
Asymptotic Valúes ofMeromorphic Functions of 
Finite Order 

A . C A N T O N , D . D R A S I N Ó" A . C J R A N A D O S 

A B S T R A C T . The asymptotic valúes of a meromorphic func-
tion (of any order) defined in the complex plañe form a Suslin-
analytic set. Moreover, given an analytic set A* we construct a 
meromorphic function of finite order and minimal growth hav-
ing A* as its precise set of asymptotic valúes. 

1. 1 N T R O D U C T I O N 

A nonconstant meromorphic function f(z) in the plañe has the asymptotic valué 
a if there is a curve y tending to oo such that f(z) ->• a as z ->• oo, z G y. 
Let As (f) be the set of asymptotic valúes of / ; for example, As (ez) ={ 0 , oo} . 
A classical result of Mazurkiewicz [13] asserts that As(f) is an analytic set in the 
sense of Suslin [3,16]. 

Recall that the order of / is given by 

\osT(r,f) 
A = limsup — ¡ , 

r^co log r 

where T(r,f) is the Nevanlinna characteristic (when / is entire, T(r,f) may be 
replaced by logM(r, / ) , with M(r, f) the máximum modulus function). 

Heins [11] showed that given an analytic set A*, there is a meromorphic 
function / with As (f) = A* and, if oo e A*, then A* = As (f) for some entire 
function / . In general, Heins’s function has infinite order. For example, if 

(1.1) A:=A* \ {oo} = A* n C , 

and card (A) = oo with A bounded, Heins produces a Riemann surface with in-
finitely many ‘logarithmic branch points’ over w = oo, so by Ahlfors’s theorem 
A = oo. Note that A , as the intersection of two analytic sets, is analytic. 



Eremenko [8] produced meromorphic functions with A < oo having As(f) = 
C. In fact, if ífj(r) is a given increasing unbounded function, he could arrange 
that 

(1.2) T(r, f)< ip(r) log r a s r ^ o o , 

and so / evenhas order 0. The significance of condition (1.2) is that when <p{r) = 
0(1) , Valiron [17] showed that As( / ) contains at most one element. 

Theorem 1.1. Given an analytic set A* in C and A, 0 < A < oo, there is a 
function f meromorphic in the plañe of order A such that 

As(f)=A*. 

Indeed, given an increasing function <p : R+ -+ R+, ífj(r) -+ oo as r -+ oo, one can 
arrange that f satisjy (1.2). 

Although questions of this type have been considered in various contexts for 
many years, the definitive result for meromorphic functions requires additional 
tools. Our final function / appears only indirectly, although the structure of 
the asymptotic curves and the asymptotic valúes assigned to them is presented 
explicitly In contrast to [8], a full chapter (Section 4) is needed to show that no 
other asymptotic valúes occur, and it requires new techniques. In [6] there is an 
informal outline of this work, and full details are given here. 

Since there are elementary examples with A* being empty or having one el
ement, we assume A* has cardinality at least two, and 0, oo e A*. A key step is 
to produce a meromorphic function g(z) whose growth also satisfies (1.2), with 
AS(É7) = {0, oo}, with data on the curves on which g tends to its asymptotic val
úes. We then follow ideas going back to Teichmüller and apply quasiconformal 
compositions to convert g (via the Beltrami equation) to a meromorphic / having 
As(/) = A* with growth (1.2); even here, in Section 5 we must reformulate the 
standard definition of analytic set. 

This meromorphic function g arises by approximating a specific 5-subhar-
monic function U(z). The general form of U is very simple, based on the fact 
that the function u(z) := A + B6 (with 6 = argz) is harmonic, and, if B =f= 0, 
of least growth. In Section 2 we introduce a simple model (called Ü here) whose 
inadequacies then point to the correct form of U in Section 2.2. Although our 
final function is necessarily complicated, the analysis in Section 4.3 is based on 
studying the elementary function w = sinz (despite that As(sinz) = 0). 

Throughout, C is a finite positive constant which may change from line to 
line, unless specified otherwise, although the constants C and Q introduced in 
(2.16) and Theorems 3-1 and 3-2 are absolute, associated to the data {A*, <p] of 
(1.1) and (1.2). In addition to U = \z : Imz > 0}, S(r) = \\z\ = r}, we set 
B(a,r) = {\z - a\ < r], B(r) = B(0,r), E the interior of E, É its closure, and 
a A b = min(a, b). 



2. T H E F U N C T I O N U A N D I T S LAPLACIAN 

2.1. The toy function Ü. We introduce Ü(z), a simplified versión ofU, first 
for z in the upper half-plane 11. Take 0 = ©o < ©i < • • • < 0fc < ®fc+i = TT with 
data I > 0, boundary valúes U(r) = U(reÍ7T) = 0 (r > 0) and constant valúes 
U(rel&í) on the system of rays argz = ®j>, 1 < £ < k, in U. Then for r > 0, 
0 < 0 < TT, extend Ú" to each sector {&£ < argz < 0^+ií, 0 < £ < k, by 

(2.1) Ü(rew) = mm{Ú(reie*) + L(6 - &£), Ü(reie^) + L(&£+1 -6)}. 

In what follows it will be assumed that data U(re ) are chosen so that (2.1) 
defines Y£+1 e [0^, &£+\], (0 < £ < k) as the (9-value at which each pair of linear 
functions coincide, and Ü has a local máximum in 0 at each Y^+i- Thus Ü is a 
piecewise-linear function in 0, it vanishes on the real axis (other that at z = 0 
where it is not defined), and it is monotonic on each (9-interval {0^ < 6 < ^a+\}, 
l^í+i < 9 < ®£+i}, 0 < £ < k. Figure 2.1 shows one possible graph on [0, TT] 
with k = 3-

FIGURE 2 . 1 . Graph ofÜ(rew) forfixedr 

The function U of (2.1) is 5-subharmonic in V. (i.e., AU is a signed measure 
(charge)), zero o n 3 ' í i \ {0}, and harmonic offthe rays {argz = 0 ^ , ^ } , and so 
may be extended to be 5-subharmonic on C \ {0} by 

(2.2) Ú(-z) = -Ü(z) (zGti), 

a rigidity we use henceforth, and without which the approximation arguments 
(Section 4) would collapse ((2.2) is the key to (3-9)). It also produces respectively 
k + 1 and k rays in the lower half plañe on which Ü has local minima and máxima 
(in 6) on S(r). For any function U considered here (or, later, U), let T0 be the 
curves which are the locus of local minima in 6 ofU(rew) for fixed r > 0, Y* 
those which are the locus of local máxima, and 

r* :=r°ur*. 

Thus for Ü, T* is a network of 4k + 2 rays, with r* n (R \ {0}) = 0. 



The Laplacian oí Ü has a special nature (at least if z + 0): AÜ(z) = 0 when 
z = re10 $ r", whereas if z e r ^ u S ( r ) , the formula Au = urr +r~1ur +r~2UQg 
shows that if z = re10, then 

AÜ(rew) = ±2Lr-25q)(6), 

where 5qj(6) is the Dirac function; the plus sign is used when z e T0, and the 
minus sign when z e T * (much as \x\" = 25o). In summary, 

(2.3) AÜ(rew) = 2r-2L[ X 6go(9) - X 50*(9)]. 
e°er° e*er* 

To obtain a meromorphic function g such that log|¿Hz)| mimics Ü(z), we ap-
proximate AÜ" by a measure composed of (positive and negative) unit masses, the 
principie being that 

(a) if Av is a Borel measure consisting exclusively of unit point masses, then 
v = log \g\ for some meromorphic function g, 

and 

(b) we can recover the asymptotic behavior of g from graphs as in Figure 2.1 
at points at which | U(z) - log \g(z) | | is small. 

We see later (Lemma 4.4) that g attains its asymptotic valúes on curves in T$, but 
probably not on all curves. 

2.2. What is wrong with Ü? Suppose g is meromorphic with log \g\ mod-
elled on Ü using (2.1) in U and (2.2) in C \ t i . For r > 0, each S(r) n T* has 
2(2k + l) points, so a straight forward computation inSection7-l (basedon (2.3)) 
will show that 

T(r,g) = (4fc + 2 + o ( l ) ) l o g 2 r (r -* oo). 

Thus T(r,g)/ log r is bounded and in fact since Ü is bounded, we could not 
expect 0 or oo to be asymptotic valúes of g. To circumvent this, our function U is 
a 'limit' of functions U as k, L í oo. Then on each S(r)nll, the graph of U(re10) 
will be as in Figure 2.1, but with complexity increasing with r, in a manner that 

lim inf U(z) = -oo, lim sup U(z) = +oo. 
r-°°S(r) r"°°S(r) 

The meromorphic function g for which log|¿7| approximates U is obtained by 
atomizing' AÍ7 exactly as described in Section 2.1 for Ü. 

We partition C into the disk JAQ = {\z\ <TQ\ and annuli JAk, 

(2.4) Ak:={rk-i<\z\<rk¡ (k>l), 



for a rapidly-increasing sequence {r^} with ro > 1. The function U is defined on 
C so that relative to each ĴLfc it mimics a toy function Ü of increasing complexity 

Thus, in place of the constant L in (2.1), let L(r) í oo be a smooth function 
with L(r) = 0 on [0,1], and for some fixed constant C, say C = 20, suppose 
that 

lim r _ 1 I ( r ) +rL'(r) +r2\L"(r)\ = 0 , 
r-'oo 

( 2 - 5 ) s u p r ^ K r ) +rL'(r) +r2\L"(r)\ < C. 

r>0 

To satisfy (1.2), suppose that 
(2.6) L2(r21) = o(ip(r)) (r - oo) 

(any large number would work in place of 21), and impose the compatibility 
conditions 

(2.7) log(r f c + 1 /r f c)>(/c + I 0 ) I ( r f c + 1 ) a n d I ( r f c ) > ( / c + l ) 3 (fe > 0), 

for some valué lo large enough (for example taking lo > ( ( 4 ) ^ — 1)_ 1 gives 
constant 10 in (3-2)). 

Comment. Conditions such as (2.5) and, later, (2.13) play an important 
role. A helpful way to visualize them is to choose, for each fe, suitable num-
bers Ifc and Sk > 0. Then we may arrange that L{r\¿) — L(rk-\) = ifc with 
suprr rirL'(r) < 5^ by increasing the ratio Tfc/rfc_i as needed. In turn, 
these conditions are compatible with suprr r -,r2\L" (r)\ being small, increasing 
t"klt"k-\ if necessary 

Other restrictions will be given later. They will be of two types. Often the 
ratios {rfc/rfc_i} will increase, but not the valúes {L(rfc)}, so that (2.5)—(2.7) 
remain valid. In addition, Section 2.5 introduces additional conditions, many of 
which might be avoided at the expense of complicating several arguments. 

2.3. Graph of U. Our fundamental function U is modelled on (2.1) in 
each JAk- For z e U n JAQ, flrst set 

(2.8) U(rew) = L(r)mm{6,n - 6} (0 < r < r0, 0 < 6 < n), 

and then use (2.2) on A0 \U. S ince l ( r ) E O O Ü [0,1], U(z) = 0 for z e B ( l ) . 
Define, 

U(r0e
w) = L(r0)(mm{6,n -6}) (0 < 6 < n) 

onB(r0)nll = dJA0 n U. When 6 = n/2,6 = n- 6 so that T* n (U r\B(r0)) = 
T* n (Un B(TQ)) = {reml2, í < r < ro}, and Zo = iro will be the initial point 
ofr°nIi. 



Since U = O on IR, and U is odd (see (2.2)) we need only define U on V. n 
[\z\ >ro}. In fact, relative to JAk, fe > 1, ÍJ will depend on how it is specified on 
the ares of T0 n (J^k n 1i). Henee (see Figure 2.1 or Figure 2.2), for each fe > 1, 
mark k arguments ©£ on each of the two ares of dJAk n t¿ augmented by ©o = 0, 
©k+i = 7T, with 

0 = 0Q (fe) < 0 f (k) < • • • < ©fc(k) < ©fc+1(k) = n e 5 ( n - i ) , 

0 = ©0
+(fe) < 0^(fe) < • • • < 0¿(fe) < 0¿+1(fc) = TT e 5 ( n ) . 

Relative to ĴLfc n 1̂> the fe ares of T0 joining its boundary components connect 
rk-ie i e^ ( f c ) to rke

l@t{k), l < £ < k. Since 5(rjt) = 3Jzlfc n 9 ^ + 1 , we require for 
fe > 2 that the sets 

(2.10) Í0¿(fc)} = {0¿( fc -1)} , 

which with the second line of (2.9) forces 0^(fe) = 0^+1(fe) for (at least) one 
1 < £ = £(k) < fe; see (2.24) and Figure 2.2. (Notice the strict inequalities of the 
second line of (2.9)). 

Now suppose some given valúes are assigned to each of the points 

(2.11) U{rpe
i@t{k)), U{rpe

i@t{k)) (p e {fe - l,fe}, 0 < £ < fe + 1) 

in dJAk n VL SO that whenever z e S(rk) has representations z = rke
ie^k^ and 

z = rke
i@í'(k+l) from (2.9), then 

U(rke
iet{k)) = U(rke

ie*'{k+l)), 

thus defining U unambiguously on T0 n (S(rk) n 1i). 
These boundary valúes (2.11) will be made explicit in Section 5, (5.8)—(5.10), 

and depend only on the data A (the analytic set) and ip (see (1.1), (1.2) and 
Theorem 1.1). This means that we may choose {Afc} í oo depending only on data 
A and <p, and arrange ab initio that 

m a x | í 7 ( r f c e i e O I < | l ( r f c ) (fe > 1), 
í fe 

(2.12) max|C/(nc í e < ( n : )) - l / f o - i e ^ t a - 1 * ) ! < Afc, 

\ 0 , ( fe-oo) 
log(rfc/rfc_i) 

if the ratios rk¡rk-\ (fe > 1) are chosen large enough. 
To extend U to J\.k given its boundary valúes on T0 n (J^k n 11), for each 

r e (rfc_i,rfc) set 0o(r ) = 0, 0fc+i(r) = TT, and if 1 < £ < fe, select arguments 



&f(r) with ®j>(r) < &£+i(r), so that as r l r^-i, ®j>(r) ->• ®¿ (fe) and as r í rjt, 
©íCr) -" ®£(k), while uniformly in -í 

(2.13) r | e ^ ( r ) | + r 2 | e ; ( r ) | < 2 I ( r f c ) - 7 / 6 (r*-i < r < rk), 

so that ®j>(r) is continuous at r e [rfc_i,rfc]. The estimate (2.13) can be guar-
anteed if the ratios rfc/rfc_i (A; > 1) are sufficiently large. Then, (recall (2.11)), we 
define U on each { r e l 9 í ( r ) , rfc_i < r < r^\ as 

(2.14) U(rei&t(r)) = \J{rk-XeiQ*{r^]) 

log(T/r fc-i) 

log(rfc/rfc_i) 
(C/(nc í e < ( n : )) - [ / ( n - i c ' 6 * ^ - 0 ) ) , 

and use (2.1), (2.2) to extend [/ to all of JA¡¿ (note from (2.10) that [/ is contin
uous). We have already set ZQ = ÍTQ = roe*®1 ' , now viewing ZQ as a point of 
r ° n 3 J ¡ l i . 

As noted in Section 2.1, (2.1) also yields functions Y^(r), r^-x < r < r¡¿, 
l < £ < k + 2 with Uire1^^) a local máximum in each S(r) n Ti. 

-2.-Í. Ora AÍ7. Further progress depends on analyzing the charge AU. 

Lemma 2.1. Let U be continuous in C and 

\dU/d6\ = L(r) when z e (S(r) n Jlfc) \ I"*, for fe > 0. 

Leí íA<? ¿¡rey ofeach JAu n r* := { r e ^ ^ r e ^ 1 " ' } , rfc_i < r < rfc .^to/y (2.13) 
¿zW [/ ¿¡? assigned on JA^ using its valúes on T0 n (dJAk n Ti) ¿« i« (2.1), (2.2), 
(2.11), ¿zW (2.14). Finally, let 5a{6) be the Dirac function {point mass) supported 
at 6 = a. 

Then ifk > 0 and z e JAk, AU(z) may be representedas 
(2.15) 

AU(rew) = 2r-2L(r)[ X 5flo(0) - X ó > ( 0 ) ] + J í ( r , 0) + J í a ( r , 0). 
e0er° e*er* 

/« (2.15), H is differentiable, 

(2.16) r2\H(r,6)\ < C, lim sup{r 2 | f í ( r , 6)\} = 0. 

In addition, Hji(r,0) has support on lJ3-^-fc with Hj\(rk,9) = £k(6) its 
density with respect to the Lebesgue measure on S{r]¿), where 

(2.17) sup |£fc(é>)| = o ( l ) ( f e - o o ) . 
rke

ieeS(rk) 



Proof. Since U = O for {|z| < 1}, (2.1) and (2.2) show that AU = 0 on the 
real axis (including at z = 0). When z E T^ n J^fc, (2.3) produces the bracketed 
term on the right side of (2.15) which is the main contribution to AU. 

We flrst study the primary error term H(r, 6) in (2.15). Thus suppose that 
z e (U n JA]¿) \ r". As in Section 2.1, we compute using polar coordinates. 
Assume for concreteness that 

(2.18) U(rew) = U{rei@*{r)) + L(r)(6 - ©£(r)), 

(see (2.1)). Then AU(reie^r)) = 0 (recall (2.14)). Henee 

AU{rei@*{r)) = L"(r)(6 - &£(r)) - 2L'(r)@'£(r) - L{r)®'¡{r) 

+ r-1[L'(r)(6-&£(r))-L(r)&'£(r)] 

:=H(r,0). 

(with achange ofsign when U(rew) = U(reie^r)) - L(r)(0 - 0¿ ( r ) ) ) . More-
over, since \6 -®j>(r)\ < n, we obtain (2.16) for z e U by estimatingr2H(r, 6) 
using (2.5), (2.7) and (2.13). For example, if r¡t_i < r <r¡¿, then 

and 

r1(r-1L(r)\@'£(r)\)=L(r)r\@'£(r)\ < L(rk) 

= o( l ) 

r2L'(r)&'£(r) = 0(rL' (r)L(rk
716)) 

-1/6 

= 0 ( 1 ) 

as fe ->• oo. The second item of (2.16) follows again from (2.2), (2.5), (2.7) and 
(2.13). 

It remains to consider (2.17), so let JA(k,q) = \z : | \z\ - rjtl < r¡}. Let 
p < r¡/2 and for z e JA(k, r¡/2) we compute the Laplacian using the formula 

AU(z) = lim 
P^QAJTP7 2TT 

•2TI 

{U(z + pei<l>)-U(z))d4> lim -. : 
P - O 4 T T P ' 

•Up(z), 

with (for the moment) z f TK Since [/p is a Lipschitz function for each p > O, 
(2.17) is a consequence of the estimate (uniform in p for z e ^(fe, f]/2)) 

(2.19) lim 
p-0 Mk,n) 

Up(z)rdrde o( l ) , ( fe-oo) . 

To show (2.19), we followBaernstein [2] andwrite, forz = re10, \z + pel$\ = 
r(</>), arg(z + pe1*) = «(</>), so that rei0 + pei{0+<l>) = r ( 0 ) e i ( 0 + O í ( * ) ) . Since 



Zo $ r", we may assume that U is given by (2.18) near z. Note that r(4>) = 
v~(-4>), (ÍX(</>) + a ( —</>)) = 0, so on collecting 4>, — </>, the integrand in this 
computation of AÍ7 becomes 

(2.20) rj(r(<£)e i(0+Oí(<W)) + t / ( r (0 )e i ( 0 - ° í ( * ) ) ) - 2U(rew) 

= 2[rj(r(<£)e i e^ ( r (* ) )) + L(r(<t>))(6 + ((«(<£) + a(-<t>))/2) - 0¿(r(<£))) 

- U(rew)] 

= 2[(rj(r(<£)e i e^ ( r (* ) )) - U(reie*ir))) + (U(reie*(r)) - U(rew)) 

+ (L(r(<t>))(e-@£(r(<t>)))] 

:=h +I2 +h-

For concreteness taker = \z\ > rk, z e JA(k, rj/2). Thenif |</>| < TT/2, both 
z and r(</>)e í '0+Oí^" are in JA.k+i> and so (2.14) applies. The main contribution 
to (2.20) will be from I\. Our assumptions on z and a(</>) with (2.14) imply that 

i l/i I rj(r(<£)e ie^ ( r (<W)) - fJ(re i e^ ( r )) 

log(r(</>)/r) 
log(rfc+i/rfc) 

( r j ( r f c + i e i e ^+ l ) ) - c/(ne ¿e^rt) 
> ) • 

Henee by (2.12) 

| / i l < 2 Afc + i 
log(rfc+i/rfc) 

log(r(tf>)/r) < C Afc +i 
log(rfc+i/rfc) rfc' 

where wehave used that z e JA(k, rj/2), r(</>) > rfc and | r-r(</>) | < p to obtain 
the last inequality. If | </> — TT | < TT/2 and rfc + p < r, the same estimate holds for 

When rfc < r < rfc + p, the point r(<£)el(0+Oí(<W will be either in ĴLfc or 
¿A-k-i- In the former case, we repeat what was just done. Otherwise, the Índex 
£ may change in the sense that U(r(4>)eí<-0+a<-'l)^) may be given by (2.18) using 
®£'(r(4>)) with (perhaps) £' * £ i f r (0 )e i ( 0 + o í ( * ) ) e JA.k-1- However, since 

!7(r(<£)e i e^ ( r (<W)) - U(reie*{r)) 

= (rj(r(<£)e ie^' ( r (<W)) - U(rke
ie*(rk))) + (U(rke

ie*(rk)) - U(reie*(r))), 

we still may arrange that 

Afc , , , , ^ ^ . Afc d / i l < •, 
2 log(rfc/rfc_i) 

log(r k / r (</>)) + +i 
log(rfc+i/rfc) 

log(r/r fc) 

< C 
Afc 

log(rfc/rfc_i) rfc' 



since r(4>) <Tk <r,r - r(4>) < p, and (2.12). 
Analogous esrimares apply when r¡c — r¡ < r < r^. We inregrare rhis over 

JA(k, r¡), whose área is 0(rkn), and recall rhar p < q/2. Henee 

p-2\h\r ¿r ¿6 < C—^± - - ^ . 
J-»(fc,i7) log(rfc/rfc_i) p 

As for I2 and J3 from (2.20), (2.14) and (2.18) show rhar 

l-(h+h) = U(rke
i6^))-U(rei0)+L(r(4>))(6-®f(r(4>))) 

= -L(r)(6 - ®£(r)) + L(r(<t>))(6 - ®£(r(<t>)) 

= (I(r(tf>)) -L(r))(6 - ®£(r(<t>))) + l ( r ) ( 0 ¿ ( r ) - ©t{r{4>))). 

The esrimares of rhe firsr derivarives of L(r), ©j>(r) from (2.5) and (2.13) are 
exploired in a manner similar ro rhar used in esrimaring I\, and so 

p-2(\h\ + \h\)rdrde = ^o(l), ( fe-oo) 
MKn) P 

yielding rhe esrimare (2.17). 
(This argumenr also shows rhar rhe conrriburion ro (2.17) from rhe O (fe) 

poinrs of S(r) n T̂  can also be absorbed in rhis rype of esrimare.) C 

2.5. Refinedproperties ofU. Thar w = a be an asymproric valué of / on 
a curve y requires informarion for all large r = \z\ e y, and one needs equally 
precise informarion on a significanr porrion of rhe plañe ro ensure rhar if a $ 
A*, rhen a cannor be an asymproric valué. To surmounr problems arising from 
rhe inevirable exceprional sers which arise in approximarion rheory, we impose 
condirions on rhe funcrions {0^} of (2.13). Some of rhese mighr be weakened or 
perhaps avoided ar rhe price of complicaring rhe proofs of rhe key Theorem 3-9 
(Secrion 3-6) and Lemma 4.3. 

For each fe > 1, define Pk-i by 

(2.21) log(pfc-i/rfc_1) = I1 / 4(r f c_1) , 

so rhar S(pk-i) c JAk, while (2.7) shows rhar Pk-xl^k-x = o(rk/rk-i). Nore 
from rhe firsr rerm in (2.5) and (2.21) rhar L(rk-i) - L(pk-i)-

L(rk-i) <L(pk-i) 

= L(rk-i) + o ( l ) l o g ( p k - i / r k - i ) 

= ( i + o ( i ) ) i ( n - i ) . 

In addirion, we define r¡,, r¡,', where pk-\ <rk < r'k < rfc s o ^ a t 

Pk-i = o(rí); r'k = o(r¡[), r{[ = o(rk). 



In particular, let 

and set 

log(Tfc/p f c-i)=I1 /3(r f c_1), 

(2.22) X = {J{rk<\z\ <r fc '}, 
fc 

the core of U-̂ -fc-
Note from (2.8) that U is known on JAa, and by (2.9) and (2.2) 

card(5(rfc) n JAk+i nY°) = card(5(rfc) n ! ¡ n r ° ) + 2 (fe > 1). 

Thus the condition (2.10) will be satisfled by requiring that two ares {0^(r)} in 
ĴLfc emerge from a common point of S(rk) n Ti (fe > 2). Henee {r0} undergoes a 
bifurcation on S(rfc)nTi (in turn creating another bifurcation ofr* onS(rfc)\1i). 
The bifurcation points ±Zfc e 5(rjt) are called nodes of T0, so that T0 n Ti is a 
dyadic tree. In Section 5 we identify the branches of T0 n Ti in terms of the nodes 
{Zfc} through which they pass. As an are y C Y° recedes, its Índex ©£ relative to 
ĴLfc will also depend on k (see Figure 2.2 which represents r^ in Ti n {r4 < |z | < 
r$}). On the outer boundary S(rk) of each dJ\.k n Ti, the arguments 0^ in (2.9) 
are chosen to have the form 

(2.23) &¡(k) = -r—7n (0<£ <k + l). 
_£_ 

k + 1 

We then lócate the bifurcation node zk e S(rk), now viewed as the inner 
boundary of JAk+i n Ti so that if k = 2n + p, 0 < p < 2n - 1, then 

(2.24) 07 (fe) 

' £ 
-n íovl<£<2p + l, 

K. + 1 
•P - 1 

n for 2p + 2 < £ < fe + 2; 
Lfe + 1 

thus ©2p+i(fe) = ©2p+2('c)' guaranteeing (2.9) and (2.10). We then use (2.11)-
(2.14) with (2.1) and (2.2) to extend U to C n \\z\ > r0} = Ufc>i Ak. 

In Figure 2.2 (not to scale) T0 is indicated with solid lines and Y* with dashed 
lines. The symbols 0^(fe) are labeling the nodes with argument 0^(fe). 

With p¡¿-i from (2.21), construct T0 n J\.k with initial conditions (2.24) and 
(consistent with (2.5) 

r©2p+iCr) = -^©2P+2( r ') = I~ 3 / 4 ( r f c - i ) (rk-i <r < pk-i), 

&'£ = 0 if£ *2p + l,2p + 2, (nc-i < r < pk_i), 

(where ' is difFerentiation with respect to r) as illustrated in Figure 2.2. 



FIGURE 2.2. The trace ofr". 

It follows using (2.25), (2.21) and the flrst condition of (2.7) that 

|e2p+1 (pk_!) - e2p+1 (n-i)I = i~3/4(rfc-i) log ( ^ ) 

= ( l + o ( l ) ) I - 1 / 2 ( p f c _ 1 ) . 

Moreover, since (2.23) and the second property of (2.5) guarantee that on S(rk) 
distinct points of T0 have angular separation 

n/(k + 1) > TTl(rfc)-1/3 > TT(1 + o( l ) ) I (p f c ) - 1 / 3 , 

the second line of (2.25) will show that if r e i x ( r ) , r e Í T ' ( r ) G T0 n (S(r) n t i ) , 
then 

(2.26) | T ( r ) - T ' ( r ) | > L - 2 / 9 ( r ) (pk<r<rk+l). 

On recalling (2.1) and (2.13), it is not difficult to see that (2.26) then holds as 
well on r" n S(r) when rk <r < rk+i except for &2P and &2p+i-

Finally, in the core {r^ < \z\ <rk} of each J\.k (recall (2.22)) we require that 

(2.27) &'£(r)=0 (l<£<k + l,rk<r<rk). 

3. A P P R O X I M A T I O N BY A M E R O M O R P H I C F U N C T I O N 

The idea that the behaviour of a general 5-subharmonic function U can be cap-
tured by another of the special form log \g\ with g meromorphic goes back sev-
eral decades (asurvey is in [6], additional interesting references are [18], [12], [9], 
among others). 



In our situation the error | log|¿7(z)| - U(z)\ must be carefully controlled 
which is formalized in the next theorem. 

Theorem3.1. LetL(r) be afunction which satisfies (2.5), let the system {J\-k¡k>o 
satisjy (2.4) and (2.7), where {increasing each ofthe vatios rk+i /'r^ ifnecessary) 

(3-1) 
•ric+i 

L ( t ) t _ 1 d t is an integer, 
rk 

and let U be constructed relative to the system {J2!^} so that U(z) = 0 for z real and 
z e £>(0,1), U is assigned to the network Y° nll as in (2.14) so that U is continuous 
relative to T0 n 11, and then extended to each Ĵ Lk using (2.1) and (2.2). 

Then there is a meromorphic function g(z) andan absolute constant Q > 0 such 
that if 

(3.2) £= |J£ (C P , |C P | / 10I ( IC P I ) ) 

with {'Cp} the zeros andpoles of g, then 

(a) meas(£ n S(r)) = o(r) (r ->• oo); 
(b) ifz í £ then | log |0(z) | - U(z)\ < C0; 
(c) ifE' is a component which contains one point-mass £p , then for sufficiently 

r 

log |^(z) | < U(z) +C 0 , z £ £ ' , £ p zeroof^, 

log \g(z) | > U(z) -C0, ZGE', ~C,p pole oíg. 

The behavior of g on components £ ' of £ which are not disks is more delicate 
(see Section 3-6), and requires the additional structure introduced in Section 2.5. 

Results such as Theorem 3-1 depend on analysis ofthe (signed) measure AC/, 
so we prove Theorem 3-1 as formulated in Theorem 3-2. Write AÍ7 from Lemma 
2.1 as 

(3.3) Al/ = / i - / i * + / ¿ e i 

with support on {|z| > 1}, where where [X > 0 is supported on T0, fí* > 0 
on T* and d[ie{z) = H(r,6)rdrd6 + HA(T,Q) ád, with f í a supported on 
Uk-^-k- Since g is meromorphic, Alog|¿7| is a network of unit masses, so that 
A log \g\ = a - a* + ae, each summand corresponding to a term of AC/. 

By construction, each component of T̂  n Ĵ fc is an are joining the boundary 
components of J^k, relative to which AC/ becomes one ofthe terms in the first 
two summands of (2.15). Using (3-1), each component y is the unión of mutually 
disjoint ares {/} of'measure' ±1 . Since I vanishes on [0,1], ¡A + ¡A* + ¡Je vanishes 
on B(0,1), and (2.2) shows that 

(3-4) n(S) = n* ( -5 ) for all measureable sets S. 



Let J C r° such that ¡J(J) = 1 and recall that the density d[X is given by (2.15), 
that is d[i ~ ( 2 I ( r ) / r ) ár. Then conditions (2.5), (2.7) on the growth of I ( r ) 
and (2.13), (2.25) and (2.27) (that show that J is almost a radial segment) imply 
that 

(3.5) Jc\r<\z\<r(l+-¡—)] and — Y — < \]\ < 
L(r)J) 3I(r) 2 I (r ) ' 

for some r = r(J) > ro- The same estimates hold when J G T * with ¡J*(J) = 1. 

3 . / . -4 reformulation. The logarithmic potential of a signed measure 2 of 
compact support is defined as 

P(z,Z) log | l -z /CldZ(C), 
c 

which is 5-subharmonic (subharmonic when 2 > 0). Our measures do not have 
compact support which means the formula has to be carefully interpreted, which 
we achieve by appropriate pairing of measures. We recall measures ¡A, ¡A* and (the 
signed measure) ¡Ae in (3-3) and follow a standard procedure (c.f [6]) to "atomize" 
the first two measures obtaining a and cr*. This leads to the expressions: 

(3.6) G(z):=U(z)+V(z), 

where 

V(z) 

Ve(z) 

VT,(z)+Ve(z), 

P{z,a-n)-P{z,a* -n*), 

-P(z,He). 

We will show directly that V is well-defined: each of the two summands defining 
Vptt converges, while not only does Ve converge, but Ve(z) = o(í). Thus there is 
a meromorphic function in the plañe g with G(z) = log|¿7(z)|. Our estimates 
will show that for most z, |G(z) | is small, where we apply techniques such as in 
[12], [14] or [6]. 

Recall that T̂  n J\.Y is a unión of intervals J and J* so that ¡J(J) = 1 and 
l_¡*(j*) = i. To construct a we consider an interval J c y c T0 n JAk, with 
HÍJ) = 1. Following [18] we place the associated point mass at its centroid £ j , 

(3-7) (C-O)d/^(O=0, 

so that 5%j is a term of a. The same principie yields \Xj* ¡ c T * n Ĵ fc using ¡A*. 
Notice from (3-4) and (3-7) that the \Xj, £j*} may be put into correspondence 
with 

(3.8) 0 * = " 0 - w h e n r = - J . 



The measure ¡Je does not need atomization since it is very small. The analysis of 
Ve is presented in Section 3.3. 

We thus réstate the assertions of Theorem 3-1 in terms of these approximating 
measures. To simplify notation, we often let I be a generic choice of J or J*. In 
Theorem 3-2, the centers {£p} of (3-2) are the { £ J , £ J * } . Assertion (a) in these 
theorems is equivalent, but assertions (b) and (d) of Theorem 3-2 correspond to 
(b) in Theorem 3.1, and (c) and (d) in Theorem 3-2 to (c) in Theorem 3.1. 

Theorem 3.2. Under the assumptions of Theorem 3.1, let {£/} be the centroids 
ofthe intervalsl, where I e T0 orY*. LetE be as in (3-2) andX,p = X>i- Then 

(a) meas(£ n S(r)) = o(r), asr ->• oo, 
(b) |V r , (z) | < C 0 ( z í £ ) , 
(c) ifz e B{t,u | t,iI/5I(I t,iI)) andBCCu \ t,iI/5I(I t,iI)) " a componentofE, 

then 

Vpt(z) < CQ, if X,i azero of^, 

V r t t ( z ) > - C 0 , if£j apoleof^, 

(d) | V e ( z ) | = o ( l ) ( z - o o ) . 

Note, since I ( r ) í oo, that (2.26) and (3-5) imply that all balls 

B(C P , ICpl /5KICpl)cJC 

(from (2.22)) are disjoint, and so (2.21) implies that (d) holds in most of C. The 
situation in C \ JC is settled in Theorem 3-9 in Section 3-6. 

3.2. Proof of Theorem 3.2{a). The description of T̂  in Section 2 implies 
that the number of points in S(r) n T̂  for r e JA^ is at most 4k + 2, and the 
angular measure of each ball in £ is 0(í/L(r)). Thus the total angular measure 
of£ n S(r) forrfc < r < r^+i is 0(k/L(r)), so (2.7) gives 

meas(£ n 5 ( r ) ) = 0 ( r l _ 1 + 1 / 3 ( r ) ) = o ( r ) r ->• oo. 

3.3. Proof of Theorem 3.2(d). It is simple to estimate Vg from (3-6). That 
¡je is uniformly small follows from (2.16) and the flrst of (2.17). Henee assertion 
(d) follows from the next lemma. 

Lemma3.3. Thefunction Ve(z) satisfies 

\Ve(z)\ logll-z/CId/ieíC) 0(1) ( | z | - o o ) . 
c 

Proof First consider the contribution to d¡je from d[j\ '•= H(r,6)rdrd6. 
Since (2.2) implies that H(r, 6) = -H(r, 6 + n) (O < 6 < n). 

c 
l o g | l - z / C l d / i ¿ ( C ) = ( l o g | l - z / C I - l o g | l + z / C I ) d ( A / ¿ ) + (C), 

c 



where (¿/¿) + (£) is the positive part of \i\ (£). Standard estimates then yield that 

(3-9) 

log 

log 

1 - z / C 
1 + z / C 

1 - z / C 
1 + z / C 

< c 

< C 

z 

z 

C — ( 2 r < | £ | ) , 

ICI 
C ^ ( 2 | £ l < r ) . 

r 

By (2.16), given f > 0 there exists r f with r2H < £ for r > r£. Then when 
r > rE/E, 

K\>2r} 

1-zlX, 
d(/i¿) + (£) + 

1 + z / C 

< Cfr 

Now tí/Je is smooth and satisfies (2.16), and so 

{ICI<r/2} 

c •00 1 

2r t2 r 

1 - z / g 
1 + z / C 

d t + C -
o r 

r(£) 

d(/i¿) + (0 

r/2 
dt < Cf. 

r(£) 

l og | l - z /C ld (A/¿ ) + (C) = o( l ) ( r - o o ) . 
{|log|£/z||<log2¡ 

Estimate (2.17) and the fact that the sequence {Tfc}fc>o is rapidly increasing 
give the same bound for the contribution to dn<> from Hjn(r, 6), with f í a from 
Lemma2.1. C 

3.4. Proof ofTheorem 3.2(b). Controlling Vj-tt is more complicated and 
needs several lemmas. The first estimates a single term, with z not too near the 
centroid, based on work from [7]. 

Lemma 3.4. Let J e T0 be an interval of ¡A-measure one. Let J* = —J e Y* 
and X,] And X,]* the associated centroids as in (3-7). Denote by J the ordered pair 
J = (J,J*) and define 

(3.10) h}(z) :--

Then if 

(3-11) 

le 1 - z / Q 
1 - z / C d/i(C) le 1 - z / Q * 

1 - z / C 
d/i*(£). 

¿(z,OuO*) ^ 3 101 
L(IOI) ' 

ex¿t.y Í2« absolute constant C > O w/VA 

| H j ( z ) | ^ C 
| Z - 0 I A I Z - O * 



Proof. Let B = BCCj,S/2) be the smallest disk centered at £j which contains 
J, so that by (3.5), <5 < 2 |£j l /KIC/D- Then, by (3.11), z ( B(Cj,5), so we 
expand the function log((£ — z ) / ( £ + z)) about £ j , with remainder of second 
order. The first-order term drops out due to (3-7), and thus 

\h¡(z)\ le X, 

< Cmax 

£ + z 
1 

le o 
1 

(C + Z)2 ( £ _ z ) 2 IC-OI 2 d/^(0-

However, |£ — £jl — 1̂ 1 > ¿'(Z) = 1 a n ¿ t n e factor with the max is comparable to 
(|z - £ j | A |z - ^ j ^ l ) - 2 . This proves the lemma. C 

Lemma 3-4 leads to the main estimate. 

Lemma 3.5. Let z e C satisfy (3-11) for all intervals J, J* in T̂  (so by (3-2) 
z $ E), let] = (],]*) and, using the notation in (3-10), write 

VT,(z) = ^h}(z). 
J 

Then there exists an absolute constant C so that 

Wr,(z)\<X\hJ(z)\<C. 
J 

Proof Since we are assuming (3-11) holds for all J, J*, let J = (J,J*) and 
apply Lemma 3-4 to each term in the sum. Given r = \z\, divide the sum into 
three groups: 1\ contains the pairs of intervals that are in B(rL~^(r)), Ij those 
pairs of intervals with nuil intersection with B(rl? (r)), and 23 the others. 

The estimate for 1\ follows routinely from grouping the pairs of intervals as 
in the proof of Lemma 3-4 and using (3-9) combined with (2.15), (3-8) and the 
fact (cf (2.7)) that 0(L1/3(r)) points of r" meet each S(r): 

I \hj(z)\ 
Jcíi = I 

JcB(rL~Hr)) 
r2rL-5(r) 

< C 
- 0 

le 
J 

1 - z / Q 

l + 2 / O 
le 1 - z / g 

1 + z / C 
MX) 

- L ^ t ) — d i 
r t 

< CL-8/3(r) = o ( l ) (r - 00). 

LHr) 

A(n) 

Next, consider the pairs of intervals in Í2> and choose m e N with 2? 

í 2TO+1: 
= {2nr < 

m 

10 
Clog I 3 ( r ) . For n > m, (2.7) shows that the annulus 

< 2n+1r] has 0 ( I 1 / 3 ( 2 n r ) ) ares of 1$ joining its boundary 



components, each are of which is the unión of 0(L(2nL(r))) intervals of unit 
/j-mass. The first estimate (3-9) gives for each term 

loe 
C + z 

lo£ 
X,j-z 

0 + 2 
d/i(C) < Cr 

j\X, 
MZ), 

C > O an absolute constant and J e {z : \z\ > rL3(r)}. The essential condition 
(2.5) yields that 

I ( 2 V ) =L(r) +o(n). 

Since n{J) = 1, (2.7) and 2TO > CL5(r), we have 

Jc{\z\>rLHr)} j\t 

1 v I 1 / 3 (2 w r ) I (2 w r ) 

¿ 4/3( 2 m r ) ( I ( r ) + o ( m ) ) 4 / 3 

C 

Kr) 
o( l ) (r ->• oo) 

(the ratio of successive terms in the series i s ^ + o Q ) ) . 
Consider now the pairs of intervals in 23. All these intervals intersect the 

annulus {rL~3(r) < | £ | < rL3(r)}, and (3-11) holds for each of them. These 
pairs of intervals are apportioned into two groups. Take as 1'^ those pairs such that 
both intervals are in the core 2 := {r /2 < |£ | < 2 r} ; those pairs remaining are in 

3 ' . . 
First consider the contribution from 1^, intervals in annuli 3\.(n) with n < -1 

or 1 < n < C log I 3 ( r ) = C l o g l ( r ) . When n < - 1 and J c J^n) , then 
\J\ < C2nr/L(2nr) and | z - £ j l A | z - 0*1 > ( i + o ( l ) ) r > r / 4 , so that 

IJI C2nr C2r 

| Z - O I A | Z - 0 * I " r l ( 2 « r ) I (2«r ) ' 

There are 0(L(2nr)) intervals J on each component of r" n ^ (n) with n < 
•1, and (2.7) again shows there are at most C I 1 / 3 ( 2 n r ) branches in JA(n). Thus 

n<-lJcAin) \ 

IJI 
Z - O I A | Z " 0 * 

2 2 n 

L(2Mr) 
L 1 / 3 (2V) 

n < - l 

<C X r 2 / 3 ( 2 V ) 2 2 " = o( l ) ( r - 0 0 ) . 
n < - l 



When 1 <n< C l o g l ( r ) a n d / cJA{n), \z - 0 1 /\\z-t,j*\> C2nr, and 
so 

\J\ C2nr C 
| Z - O I A | Z - 0 * I ^ 2 « r l ( 2 « r ) I ( 2 « r ) ' 

Thereare 0(L(2nr)) intervals/ in eachcomponent of JA(n)C\T^ and 0 ( I 1 / 3 ( 2 n r ) ) 
such components with n < C l o g l ( r ) . Henee 

f * z f LÜ y Clogl(r) 

n=l Jc_»(n) 

ClogI( ,) ¿ 1 / 3 l 0 g ¿ ( r ) 

á C I -w^Y^cñiñ^) =0(1) ^ ^ 
n=l v ' v ; 

To complete the proof, we estimate the contribution from pairs of intervals 
J e 1'^; each of those intervals have nonempty intersection with 2 . We recall (2.7) 
once again and divide this annulus into congruent regions (wedges) obtained by 
intersecting 2 with sectors of angular opening 0 ( í , _ 1 / 3 ( r ) ) , oriented so that z 
itself lies on the bisector of one of these regions (wedges). As befo re, the number 
of intervals of T̂  in each sector is 0(L(r)). Let Q(z) be the wedge which contains 
z. 

I f ( / u / * ) n Q ( z ) = 0 , soz issepara tedf rom/and/* by 1 < £ < 0(L1/3(r)) 
sectors, then 

\J\ ¿ c _ r/L(r) C 
| Z - O I A | Z - C H " ^ r l - i / 3 ( r ) £L*Hr)' 

and each sector contains 0(L(r)) intervals of T". For simplicity write J c Q(z) if 
J = (J,J*) and either J or J* interseets Q(z). Then summing for J c 1'5 \ Q(z), 
we have 

v ( Ul Y ^ ¿fr) V i / n , , 
J C ! | M ( , Z - C , I A , Z - C , I J

 ÍCWFT?^-" (1> ( z-" )-
Next, consider the sum over pairs of intervals such that one member of the pair 
interseets Q(z). Divide Q(z) into disjoint subregions íi#(z) using circles centered 
at z of radius £r/L(r), £ e N. Now since ¿/(/) = 1 (or £/*(/*) = 1)> then 
I/I = 17*1 = cr/L(r) and therefore the number of intervals in each ü,£(z) is 
uniformly bounded. Since (3-11) holds, we have £ > 2, and so 

(3.12) I I (, 01 A I Z - O * fe 
2 

_ v (r/L(r)Y r V ! 
^rlUr)) ~ &* 



where again we write J C Q¿(z) if J = (J,J*) and (J U / * ) n Q¿(z) * 0. C 

That the estimate of Lemma 3-5 is not o ( l ) is due to the term (3-12), but (3-11) 
is replaced by the stronger (3-16) we get the more flexible (3-15), which is the key 
to Section 4. 

Corollary 3.6. ForfixedK > 15 andfixedzQ, with \ZQ\ SO large that 

(3.13) 2K<L^H\z0\), 

(3-14) 

and let 

D(zo) = {£ : IC-2 :o l<5 | zo l /L ( | zo l ) } , 

D ' (z 0 )= {£ : IC-2 :o l < 1 0 ^ | z 0 | / I ( | z 0 | ) } , 

2* = ü = U,P) : D'(zo) n (J u / * ) * 0}. 

77>¡?«, wzY/> h¡ from (3-10), 

(3.15) \log\g(z)\-U(z)- Y,hj(z)\<CK-1 +o(l), z e D(z0). 
Jel* 

Proof. The only term in Lemma 3-5 not o(í) is (3-12), so by increasing the 
radius of the ball in (3-11) one gets a better estimate. Concretely, if |zo| is large 
enough and (/, J*) $ 1* then d(z0, t,} u O*) ^ 5.K IOI /¿( IOI) an<A therefore 

(3.16) d ( z , O u O * ) > ^ | ^ U e D ( z o ) ) . 

For z e D(zo), follow the proof of Lemma 3-5 but now summing over intervals 
that are not in 1*. According to (3-16), £ > K in (3-12) so the sum over the 
J C Q(z), where Q(z) is the wedge introduced in the lemma, is bounded by 
C5Lt>K$~2 = 0(K~l) while the sums over all the intervals not in Q(z) remain 
the same. Therefore 

X |Hj(z)| <CK-1 +o{\), z e D ( z o ) . 
ÍCl* 

\log\g(z)\-U(z)- X hj(z)\ < X |Hj(z)| + |Ve(z)|, 
Jel* J í l* 

Lemma 3-3 and the estimation above give (3-15). C 



3.5. Estimates near the exceptional set E: Proof of Theorem 3.2{c). 
Lemma 3-7 below complements Lemma 3-4 when (3-11) fails. For nowwe still as-
sume that the component of £ 3 z is a single disk, as in hypothesis (c). Together, 
the two lemmas of this section imply assertion (c) of Theorem 3-2. 

Lemma 3.7. Let z e D. := B(£J,3\'CJ\/L(\'£J\)) where J is an interval of 
r° C T̂  of ¡Á-measure one. Let J* = —J and ] = {],]*). Then, with h¡ fom 
(3-10), hj(z) < C, C an absolute constant. 

Equivalently, ifz e B(^J*,3\^J*\/L(\^J*\), with J* e T* c I"*, letJ = -J* 
and] = (J,J*). Then h¡(z) > -C. 

Note that the disk D, = Q(£j) is somewhat larger than those in £ (3-2); the 
disks ClCCj) are no longer disjoint. 

Proof We consider only the first assertion, and note that there can only be an 
upper bound, sin ce hjC^j) = — oo. 

Let \z\ =r. It is elementary, from (3-5) and the fact that z, t, e Q, that 

(3-17) 

<lc 
' l ( r ) 

M z ) = l o g | z - O I - l o g | z - C l d / i ( C ) + o ( l ) 

l o g | z - C l d / i ( C ) + 0 ( l ) ( z e Q ) , 

andsince log|z—£| d¿/(£) is harmonic in Ü,\J, Lemma 3-4 applies forz G 3 Q . 

By the máximum principie, we need only bound the integral when z e J. 
We suppose that J c R+, and let t e / . Set I = Jr^1 (where \z\ = r) and 

choose 5 e I with 5 = tr^1. According to (2.15), d[i = 2r~1L(r) ár on J, and 

(3-18) l o g | z - £|d¿/(£) = l o g r + 2 L(rs)log\s - lisias + o ( l ) . 

By (2.5) and (3.4), I ( r 5 ) = L(r) + o ( l ) l og ( s / r ) = L(r) + o{\)L{r)~l, the 
o( l ) uniform in 5 e I. líl = [1 - C i / I ( r ) , 1 + C2/I(r ) ] , the condition ¿/(J) = 1 
implies that C\ + Cj = j + 0{L^l{r)). Since wlogii decreases for u < e _ 1 , we 



0> I ( r s ) l o g \s - TU"1 

( I ( r ) + o ( l ) I - 1 ( r ) ) 

di 

log 5 - i r 1 d^ 

( I ( r ) + o ( l ) I - 1 ( r ) ) ( l + 0 ( I - 1 ( r ) ) ) 

( I ( r ) + 0(1)) log|¿ - i | d^ 

log | s - - 1 | di 

= (L(r) + 0(l))^(L-l(r)log(L-l(r)) + 0(L-l(r))) 

= (ci + c 2 ) l o g I - 1 ( r ) + O(l ) = - | l o g I ( r ) + O(l ) , 

which we then insert in (3-18) and then (3-17). C 

Finally we consider the situation that z e í l , but not too near £j . 
Lemma 3.8. For \ > 0, let z G D. as in Lemma 3. 7 with 

<"9> A I ? S 7 D S | Z - & | A | Z - 0 - | S 3 I Í ^ ) ' 

Then \hj(z)\ <C(\). 

Proof. Let \z\ = r and note that (3-19) shows that z e BCCj, 1 0 r / I ( r ) ) . 
Thus 

l0gí^) " C(A) " l0g|Z " OI " l0gí^) + C' 
so the proof of Lemma 3-7 shows the expression in the first line of (3-17) is uni-
formly bounded. C 

3.6. Statement and proof of Theorem 3.9: Controlling behavior on E. 
We exploit the special forms of U and T0 near the inner boundaries of each Ĵ Lfc, as 
described in Section 2.5, to give bounds for Vr on E for the situations not settled 
in Theorem 3.1. The proofs rely on techniques used in Theorem 3-1 (Theorem 
3.2). 

Theorem 3.9. Let the assumptions and notation of Theorem 3.1 remain in forcé, 
augmented by (2.23)—(2.26). Then we also have 

(a) The components E' ofE are either single disks or the unión ofthree disks. In 
the latter case, E' contains three point masses, one of which is a zero and one 
a pole ofg. 

(b) Ifz e £ ' where E' is a component ofE containing centroids X,i, X>]> X>K> 
atoms ofthe approximating measure a — a*, with X,i & zero of g and X,j & 
pole, then with CQ the constant ofTheorems 3.1 or 3.2 



Vpt (z) < C0 if | t,i ~ z\ < IO - z\ and t,K is a zero of g, 

Vpt(z) > - C 0 if \X,i-z\ < \X,j -z\ and £* is a pole of #. 

Proof. Since (2.26) holds when z e JC (JC from (2.22)), if a component of £ ' 
consists of more than one disc, it must intersect {rk < \z\ < Pk¡ for some (large) 
k. For convenience, let us assume that £ ' C 11. According to (2.15), the centers 
VCp] of all disks contained in £ ' have the same modulus, and since (3-5) holds, 
(3-2) shows that disks corresponding to point measures which intersect a single are 
y n JAk, y cT*, are disjoint. By (2.25), three branches of T^ n Jk0^ emerge from 
each bifurcation node ±Zfc e Sijk) (since £ ' c 11, there are two in T0 and one 
in r*) and sepárate uniformly as r increases. Henee components £ ' associated to 
these branches consist of one ball or three balls, in the latter case two associated to 
a zero of g, and the other to a pole. This pro ves claim (a). 

In considering (b), let £ ' be the component of £ containing centroids £j, £ j , 
X,K > where £j is a zero of g (i.e., I e T0 where £j centroid of I) and T,j a pole (i.e., 
/ £ T*). Let K be the interval in T̂  with centroid £jf, and flnally consider the sets 
of pair of intervals I, J and K formed by the intervals I, J, K and their negative 
counterparts -I, -J, -K ordered as in Lemma 3-4. When £ ' c 11, gC&c) = 0. 
Using the notation in (3-10) we show for some absolute constant C that if z e £ ' , 
then 

(3.20) hl(z) + h¡(z) + hK(z)<C, (z e £ ' , |& - z\ < IO - z\) 

with the opposite estimate when gCCx) = °°- Once (3-20) is proved, the estimate 
in (b) follows from Lemma 3-5 together with (3-20) applied to the terms which 
fail to satisfy (3-11), as we did at the beginning of Section 3-5 in Lemma 3.7. 

Let r = |z | , y be the are ofr° associated to t,x> and let t, e y, | £ | = t. Then 
S(t) meets ares y ' c T0 n £ (associated to £j) and y* c T * n f (corresponding 
to £,j) at £' , £*, and y, y ' and y* meet at a bifurcation node Zfc of T". Since 
we have assumed that \C,i — z\ < \C,j — z\, the strict condition (2.25) near the 
bifurcation node Zfc ensures that 

= 0(1) . 

Henee \C,i~z\ < \%j - z\ (< \%K - z\) and so hx{z) + hj(z) + hK(z) = hx{z) + 
0(1) . The result now follows from Lemma 3-7. C 

4. O N T H E IMAGINARY PARTS 

4.1. Two key cases. To identify the possible asymptotic curves of g, it is 
clear that more is needed than data on \g\. We prove the following result. 

Theorem 4.1. The only possible asymptotic valúes ofw = g(z) are 0 and oo. 
Moreover, ifrj is any asymptotic path for w = 0, then there is a curve y CY° CY^ on 

X,j 
0(1) , 



which ¿7 — 0, such thatfor each £ > 0, the set {|g(z) \ < E¡ contains a component Cl 
so thatr¡ and y are in ü n {\z\ > r'¡ ifr' is sufficiently large. Thus r¡ and y belong 
to the same rracr corresponding to w = 0. 

A similar statement holds with w = 0 replaced by w = oo. 

Thus consider a (hyporherical) curve r¡ tending to z = oo on which g(z) -+ a, 
so that \g\ is nearly constant on r¡ (if a + oo). Using the notation from (3-14), we 
consider a family of disks D'(zo), with ZQ £ JC n r¡ (recall (2.22)) through which 
r¡ would have to pass. Let us denote by T>r¡ such a family. 

(The points Zo should not be confused with the first node Zo of the network 

r°.) 
Let K be flxed (and large) with ZQ £ S{TQ) n JC, \ZQ\ = ro SO large that (3-13) 

holds (ro should not be confused with the inner boundary of JAQ from (2.4)). 
Since Zo £ JC, (2.26) implies that D'(zo) intersects at most one curve from r". 
Thus D'(zo) meets at most two regions A in C \ r", and so for each disk D'(zo) 
there are two possibilities: 

(a) D(z0) nP =0 for D(z0) c D'(z0) (see (3.14)) 

or, 

(b) D(zo) contains an are y e r " , 

and then two situations could oceur: 
(i) There are inflnitely many disks in T)^ for which possibility (a) holds. 

(ii) There are only a flnite number of disks in T)^ for which (a) holds. 

When r¡ is far from r" (case (i)) and z £ r¡, we may suppose that log \g(z) 
is cióse to the model function (cf (2.18)) on 5( | z | ) n D(zo). When rj is near 
r**, is far more delicate; details are in Section 4.3- Since the curves of T̂  are 
asymptotically rays when z e JC, we assume that y is the positive real axis. 

4.2. Proof of Theorem 4.1 (start). Let g -+ a on a curve r¡. If a = 0, oo, 
we will associate a curve y Cl* 'near' r¡ on which also g -+ a. To eliminate the 
possibility a * 0, oo is harder, and for that we need the rest of this section (for 
case (i)) and the next (case (ii)). 

Now let r¡ be an asymptotic curve of g, so that g(z) -+ a as z -+ oo on r¡. 
First suppose a = 0 or oo; say a = 0. In case (i), choose ro large and Zo £ 

?7 n S(ro), so that (a) holds for D'(zo). We may assume using Theorem 3-1 or 
3.2 that if S(r) n D(zo) * 0, then in the component Q(zo) of C \ T̂  which 
contains Zo, log|¿7| is cióse to a model function U of (2.18), and thus is linear in 
argz. Henee we obtain an are ofS(ro) joiningz £ S(ro) C\r¡ to 1$ with U(roel9) 
having its máximum at z and decreasing on this are until reaching a minimum at 
T̂  (outside D(zo)). It follows that any component of \U < -M] which meets r¡ 
on S(ro) for large ro also intersects some curve y c T0, and so if É? — 0 on r¡, then 
¿7 -+ 0 on y. Analogous comments apply when a = oo. 

In case (ii) an even easier argument works, since r¡ is already cióse to a single 
are of r*. 



More subtle is that 0, oo are the only possible asymptotic valúes. Let r¡ be a 
curve on which g -+ a + 0, oo. 

If case (i) applies, let D'(zo) be a disk for which (a) holds, then log|¿7| and 
9 = argz are harmonic in D'(zo). We suppose that near ZQ, U is given by (2.18). 
Thus given £ > 0, iíK and \ZQ\ are large (zo £ r? n JC), then by (3-15), (2.5) and 
(2.13), 

| l o g | 0 ( z ) | - ( A + T l ( r o ) 0 ) | : = | £ ' ( z ) | < £ (z e D"(z0)), 

| a r g 0 ( z ) - ( A ' - T l ( r o ) l o g r ) | := \e(z)\ < f (z £ D"(z0)), 

for suitable constants A, A', T £ {±1}, and D"(zo) the disk centered at ZQ with 
radius half of that of D(zo) (in fact, the flrst line holds in the larger D(zo)). The 
second line (which restates the first for the conjúgate functions) holds in D"(zo) 
s'mceK is large. By hypothesis, log|¿7| = log |a | + o ( l ) on r¡ and ZQ = roew° £ r¡. 
Thus (2.18) and the first line of (4.1) show that \9 - 90\ = 0{eL-l{ro)) in 
r¡ n D"(zo). However, on {argz = 9Q\ n D"(zo), the function logr increases by 
more than 2 /1 (ro). The second estimate of (4.1) with £ small and .K large but 
fixed then implies that argg(z) varies by at least TT/2 on r¡ n D"(zo). In other 
words, if a * 0, oo, f] will contain points in D"(zo) whose ¿7-images are well-
separated on {\w\ = a}, and so g cannot be uniformly cióse to a on r¡ n D"(zo). 

^ . 3 . C«se (ii). This situation is more difEcult. Again g(z) -*• a + 0, oo 
on r¡, but we assume that whenever Zo £ r¡ n JC with |zo| sufEciently large, 
D(zo) n r " * 0 . By (2.26) and (3-13) D(zo) n T̂  consists of portions of one are 
y; for specificity, take y c T0. Due to (2.27), y n D'(zo) is a ray which contains 
the centroids £j £ D'(zo) (see Figure 4.1, where y is shown horizontal). 

In contrast to case (i), the geometry of r¡ is not apparent. An insightful exam-
ple is w = sinz, where 1$ = KL Thelevel-set {| sinz| = 1} = {TT / 2±kn , k £ Z], 
is a 'necklace' of topological circles meeting tangentially at the critical points. 
Thus, by moving alternately in the upper and lower half-planes, we find a curve r¡ 
which | sinz| = 1, but arg(sinz) never varies more than rr. 

Write y n D'(zo) = [jjl, where each I has mass one (this may require slightly 
modifying 3D'(zo)). Since d[x = 2r~lL(r) on y, there are at most O(K) cen
troids ~C,i with I £ 1. 

It is also useful to extend y in both directions to sepárate C (as well as D'(zo) 
and D(zo)) into two components: y an interval on IR. 

Let D'+(zo), D'~(zo) be the two components of D'(zo) \ y, and in each 
of Dr±(zo) take branches of arg(z - £) (£ e y), arg(z - ^/) (J £ 2). Simi-
larly, let D±(zo) c D , : t(zo) be the components of D(zo) \ y. Using notation 
from Corollary 3-6 (Section 3-4), consider 2* = {I = (I, -I) : I £ 2} and write 
3-C(z) = Xj* fo-i(z) for z £ D(zo) and ?ii from (3-10). One utility of assumption 
(2.27) is that we have explicit expressions for J-f and its conjúgate Jí, the latter 



FIGURE 4 . 1 . Intersection of D'(zo) with y and r¡ 

defined in each component of D'(ZQ): 

^(z ) = X M z ) = Xlog 

# ( z ) = X M z ) = £ a r g ( l - ^ 

- é 
- ynD'(zo 

log 1 -
z 

" 1 r
lL{t)át + o{\), 

arg ! " 7 f~ lUt)dt + o(l), 
ynD'(zo) V t / 

where o( l ) accounts for the contribution from -(yn D'(zo)), whichlies far from 
z0. 

Lemma 4.2. Let jf± be a suitable branch in each component ofD' (zo) \ y, ¿zW 
letp, q&y C\ 3D ' (ZQ) . J^ew 

(4.2) 
I ^ I L <TT/2, 

J f + ( q + iO) - 3Í+ {p + iO) = - [ 5 f - ( q - í 0 ) - 5 f " ( p - i 0 ) ] . 

Proof. This is straightforward. Each function 5-T* is a sum of a finite number 
of terms h\ from (3.10). If £ e y (possibly £ = £/, J e 2), then arg(z - £) = 0 
when z E y, z > % (using language inherited from viewing y c {Rez > 0}), 
while arg(z — £) = ±TT when z E y, z < %; the sign depending on the function 
3~C± under scrutiny. Thus, the boundary valúes of the conjúgate h¡ of any single 

term log \z — £/| — log \z - £ | d¿/(£) are zero for z e y \ {/}. This remark also 

justifies the other assertion. C 



To adapt (4.1) to the situation (ii), let K, ZQ be large, ZQ e r¡, subject to (3-13). 
The left side of (3-15) is harmonic in D'(zo), since 3-£ caneéis the Riesz mass. 
Henee we take conjugates, with constant A in D'(zo) and constants A' in Dr±(zo): 

\log\g\ - (A + TL(r0)\9\)+M(z) | := \s'(z)\ <£ (z e D(z0)), 
(4.3) 

| | a r g í 7 ( z ) - ( A ' + T l ( r o ) l o g r + 5 f ± ( z ) ) | := | f (z) | < f (z e D±(z0)). 

Lemma 4.3. Let r¡ be a curve on which g(z) -+ a ¿«c/; í/wf r? passes through 
the center ZQ ofD(zo) with Y^ n D(zo) * 0. Then r¡ contains an are r¡' on which 
argg(z) varíes by at least rr/2. Henee ifa + 0, oo, g cannot be uniformly cióse to a 
on all ofr¡. 

Proof. Recall that we are in case (ii). We consider two possibilities. 
First, suppose there is a subarc r¡\ c r¡, with r¡\ n y = 0 which is not insigniñ-

cant, in the sense that its extremes are points £i, £2 in D(zo) with log( |£2/ í i l ) > 
47r(L(ro))~1. We then consider the second estimate of (4.3) at each £ e r¡' 
relative to D±(zo) as appropriate, using some branch of arggCCi)- We reach 
a contradiction since L(ro)logr has changed by at least 3TT while (by (4.2)) 
Idílico < TT/2. Once again, argg(z) cannot be nearly constant on r¡'. 

The more subtle case is when there is no significant subarc of r¡ in any D' (zo) \ 
y (as with w = sinz). Let 

P(n) = f ?nynD(z 0 ) . 

With 5 > 0 small but ñxed, we have that P(r¡) n ( U J - B ( Í J . S ) ) = $> a n d may 
assume that P(r¡) is discrete in y. Suppose r¡ contains a subarc r¡' having only its 
endpoints £, £' (|£'| > 151) in.P(f7), such that the (closure of the) domain (in one 
of D+(zo) or D~(zo)) bounded by r¡' and a subarc y c y contains at least one £j, 
s a y { £ / : / e I ' } . 

We claim that r¡' contains a subarc on which arg¿7(£) varies by more than a 
fixed amount. Thus, we compute arg¿7(2;') — arg¿7(2;) in the second formula of 
(4.3) in each of D±(zo) \ y, since one of these computations is with the change of 
arg# on r¡'. 

Lemma 4.2 shows that the change, on [£, £'] relative to D+(zo), of the sum 

- I ( r 0 ) l o g r + A+ 

in D+(zo) is the negative of that of the sum +L(ro)logr + M ~ in D~(zo). But 
the second line of (4.3) shows that each of these is (up to o( l )) the change of 
arg^(z) . 

Finally, a closed curve consisting of simple ares from 2; to £' in D+(zo) and 
then D~(zo) form a closed curve on which the change of arg¿7 is 2rrcard(2')-
That means that | arggC^') - zrgg(%)\, when computed relative to D ± ( Z Q ) , is 

file:///log/g/


well-defined up to o ( l ) , and is at least TT card(í '). Thus arg¿7(z) cannot be nearly 
constant on all of r¡' if a + 0, oo. 

This completes the proof of Theorem 4.1. C 

4.4. The asymptotic valúes. It is easy to guarantee that As{g) = {0, oo}. 

Lemma 4.4. Suppose there is a curve y cY° n 1i, on which U(z) -^ — oo. Then 
As(g) = {0,oo}. 

Proof By Theorem 3.2, log \g(z)\ < U(z) + Q if z e y \ £ or if z <Ey C\E 
and the component of £ containing z consists of a single ball centered at a zero of 
g. So by the construction in Section 2.5 we only need consider the situation that 
the component £ ' of £ containing z consists of three balls: £ ' contains two zeros 
and one pole of g. Let zc e £ ' be the zero of g associated to y and zv e £ ' a 
pole. Elementary geometry shows that \zc — z\ < \zv — z\ when z e y. Thus by 
Theorem 3-9, 

log\g(z)\<U(z) + C0, (zey), 

and since U ->• — oo on y, 

log |#(z) | - -oo, ( z ^ o o , z e y ) . 

Now with y as above, let y ' = —y be a second curve on T* c YK Since C/(z) = 
-U(—z) (see (2.2)), [/ -• oo on y ' , and our argument shows that log \g\ ^ oo on 
y'- i= 

Let T be the subnetwork of T0 n Ti on which U ->• — oo. In the next chapter, we 
guarantee that r + 0. 

5. COMPOSITIONS WITH QUASICONFORMAL TRANSFORMATIONS 

In this section g will be transformed by means of compositions with quasiconfor-
mal mappings to produce a quasiregular function f with asymptotic valúes pre-
ciselyA*. Recall that A = A* \ {oo} is analytic, and until Section 8.2 A C £(0,2) . 

An analytic set A is obtained from Lusin's operations: 

(5-1) A = {Jf)Sni np, 
\¡M p>\ 

where the sets Snu,„¡n are closed (see [3] or [16, p. 207] and NN is the collection 
of infinite sequences of (positive) natural numbers. Sierpinski calis A the nucleus 
of the system Snii...in . 

We need a very precise description of the sets Sni¡„,¡n , and the situation is 
complicated since difFerent authors often use diflerent definitions. Our formula-
tion uses the ideas of [16, Theorem 112] but our condition (2), which is indis
pensable here, is slightly difFerent than in [16] and does not appear in [3]- For 



convenience, we skerch a proof, and refer rhe reader ro [16, Secrion 86] for full 
details. 

Let JVo be the collection of all finite sequences ( n i , . . . , np). 

Theorem 5JÍ. Let A c C be a nonempty analytic set in C, and let a decreasing 
positivesequence {Sp¡, Sp l 0 begiven. Then we may write A as in (5-1) where 

(1) each Sni¡„,¡n is a closedset, 

(2) diam(Sni,...,np) < 5P, 
(3) ¿n\,...,np,np+\ C ¿n\,...,np> 

(4) Sni,...,np 1=0 for all (ni..., np) in N0. 

Proof The original deflnition in Section 82 of [16] uses only (1) and (3), and 
avoids (4). However, we are considering only nonempty analytic sets A. Thus for 
the moment assume that A is as in (5-1), where only (1) and (3) hold; we cali these 
sets S'n n , and convert them to ones which satisfy (2) and (4) as well (in [16], 
5P = \"¡p). 

To secure (2), let the {Sp¡ be given, and introduce for each p a countable 

covering of C by closed balls {Mn
P } of diameter 5p/2 < diamMn

p < 5p. Then 
for each f i e l , take Sn = Mn , and Sni ni = Sni = Mní • This is augmented for 
p > 1 by 

co = co _ c' n M1-2^ 
Jni,n2,...,n2p

 0ni,n2,...,n2p-i
 0n2,n4,...,n2p-2 ' ' 1 vln2p-i, 

where (ni,ri2,... ,ti2p) range over JVo- It is clear that the sets S° are closed, and 
easy to check that the nucleus of S° coincides with that of S'. Thus (2) is satisfied. 

Property (4) may be arranged as in [16, Section 86]. Since A + 0, choose 
some flxed VOQ e A. Then for any combination of A; Índices, m(k) e JVo, and 
any sequence (ni,ri2, • • •) of natural numbers, let 

S° = Pl S° 
m(k),nl,n2l... \ m(k),nl,n2,...,np> 

p>\ 

and set 
c* _ I I co 
m(k) \J m(k),ni,n2,...' 

Sets of this nature must be included in (5-1). Whenever S ,̂fcN + 0, define Sm{\o = 

^m(fc)- However, when S^^j = 0, set Sm{\) = u>o e A (since A + 0), andiffco + 1 
is the least integer with S^(fc) = 0, set Sm(j) = iam(k0) e S^(fc[|), j > k0. C 

The set of asymptotic valúes {0, oo} will be transformed into A* by successive 
compositions with quasiconformal transformations. Recall that a homeomor-
phism qp is said to be K-quasiconformal (K > 1) in C if it is in the Sobolev 
space qp e Wlo'c (C) and its (formal) derivatives satisfy \qp'(z)\2 < KJ(p(z) a.e. 
z e C, where Jq¡ is the Jacobian determinant (see [1] for more properties). 



The sequence {<5p} in Theorem 5-A arises from repeated use of an elementary 
lemma on quasiconformal mappings (known to Teichmüller and proved in [1], 
see also [4]). The various choices of {R, 5} depend on the sets (5-1). 

Lemma 5JÍ. Let 2 > K > 1 and R > S be given. Consider the (K,S,R) 
problem offinding a quasiconformal self-mapping of<C, qp, such that 

(1) qp(iv) = iv if\w\ > R, 
(2) for anygiven a such that \a\ < 5, we have qp(w) = w + a if\w\ < S, 
(3) qp is K-quasiconformal. 

Then, given eitherR or S, there are choices ofS = S(R) orR = R(S) which solve the 
problem. 

We use this lemma in an iterative way. For a given K > 1, take a sequence 
Ko > Ki > • • • with 

(5.2) n^<£ 
i 

(thus Kj i 1 (very) rapidly). Apply Lemma 5-A with 5 = 5Q = 2 and K = KQ, thus 
obtaining RQ, and for j > 1 take K = Kj, Rj = 5j-\ to obtain 5j i 0. The point 
«o and in general, (Xj (j > 0) will be specifled later in Section 6. It is convenient 
to assume, if necessary by decreasing Sj-\ at each appearance, that 

logRj + 10Co < logRj-i (j>l), 

where Q is from Theorem 3.1. 
As in [5], this lemma will produce a large collection of quasiconformal map

pings, all applied to g(z) from Theorems 3-1 and 3-9- At each point z, the final 
quasiconformal mapping Y will have at w = g(z) the form 

(5.3) Y{w) = • • • qpj o • • • o qpi ° cpa{w) 

where qpj is Kj-quasiconformal mapping of C, so that 

(5.4) F(z)=Yog(z) 

is a continuous if-quasiregular mapping (which, unlike a if-quasiconformal map
ping, need not to be a homeormorphism, see [15]). The functions {qpj} are 
related to the desired behavior of F on a given branch ycYcY°cY^ri'U (re-
call Figure 2.2), with Y introduced at the end of Section 4.4. (We are simplifying 
notation, since in principie there should be different subscripts corresponding to 
each group of mappings in (5-3) associated to different paths y. However, the data 
{Sj,Rj,Kj¡ is the same for each choice of qpj.) 

Thus let y C T C r° C t i be a path on which z ->• oo and g(z) ->• 0. We 
arrange the {qpj} and an -• a, an e A, so that the orbit of w = 0 under F as z 



passes through y will be 

0 - < p 0 ( 0 ) - < p i ( < p o ( 0 ) ) - ••• , 

0 ->• ao ->• a\ ->• • • • , 

leading to F(z) ->• a = l ima n as z ->• oo, z e y. 
There is a natural way to correspond each path y C T to a point of the set 

A of (1.1), where T C (r° n 11) has been introduced at the end of Section 4.4. 
Each node of T0 n Ti will be associated to a specific point a e A using Theorem 
5.A. Since T0 n Ti is combinatorially a dyadic tree, its nodes correspond in a 
natural way to finite sequences of O's and l's with first entry 0. Let 2 be the 
countable collection of all such sequences. For each m, 2 has 2m elements having 
m entries after the first 0. In turn, each such b has two successors b' and b" with 
m + 1 entries after the first 0: their first m entries coincide with those ofb, and 
the final entry is 0 or 1. This leads to the standard binary graph (g associated 
with 2 . Following [16], we associate a finite sequence (n i , r i2 , . . . , n p ) e JVo 
to each b e 2 \ {0}, so that each node in a dyadic tree corresponds either to 0 
or to a (unique) finite sequence of natural numbers. Let b e 2 . Then £> = 0 
and b = 0 .0 . . . 0 correspond to the number 0. Otherwise, b = 0 .£ i . . . £j> where 
£í e {0,1}, 1 < i < j , and at least one £í * 0, corresponds to ( n i , . . . , njt) e JVo, 
where 

•> £ . fc i 
*• ' zL oí — Z^ oniH vnt' 

i=l í=l 

This correspondence is coherent in the sense that if V is has the same binary 
expansión as b through the first £ appearances of 1, then the first £ digits of 
{n i , . . . ,nfc} and {n i , . . . ,rt]¿} coincide. 

In this way, every node of a dyadic tree is associated with a finite sequence of 
natural numbers or zero, and conversely, any finite sequence of natural numbers 
is associated to countably many nodes in a dyadic tree. 

Once we have this correspondence, it is natural to exhaust JVo in the order 
induced by the tree structure of 2: 

(5.7) 0; 0.0,0.1; 0.00,0.01,0.10,0.11; 0.000,0.001,. . . , 

which produces the £í in (5-6). Thus if A; > 1, the fc-th bifurcation node Zfc e 
T^ n U (see Section 2 and Figure 2.2) corresponds to the k-th new element in 
this display of 2 ; this is a number from (5-6) with 1 as final entry. In turn, (5-6) 
associates this node to a set Sm,...,np in the system (5-1). The specific mappings 
{apj¡ chosen below reflect the data (5-1) as well as {Rj¡ from Lemma 5-A and CQ 
from Theorems 3-1 and 3.9. 

The connection between (5-7) and the evolution of T̂  through bifurcations 
can be made concrete, in that at a bifurcation node Zfc e S(rfc)n1i the newbranch 



of r° (which corresponds to an element of 2 with last digit one), originating at zk 

is the are of T0 having larger argument. The curves y e Y c (r° n U) on which 
[/ tends to — oo will be paths which have infinitely many segments corresponding 
to elements in 2 of (5-7) having terminal digit one (see (5.10), which then applies 
for infinitely many p). On these curves on which ¿7 — 0 (see proof of Lemma 4.4) 
are where F (and later / ) attains asymptotic valúes a e A. 

We now define U at the {zk¡ and use the procedure (2.14) to extend U to the 
ares of r° and then (2.1) and (2.2) to define U on all of C. 

Start with ZQ = tro (recall (2.8)), the first node corresponding t o O e S and 
define 

(5.8) U(z0) = logizo +4C0. 

Note that other nodes zv that correspond to 0.0 . . . 0 e 2 will appear on each 
S(rk), k > 1 as in (5.7). 

In fact once an are of T̂  n U is assigned to r*, the locus of local máxima, 
it never is subject to bifurcation as \z\ -+ oo. To complete the definition of U 
on these 'free ares' y ' C T* n 11, we observe that its initial point lies at some 
bifurcation node zk (k > 0), where U will be defined in a moment (see (5-10)). 
As we follow along y^ and encounter zk£ = y^ n S(rk+£) (£ > 1), we require that 

(5.9) U(zk£)>U(zk)+£, 

and so we obtain infinitely many curves y ^ C 11 on which U ->• oo. 
In general, if the node zk (k > 1) corresponds to bk e 2 and ( n i , . . . ,np) is 

the sequence of natural numbers associated to bk by (5-6), we define 

(5.10) U(zk) = logRp + 2C0, 

which we copy at any successor z ' , which corresponds to b' (itself a successor of 
bk) associated to the same sequence ( n i , . . . , n p ) e JVo. In this way we also obtain 
countably many curves in T0 on which \U\ does not have oo as an asymptotic 
valué; on these g will have no asymptotic valué, as suggested at the end of Section 
2.1. On the other hand, the curves for which (5-10) for an increasing sequence of 
infinitely many p's are the ones that conform Y, where U -+ — oo. 

6. T H E FAMILIES O F Q U A S I C O N F O R M A L M A P P I N G S 

It follows from (5-1) that to any a e A corresponds a sequence (ni,1X2,113,...) 
so that a = P|p=i Sni,...,np- We have already selected the {Rp, Sp} in Lemma 5.A. 

Next, we identify the specific quasiconformal compositions {apj¡ and the do-
mains in which they act, all of which are in 11. 

For each n consider Cln, the unbounded components of {|¿7(z)| < Rn¡ that 
intersect T̂  n U. Then each path y C Y (on which g -+ 0) passes through 
components T)n of D,n for each n > 0. Theorems 3-1 and 3-9 with (5-8) show 



that \g(z)\ > RQ on the ares of Y* contained in \\z\ > VQ] which meet at the 
node ZQ: thus D,Q C 11, and D,Q is separated from 311 by ares ofT*. 

Similar considerations show that two components ü ^ and T)n are separated 
by ares of YK 

In general each component üjf of Cln will contain countably many compo

nents Vn+i of D,n+i, each of which will contain countably many disjoint compo

nents 23„+2 of ü n + 2 , . . . , imitating the process (5.1). 
It is in these domains T)n that we introduce the mappings qpn. Consider a 

nested chain of sets 
D?1 DV^DV^D--- ; 

these sets will then contain the asymptotic path y at which the asymptotic valué 
a = Plfc=i Snu...,nk will be attained. 

The quasiregular mapping F is defined on each chain T>pV+ inductively in the 
domains D,p \ Qp+i. First, take F(z) = g(z) if z e C \ Qo> observing from (5-8) 
and the role of Q in Theorem 3-1 that since \g(zo)\ > log.Ro + 2 Q , ZQ is not in 
D.0- Fix n e N and consider a domain T)Q C D,Q- We set 

F(z) = <p0°g(z), z e D j \ £ l i , 

where Qpo is the i^o-quasiconformal map given by Lemma 5-A (which produced 
the original Ro), so that Qpo{w) = w if \w\ > RQ and Qpo{w) = w + a\ if 
\w\ < 5o, where a.\ e A n Sn as in (5-1), with (cf Theorem 5-A) diamSn < 5\. 
Thus, i fz e dCli c ü " , then \g(z)\ = Ri = 5o and therefore F(z) = g(z) + a\ 
(so by means of qpo, g(z) has been translated to g(z) + a\, the first step of 
the chain (5-5))- More important, since a.\ e A n Sn , properties (2) and (3) of 
Theorem 5-A ensure that when api is introduced as in (5-3), all possible choices 
a-2 e Sn,m c Sn satisfy 

I «2 - a\\ < 5\. 

Notice that F is welldeflned and continuous in C \ Qi. Indeed, for m + n, 
let VQ1 be another component of Qo- Then 

F(z) = q>'0og(z), z e ü f \ Q i , 

where Qp'0 is the i^o-quasiconformal map given by Lemma 5-A with <p'0(w) = w if 
\w\ >RQ and (póO^) = w +a'\ if 1^1 - ^o. where a[ e AnST O . We have already 
checked that D™ n 23" = 0- Thus F is well-deflned in C \ Qi and continuous on 
di)]} since ifz e dD™, then |# (z) | = RQ and therefore F(z) = g(z). 

Suppose that F is defined in C\Q p ; nowwe showhowto extendit to C\Q p + i . 
Let T)p_i C Qp-i be given and consider a domain 23^ C T)p

v_x. Assume that 

F(z) =<i>p_i o£ (z ) , z e D ^ j \ n p , 

http://log.Ro


where <i>p-i = Qpp-i ° • • • ° <Po is a Kp-\-quasiconformal mapping chosen from 
Lemma 5-A with data Rp-i, <5p-i, such that in particular 

(6.1) F(z) = g(z) + ap, z e dD.p c T)n
p

v_x, 

and ap is in Snu„,¡n , a set of diameter less than Sp. In DIJ define 

F(z) = <í>p °g(z), z e B ? \ ü p + 1 , 

where <l>p is a quasiconformal mapping defined by <l>p = <pv o <í>p_i and <pv is a 
function given by Lemma 5-A with K = Kp, 

[w, when \w — ap\ > Rp, 

[w + cip+i — ap, when \w — av\ < ov, 

CLp+\ G Snit_tn n> and qpp is well defined since ap+\ and a p lie in Sni¡,„¡n , a set 
of diameter less than 5 p . 

The function F is well-defined in C \ Q p + i since the domains 23p and ü p , 
fc =É n , are disjoint, again using an appeal to (5.9). 

Moreover, F is continuous on dü,p. Let z G dVp c Df)
p_l, then |¿7(z)| = 

i?p = <5p_i and by (6.1) and the definition of the function qpp, 

F(z) = ®p-i(g(z)) = g(z) + ap =®p(g(z)). 

Finally, to verify (6.1) in these domains, consider a domain T)p+l contained 

in D£ and let z e 3 ü p + 1 c D£. Then \g(z) \ = Rp+1 = 5P and 

F(z) = <pp(g(z) + ap) = g(z) + ap+1. 

Thus a = p|p>i Sn¡,...,np is an asymptotic valué of F, obtained on the path y 
passing through the domains DQ1 D D^2 D I>"3 D • • • . 

7. SOLUTION OF THEOREM 1.1 

7.1. Nevanlinna characteristic ofg. 
Theorem 7.1. The meromorphic function g has order zero. Indeed, 

T(r,g) = o(ip(r)logr) (r -* <»). 

The Nevanlinna theory for subharmonic functions is discussed in [10] and 
adapts readily to 5-subharmonic functions. We first estimate the counting-function 
for the 'poles' in B(r), n(r,u). Formula (2.15) shows that the number of poles 



on any branchofT^ nB( r ) is ar m o s r I ( r ) l o g r , and (2.7) asserrs rhar rhe number 
of branches in B(r) is 0{Lll^{r)). This means rhar 

n(r,g) = 0 ( L 4 / 3 ( r ) l o g r ) . 

Since L increases and £ has densiry zero, we may inregrare: 

N(r,g) = 0 ( L 4 / 3 ( r ) l o g 2 r ) . 

To esrimare T(r,g) = m(r,g) +N(r,g) we consider rhe proximiry funcrion, 

l r2n 
m(r,g) = — 

2rr 
log+\g(rew)\d6 

By Theorem 3-1, log+ \g(z)\ = 0(L(\z\)) when \z\ ->• oo and z $ E, so ir is 
enough ro check rhe conrriburion ro m(r,g) from inregrarion over rhe excep-
rional ser E. 

However, rhe esrimare is rhen rourine given rhe represenrarion (3-10) of each 
h¡, since we may perform an explicir inregrarion over each of rhe of disks of £ n 
S(r) for each r wirh S(r) n E =/= 0 : m(r,g) = 0(L(r)). Thus (on recalling 
(2.6)) 

T(r) = (1 +o(í))N(r,g) = 0 ( I 4 / 3 ( r ) log2r) = o(ip(r) log2r) (r - oo). 

(Alrernarively, since T(r) = o{ip{r) log r) when S(r ) n £ = 0, we obrain ir 
for rhe remaining r since T increases.) 

7.2. Asymptotic valúes ofF. We rerurn ro rhe funcrion f which was ob-
rained in Secrion 5- Recall rhar we srill assume rhar A = A*\{oo} and A c B(0,2). 

Lemtna 7.2. The asymptotic valúes ofF are w = 0, w = oo and valúes a which 
are limits ofg(z) on curves y c T0 n 1i. In particular, As(f) = A u {oo} = A*. 

Proof. This depends on rhe form of rhe composirions (5-3) and (5-4) along 
wirh Theorem 4.1. Nore rhar {0, oo} c As(f) since rhere are many curves in T̂  
in rhe lower half-plane on which f -• 0, oo, wirh no orher asymproric valúes. 

We firsr show rhar only asymproric valúes associared by rhe procedure of Sec
rion 5 are asymproric valúes of f. Ler F(z) -• a on r¡. Once we show rhar g(z) 
irself has a limir a! on r¡, Theorem 4.1 shows rhar a' = 0 or a' = oo. Since all 
composirions Y are rhe idenriry ourside B(Ro), we cerrainly have a' = oo when 
a = oo. 

Thus suppose |a | < .Ro- Given 5 > 0, choose r ' > 0 so rhar |f (z) - a\ < 5 
for z e r¡{r') wirh fí(r') rhe unbounded componenr of r¡ n {|z| > r ' } . 

The family of if-quasiconformal homeomorphisms of rhe sphere which fix 
B(RQ) are uniformly Holder conrinuous. Henee if Y is any fixed funcrion of 



the class (5-3), any Y : image oíB(a, 5) is contained in B(Y 1(a), C5a), with 
a = a(K). 

It follows that ifY' is a choice ofY at g(z'), with z ' e r¡C\S{r'), theng(z) e 
B{T-HF{z')),C'Sa). Since 5 - 0 as r ' - oo and the family of functions {¥} is 
normal, ¿7 itself must have a limit on r¡. As we showed in Section 4.2, this means 
that r¡ is contained in a tract on which g -+ 0, so this tract also contains a curve 
y c T c r° . If y c r° n 11, then the choice of compositions in (5-3) was made so 
that F(z) ->• a e A in y, and so in r?. If, on the other hand, y c T0 in the lower 
half plañe, then F(z) = g(z) on y and so F(z) ->• 0 e A in y, and therefore on 
1- <= 

7.3. Construction off. Let F be from (5-4). The meromorphic function 
/ of Theorem 1.1 is obtained using standard techniques. Let cr(z) = (F¿/Fz)(z) 
and f := F o T _ 1 where T is the homeomorphic solution to 

T¿(z) = CT(Z)T Z (Z) (Beltrami equation), 

normalized to fix 0, 1 and oo. Then / is meromorphic in the plañe. 
Obviously As(f) = A*, so we need only check (1.2). 
We may avoid delicate distortion theorems on solutions to the Beltrami equa

tion, since g is of slow growth (cf (1.2)). A standard distortion theorem [1] 
(Holder continuity) gives that if w = T ( Z ) satisfles this equation with ||cr||oo < 
K < 1, then there are A = A(K), M = M(K) with 

(7.1) | T ( Z ) | < A | Z | M ( z e C ) . 

Lemma 7.3. The characteristic ofthe meromorphic function f satisfies (1.2). 

Proof Since all quasiconformal compositions used in the previous section fix 
a neighborhood of w = oo, we have n(r, °o,F) = n(r, °o,g) (r > 0). We may 
suppose that K in (5-2) has been taken so that (7-1) holds with M < 20, and so 
n(r,f) <n(Cr20,g) = 0 ( C I 4 / 3 ( r 2 0 ) ) log2r . Using (2.6), we find 

N(r,f) := r 1 n ( t , / ) d t <iV(21CI 4 / 3 ( r 2 1 ) ) = o(I¡J(r)log2r). 

Similarly, m(r,f) = 0(L(ArMg)), and since T(r,f) = m(r,f) +N(r,f), a 
final appeal to (2.6) gives (1.2). C 

8. CONCLUDING REMARKS 

In this section, we settle some loóse ends. 



8.1. Functions ofgiven order A. To construct functions of order A + 0 
requires a simple trick (we thank A. Eremenko for this suggestion). Let g be the 
meromorphic function (of order zero) just constructed, with As(g) = {0, oo}. 
Let W be an unbounded open set with d(W,T$) > 1. Choose a sequence \wn\ 
tending to oo in W whose exponent of convergence is A (for example, let the 
number of wn in B(r) be asymptotic to r A ) . 

Next, for each wn choose bn with wn — bn tending so rapidly to zero that 

n(z) = l-^ 
1 -z/bn 

is so cióse to one outside W that iígi(z) = g(z)U(z), then g - g\ = o ( l ) and 
argí7(z) ~~ arg£7i(z) = o( l ) as z -+ oo in a neighborhood of YK Then g\ has 
order A, and we may perform the compositions of Section 5 on g\, yielding f\ of 
order A with A* its asymptotic set. 

8.2. General analytic sets A*. To remove the assumption that the set A of 
(1.1) be contained in £>(0, 2), we construct a 'forest' of trees in 11. Thus, instead 
of r° C T$ being a single tree beginning on the positive imaginary axis (cf Section 
2.3), there will be a countable collection of trees Ym¡n C 11, Ym¡n C T̂  with 
asymptotic valúes being those of A n B(m + ni, 2). 

Since each of the compositions in (5-3) operates in disjoint regions of the 
plañe, the proofs of Lemma 7-2 and Lemma 7-3 apply as before. 
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