w-singularities in cosmological models

Leonardo Fernández-Jambrina¹

¹Matemática Aplicada E.T.S.I. Navales Universidad Politécnica de Madrid, Spain leonardo.fernandez@upm.es

Spanish Relativity Meeting 2010

Sketch

1 Introduction

- 2 w-singularities
- 3 Conclusions

Motivation

- Astronomical observations of luminosity distances derived from Type Ia supernovae, CMB spectrum and global matter distribution provide evidence of cosmic speed up of the Universe.
- One approach to deal with this riddle is to consider modifications of general relativity.
- Alternatively, cosmic acceleration might be due to an exotic fluid filling the Universe, known as dark energy.
- These have given rise to a collection of new cosmological evolutions, future singularites being the most perplexing ones ("big rip", "sudden singularities"...).

Classification of singularities

- Big Bang / Crunch: zero a, divergent H, density and pressure. Strong.
- Type I: "Big Rip": divergent a. Strong.
- Type II: "Sudden": finite a, H, density, divergent H and pressure. Weak
- Type III: "Big Freeze": finite a, divergent H, density and pressure. Weak/Strong
- Type IV: "Big Brake": finite a, H, H, density and pressure but divergent higher derivatives. Weak.

w-singularities

Dabrowski & Denkiewicz introduced a cosmological model,

$$\begin{split} a(t) &= \frac{a_{s}}{1 - \frac{3\gamma}{2} \left(\frac{n-1}{n-\frac{2}{3\gamma}}\right)^{n-1}} + \frac{1 - \frac{2}{3\gamma}}{n - \frac{2}{3\gamma}} \frac{na_{s}}{1 - \frac{2}{3\gamma} \left(\frac{n-\frac{2}{3\gamma}}{n-1}\right)^{n-1}} \left(\frac{t}{t_{s}}\right)^{\frac{2}{3\gamma}} \\ &+ \frac{a_{s}}{\frac{3\gamma}{2} \left(\frac{n-1}{n-\frac{2}{3\gamma}}\right)^{n-1}} - 1 \left(1 - \frac{1 - \frac{2}{3\gamma}}{n - \frac{2}{3\gamma}} \frac{t}{t_{s}}\right)^{n}, \quad \gamma > 0, \quad n \neq 1. \end{split}$$

- The scale factor $a(t_s) = a_s$ is finite.
- Density and pressure vanish at t_s , $\rho(t_s) = 0 = \rho(t_s)$.
- If *n* is natural, the derivatives of *a* and the Hubble parameter are regular.
- Just the barotropic index w ($p = w \rho$) is singular at $t = t_s$.

Barotropic index expansions

The barotropic index w may be written in terms of the scale factor,

$$w = -\frac{1}{3} - \frac{2}{3} \frac{a\ddot{a}}{\dot{a}^2}.$$

Assuming that the scale factor admits a generalized power expansion with real exponents,

$$a(t) = c_0(t_s - t)^{\eta_0} + c_1(t_s - t)^{\eta_1} + \cdots, \quad \eta_0 < \eta_1 < \cdots, \quad c_0 > 0,$$

η_0	η_1	η_2	Ws
≠ 0	(η_0,∞)	(η_1,∞)	Finite
0	(0, 1)	(η_1,∞)	Infinite
	1	(1,2)	Infinite
	1	$[2,\infty)$	Finite
	$(1,\infty)$	$[\eta_1,\infty)$	Infinite

Density and pressure

Besides a diverging barotropic index, we need vanishing density and pressure.

For
$$\eta_0=0,\ \eta_1\neq 1,$$

$$ho = \frac{3c_1^2\eta_1^2}{c_0^2}(t_s-t)^{2(\eta_1-1)}+\cdots,$$

$$ho = -\frac{2c_1\eta_1(\eta_1-1)}{c_0}(t_s-t)^{\eta_1-2}+\cdots,$$

 $\eta_1 >$ 2 is required.

Results

■ A FLRW cosmological model has a singular barotropic index w with vanishing pressure and density at t_s if an only if the generalized power expansion of a(t) is of the form

$$a(t) = c_0 + c_1(t_s - t)^{\eta_1} + \cdots,$$

with $\eta_1 > 2$.

Results

■ A FLRW cosmological model has a singular barotropic index w with vanishing pressure and density at t_s if an only if the generalized power expansion of a(t) is of the form

$$a(t) = c_0 + c_1(t_s - t)^{\eta_1} + \cdots,$$

with $\eta_1 > 2$.

■ A FLRW cosmological model has a w-singularity at a finite time t_s if an only if the scale factor a(t) admits a Taylor series at t_s with vanishing linear and quadratic terms,

$$a(t) = c_0 + O((t - t_s)^3).$$

Scale factor vs. singularities

η_0	η_1	η_2	Tipler	Królak	N.O.T.
(-s, 0)	(η_0,s)	(η_1,s)	Strong	Strong	1
0	(0, 1)	(η_1,s)	Weak	Strong	Ш
	(1, 2)	(η_1,s)	Weak	Weak	П
	1	(1, 2)	Weak	Weak	П
		[2,s)	Weak	Weak	IV
	[2,s)	(η_1,s)	Weak	Weak	IV
(0,s)	(η_0,s)	(η_1,s)	Strong	Strong	Crunch

Hence w-singularities are weak singularities.

Further reading

- L. Fernández-Jambrina,
 On w-cosmological singularities (preprint)
- L. Fernández-Jambrina, R. Lazkoz, Singular fate of the universe in modified theories of gravity Phys. Lett. B 670 254 (2009) [arXiv:0805.2284]
- L. Fernández-Jambrina, R. Lazkoz,
 Classification of cosmological milestones
 Phys. Rev. D 74 064030 (2006) [arXiv:gr-qc/0607073]
- L. Fernández-Jambrina, R. Lazkoz, Geodesic behaviour of sudden future singularities Phys. Rev. D 70 121503 (2004) [arXiv:gr-qc/0410124]

Thank you all!

