sﬂg‘ﬂ‘; ..... ﬂgp__} M Mnlp—l’

where (11, n2,...,M2p) range over Ny. [t is clear thac the sets ¢ are closed, and
easy to check chat the nucleus of $¢ coincides wich that of §'. Thus (2) is sacisfied.

Property {4) may be arranged as in [16, Section 86]. Since A # #, choose
some fixed wy € A. Then for any combination of k indices, m(k) € Ny, and
any sequence (11, 1z,...) of natural numbers, let

S LR, ﬂ bm (k)R R, Hp?

p:-]

and set
m(k) U ‘5 AT SO

[M

Sets of this nature must be included in (5.1). Whenever S* y * 0, define Spyk) =
Sm . However, when § (1} =0, set Sy = 0o € A (smceA = ®),and if ko +1
is the least integer with S vk = @, set Sy = Wmiky) € Sm(kop Jj>ko. O

The set of asymptotic values {0, 0} will be transformed into A* by successive
compositions with quasiconformal transformations. Recall that a homeomor-
phism @ is said to be K-quasiconformal (K = 1) in C if it is in the Sobolev
space @ € WLA(C) and its (formal) derivatives satisfy |/ (2)|? < KJp(2) ae.
z € €, where Jp is the Jacobian determinant {see [1] for more properties).



The sequence {ép} in Theorem 5.A arises from repeated use of an elementary
lemma on quasiconformal mappings (known to Teichmiiller and proved in (1],
see also [4]). The various choices of {R, 8} depend on the sets (5.1).

Lemma 5. A, Let 2 > K > 1 and R > & be given. Consider the (K,8,R)
problem of finding a quasiconformal self-mapping of C, @, such that

(1) @lw) =w iflw| 2R,

(2) for any given ot such that || < 8, we have p(w) = w + ot if |w| < &,

(3) @ is K-guasiconformal.

Then, given either R or O, there are choices 6f 3 = 6(R) or R = R{(8) which solve the
problem.

We use this lemma in an iterative way. For a given K > 1, take a sequence
Ko>Ky = -+ with

(5.2) [1K; <K

J

(thus K; | 1 (very) rapidly). Apply Lemma 5.A with § = é¢ = 2and K = K, thus
obraining R, and for j = 1 take K = K, R; = ;-1 to obtain §; | 0. The point
oo and in general, o (j =z 0) will be specified later in Section 6. It is convenient
o assume, if necessary by decreasing 8;_; at each appearance, that

logR; + 10Cy < logRj1  (j = 1),

where Cp is from Theorem 3.1.

As in [5], this lemma will produce a large collection of quasiconformal map-
pings, all applied to g(z) from Theorems 3.1 and 3.9. At each point z, the final
quasiconformal mapping ¥ will have at w = g(z) the form

(5.3} Ylw)=---@jo- - o@repplw)
where @ is Kj-quasiconformal mapping of €, so that
(5.4) F(z)=Ye-g(2)

is a continuous K-quasiregular mapping (which, unlike a K-quasiconformal map-
ping, need not to be a homeormorphism, see [15]). The functions {g;} are
related to the desired behavior of F on a given branch y ¢ T < T? € I'* n U (re-
call Figure 2.2}, wich I' introduced at the end of Section 4.4. (We are simplifying
notation, since in principle there should be different subscripes corresponding to
each group of mappings in {(5.3) associated to different pachs y. However, the data
18,R;,K;} 1s the same for each choice of @;.)

Thus let y < T € T° € U be a path on which z — & and g(z} — 0. We
arrange the {@;} and @an — @, an € A, so that the orbit of w = 0 under F as z



passes through y will be

0— - —-
(5.5) . @o{0) — P1(ge(0)) ,
—ag - ay—~

leading to F(z} - a =lima, asz — e, z € y.

There 15 a natural way to correspond each path y € T to a point of the set
A of (1.1), where T < (I'” n U) has been introduced at the end of Section 4.4.
Each node of T n U will be associated to a specific point @ € A using Theorem
5.A. Since I'® n U is combinatorially a dyadic tree, its nodes correspond in a
nactural way to finite sequences of O’s and 1’s with first entry 0. Let B be the
countable collection of all such sequences. For each m, B has 2™ elements having
m entries after the fiest 0. In curn, each such b has two successors b’ and b"' with
m + 1 entries after the first 0z their first 1 entries coincide with those of b, and
the final entry is 0 or 1. This leads to the standard binary graph G associated
with B. Following [16], we associate a finite sequence (11, 12,...,Rp) € Ny
to cach b € B\ {0}, so that cach node in a dyadic tree corresponds either to 0
or to a (unique) finite sequence of natural numbers. Lec b € B. Then b = 0
and b = 0.0...0 correspond to the number 0. Otherwise, b = 0.8, ... &;, where

€ <1{0,1),1 <ix< j,andatleastone & = 0, corresponds to (ny,..., i) € No,
where
k] k
& 1
(5.6) Zz—§=;72m+m+ne'
i=1 P—1

This correspondence is coherent in the sense that if b’ is has the same binary
expansion as b through the first € appearances of 1, then the firsc £ digits of
in,...,nk} and {ng,..., e} coincide.

In chis way, every node of a dyadic tree is associated with a finite sequence of
nactural numbers or zero, and conversely, any finite sequence of natural numbers
is associated to countably many nodes in a dyadic tree.

Once we have this correspondence, 1t is natural to exhaust Ny in the order
induced by the tree structure of B:

(5.7) (; 0.0,0.1; 0.00,0.01,0.10,0.11; 0.000,0.001,...,

which produces the §; in (5.6). Thus if k = 1, the k-th bifurcation node 2y €
['* N U (see Section 2 and Figure 2.2) corresponds to the k-th new element in
this display of B; this is a number from (5.6) with 1 as final entry. In turn, (5.6)
assoclates this node to a set Sy, . n, in the system (5.1}). The specific mappings
{@;} chosen below reflect the data (5.1) as well as {R;} from Lemma 5.A and Co
from Theorems 3.1 and 3.9.

The connection between {5.7) and the evolution of I'* through bifurcations
can be made concrete, in that at a bifurcation node zx € §(r)NU the new branch



of T? (which corresponds to an element of B with last digit one), originating at 2
is the arc of T having larger argument. The curves y € T ¢ (I'° n U} on which
U tends to —oo will be paths which have infinitely many segments corresponding
to elements in B of {5.7) having terminal digit one (see (5.10), which then applies
for infinitely many p). On these curves on which g — 0 (see proof of Lemma 4.4)
are where F (and later f) actains asymptotic values a € A.

We now define U ac the {2} and use the procedure (2.14) to extend U to the
arcs of I'? and then (2.1) and (2.2) to define U on all of C.

Start with 2y = ¥y {recall (2.8)), the first node corresponding to 0 € B and
define

(5.8) Ulzy) = ngRo + 4C0.

Note that other nodes z, that correspond to 0.0...0 € B will appear on each
Stri), k= 1asin (5.7).

[n fact once an arc of T* N U is assigned to T'*, the locus of local maxima,
it never is subject to bifurcation as |z| — co. To complete the definition of U
on these ‘free arcs’ y* < I'* n U, we observe that its initial point lies at some
bifurcation node zx {k > 0}, where U will be defined in a moment (see (5.10}).
As we follow along y* and encounter zpp = y* N S(ry.e) (f = 1), we require that

(5.9) Dize) = Ulzg) + £,

and so we obtain infinitely many curves y* € U on which U — oo.
In general, if the node zi (k = 1) corresponds to by € B and (ny,...,np) is
the sequence of natural numbers associated to by by (5.6), we define

(5.10) Ulzy) = logR, + 2Co,

which we copy at any successor z°, which corresponds to b’ (itself a successor of
by) associated to the same sequence (11,...,7p} € Ny. In this way we also obtain
countably many curves in T° on which |U| does not have o as an asymptotic
value; on these g will have no asymptotic value, as suggested at the end of Section
2.1. On the other hand, the curves for which (5.10) for an increasing sequence of
infinitely many p’s are the ones that conform I', where U — —co.

6. THE FAMILIES OF QUASICONFORMAL MAPPINGS

It follows from (5.1) that to any @ € A corresponds a sequence (11,12, 13,...)
Next, we identify the specific quasiconformal compositions {g;} and the do-
mains in which they act, all of which are in U.
For each n consider Qy, the unbounded components of {[g(2)| < Ry} that
intersect I'* N U. Then each path y C T {on which g — 0) passes through
components Dy of Oy for each n = 0. Theorems 3.1 and 3.9 with (5.8) show



that |g(2}| > Ro on the ares of T* contained in {|2| > %o} which meer ar the
node zy: thus Qo C U, and Qy is separated from &U by arcs of T*.

Similar considerations show that two components D, and D4, are separated
by arcs of T*.

In general each component D of Oy will contain countably many compo-
nents D5, of Q.1 each of which will contain countably many disjoint compo-
nents Df; 12 of Quaz, ..., imitating the process (5.1).

[t is in these domains D, that we introduce the mappings @y. Consider a

nested chain of sets
:D"I I)H; Hy )
A S HE R ) e S

these sets will then concain the asymptotic pach y at which the asymprotic value
a = g1 Sn,,..n, will be attained.

The quasiregular mapping F is defined on each chain D" inductively in the
domains Qp \ Qp.1. First, take F(z) = g(2) if z € C\ Qy, observing from (5.8)
and the role of Cy in Theorem 3.1 that since |g{29)| > logRe + 2Co, 2¢ is not in
Q. Fix n € N and consider a domain D < Qy. We set

F(z) =@ooglz), zeDI\Q,

where @y is the Ky-quasiconformal map given by Lemma 5.A (which produced
the original Ry), so that go(w) = w if [w| = Ro and @ol{w) = w + a if
|1r| < S, where @1 € A 8y as in (5.1), with {cf. Theorem 5.A) diam §; < ;.
Thus, if z € 8Q) € D7, then |g(z)| = Ry = 8¢ and therefore F(z) = g(z) + a;
(s0 by means of g9, g(z) has been translated o g(z) + @y, the first step of
the chain (5.5)). More important, since @1 € A N Sy, properties {2) and (3) of
Theorem 5.A ensure that when @ is introduced as in (5.3), all possible choices
2 £ Sn"m c Sn Safisfy
|£13 - a1| < 61.

Notice that F is welldefined and continucus in €\ €. Indeed, for m *= n,
let D be another component of Qg. Then

F(z)=@)og(z), zeDy\Qy,

where @y is the Ko-quasiconformal map given by Lemma 5.A with @g(w) = w if
lw| = Ro and @i (w) = w+a) if |[w| < &g, where @] € AN Sy We have already
checked that D' n DY = @. Thus F is well-defined in €\ ©; and continuous on
DY since if z € 3DY, then |g(2)| = Ry and therefore F(2) = g(z).

Suppose that F is defined in €\ Qp; now we show how to extend it to C1\Qp 1.

H . . . H
Let Dy,? | € Qp-1 be given and consider a domain Dy € D7 ;. Assume that

F(z) =dp_109(2), zeD 1\,
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where &, =@p-1°°Po is a Kp_l-thasicohformal mapping chosen from
Lemma 5.A with data Rp_1, 8,1, such thar in particular
£ y P

(6.1) F(z) = g(z) + ap, zeanCDp 1

and @p 15 in Sy, _n,. a set of diameter less than 8. In D} define

F(z)=®p0g(2), z€DE\Qpy,

where ®, is a quasiconformal mapping defined by &, = @p o ®p_; and @y isa
function given by Lemma 5.A with K = K,

when |u-’ - ap| = Rp,

q)p(u’) — {u;

W+ api1 — Ap, when lw - ap| < 6,,

np» A S€L

of diameter less than dp-
The function F is well-defined in € \ Qp- since the domains Dk and Dy,
k = n, are disjoint, again using an appeal to (5.9).

Moreover, F is continuous on dp. Let z € 2D} C Dp 1» then |g(2)] =
Ry = 6p_1 and by (6.1} and the definition of the functlon Py,

F(z) =dp1(g(2)) = g{z) +ap = bplglz}).

Finally, to verify (6.1) in these domains, consider a domain Df;ﬂ contained
in DJ and let z € 9D%,, € D2 Then |g(2)| = Rps1 = &y and

F(z) = @plg(z) +ap) = g(2) + ap.1.

____ , is an asymptotic value of F, obtained on the path y
passing through the domains DY o Do DY o -
7. SOLUTION OF THEOREM 1.1

7.1. Nevanlinna characteristic of g.
Thearem 7.1. The meromorphic function g has order zero. Indeed,

T(r,g) = olp@)log’v) (¥ — o).

The Nevanlinna theory for subharmonic functions is discussed in [10] and
adapts readily to 8-subharmeonic functions. We first estimate the counting-function
for the ‘poles’ in B{r), n(r,u). Formula (2.15) shows that the number of poles



on any branch of T* " B(¥) is at most L(v) logt, and (2.7) asserts that the number
of branches in B(+) is O(L13(#)). This means that

nir,g) = 0L (r}logr).
Since L increases and E has density zero, we may integrate:
N(r,g) = O P (r)log’ ).

To estimate T(r, g) = m{¥, g)+N(r,g) we consider the proximity function,
1 -2 + 0
_ i
mir,g) o Jo log™ |g{re**}|d8.

By Theorem 3.1, log" |g{z)| = O(L(|z|)) when |z| — o and z ¢ E, so it is
enough to check the contribution to m(r,g) from integration over the excep-
tional set E.

However, the estimate is then routine given the representation (3.10) of each
hy, since we may perform an explicit integration over each of the of disks of E n
S(¥) for each ¥ with S(#) N E = @ : m(v,g) = O(L(¥)). Thus {on recalling
(2.6))

T(r)=(1+0(1))Ni(r,g) = O3 () log’ v} = ol (r)log'v) (v — oo).

{Alternacively, since T(¥} = o((r) logz‘r) when S(v) N E = 0, we obtain it
for the remaining ¥ since T increases.)

7.2, Asymprotic values of F. We return to the function F which was ob-
tained in Section 5. Recall that we still assume that A = A*\ [~} and A € B(0, 2).

Lemma 7.2, The asymprotic values of F are w = 0, W = o and values a which
are limits of g(2) on curves y CT° N U. In particular, As(F) = AU {00} = A*,

Prosf. This depends on the form of the compositions (5.3) and (5.4} along
with Theorem 4.1. Note that {0, 00} C As(F) since there are many curves in I'*
in the lower half-plane on which F — 0, e, with no other asymptotic values.

We first show that only asymprotic values associated by the procedure of Sec-
tion 3 are asymptotic values of F. Let F(2) — a on . Once we show that g(z)
itself has a limit @’ on 1, Theorem 4.1 shows that @" = 0 or @’ = oe. Since all
compositions ¥ are the identity outside B(Ro}, we certainly have @’ = oo when
a= .

Thus suppose |a| < Rq. Given 8 > 0, choose ¥* > 0 so that [F(2) —al < &
for z € p{+") with (r') the unbounded component of p 1 {[z| > ¥'}.

The family of K-quasiconformal homeomorphisms of the sphere which fix
B{Ry} are uniformly Hélder continuous. Hence if ¥ is any fixed function of



the class (5.3), any ¥~! image of B(a, &) is contained in B(¥~!(a}, C’6%), with
o= (K},

[t follows thac if ¥ 15 a choice of ¥ at g{z"), with 2" € nnS{#'), theng(z)
B(Y'"L{F(z')),C'8%). Since § — O as v’ — o and the family of functions {¥} is
normal, g itself must have a limit on . As we showed in Section 4.2, this means
that 7 is contained in a tract on which g — 0, so this tract also contains a curve
y c T cT% Ify ¢ I% n U, then the choice of compositions in (5.3) was made so
that F(z) — a € Ainy, and so in . If, on the other hand, ¥ < I'? in the lower
half plane, then F(z} = g(z) on y and so F(z) — 0 € A In ¥, and therefore on
1. O

7.3. Construction of f. Let F be from (5.4). The meromorphic function
S of Theorem 1.1 is obtained using standard techniques. Let o(2) = (F;/F;}(z)
and f := F o 7! where T is the homeomorphic solution to

T:(z) = 0(z)T,(2} (Beltrami equation),

normalized to fix 0, 1 and . Then f is meromorphic in the plane.

Obviously As(f) = A*, so we need only check (1.2).

We may avoid delicate distortion theorems on solutions to the Beltrami equa-
tion, since g is of slow growth (cf. (1.2)). A standard distortion theorem [1]
(Holder continuity) gives that if w = 7(2) satisfies this equation with [lo]l« <
i < 1, then there are A = A{x), M = M(k) with

(7.1) Tz} < AlzIM (z eC).
Lemma 7.3. The characteristic of the meromorphic function f satisfes (1.2).

Proof Since all quasiconformal compositions used in the previous section fix
a neighborhood of w = 0, we have n(r, ,F) = n(r,o,g) (v > 0). We may
suppose that K in (5.2) has been taken so that (7.1) holds with M < 20, and so
nir, f) < n(Cr?®,g) = O(CLY3 () log’ ¥. Using (2.6), we find

N, f) = r t'n(t, frdt < NQICL*? @) = o(@(r)log’ v).

Similarly, m(r, f) = O(L{ArMg)), and since T(r, f)} = mir, f} + N(r, f}, a
final appeal to (2.6) gives (1.2). O

8. CONCLUDING REMARKS

In this section, we settle some loose ends.



8.1, Functions of given arder A, To construct functions of order A = 0
requires a simple trick (we thank A. Eremenko for this suggestion). Let g be the
meromorphic function (of order zero) just constructed, with As(g} = {0, 1.
Let W be an unbounded open set with AW, T*) = 1. Choose a sequence {wy}
tending to o in W whose exponent of convergence is A (for example, let the
number of wr, in B{r) be asymptotic to #*).

Next, for each wy, choose by with wy, — by, tending so rapidly to zero that

1 =z)wy

is so close to one outside W thar if g, (2} = g(2)}1(2}, then g — g1 = ¢(1} and
argg(2) —arggh(z) = 0(1) as 2 — = in a neighborhood of ['*. Then g; has
order A, and we may perform the compositions of Section 5 on g1, yielding fi of
order A with A™ its asymptotic set.

8.2. General analytic sets A*. To remove the assumption that the set A of
{(1.1) be contained in B{0, 2}, we construct a ‘forest’ of trees in U. Thus, instead
of I'® < I'* being a single tree beginning on the positive imaginary axis (cf Section
2.3}, there will be a countable collection of ctrees Ty C U, Ty < I'* with
asymptotic values being those of A N B(m + ni, 2).

Since each of the compositions in (5.3) operates in disjoint regions of the

plane, the proofs of Lemma 7.2 and Lemma 7.3 apply as before.
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