
Geography determines genetic 
relationships between species of 
mountain pine (Pinus mugo complex) in 
western Europe 
Myriam Heuertz , Jennifer Teufel , Santiago C. González-Martínez , 

Alvaro Soto , Bruno Fady , Ricardo Alia and Giovanni G. Vendramin 

Evolutionary Biology and Ecology, Faculté des 
Sciences, Université Libre de Bruxelles, cpl60l 
12, av. F.D. Roosevelt 50, 1050 Brussels, 
Belgium, Department of Forest Systems and 
Resources, Centre of Forest Research CIFOR-
INIA, Carretera de la Coruña km 7.5, 28040 
Madrid, Spain, Oko-Institut e. V., Institute for 
Applied Ecology, Postfach 6226, D-79038 
Freiburg, Germany, U.D. Anatomía, 
Fisiología y Genética, Departamento 
Silvopascicultura, Universidad Politécnica de 
Madrid, E.T.S.I. de Montes, Ciudad 
Universitaria, sin. 28040 Madrid, Spain, 

INRA, UR629, Ecologie des Foréts 
Meditenanéennes, Domaine St Paul, Site 
Agroparc, F-84914 Avignon, France, Consiglio 
Nazionale delle Ricerche, Istituto di Genética 
Vegetóle, Via Madonna del Piano 10, 50019 
Sesto Fiorentino (Firenze), Italy 

ABSTRACT 

Aim Our aims were to test whether morphological species of mountain pines 
were genetically supported in the western part of the distribution range of the 
Pinus mugo species complex (Pinus mugo Turra sensu lato), to resolve genetically 
homogeneous clusters of populations, to determine historical demographic 
processes, and to assess the potential hybridization of mountain pines with 
Scots pine, Pinus sylvestris L. 

Location Populations were sampled in the Iberian System, the Pyrenees, the 
French Mont Ventoux, Vosges and Jura mountains, the Germán Black Forest and 
throughout the Alps. This corresponded to a range-wide sampling for mountain 
pine sensu stricto (Pinus uncinata Ram.) and to a sampling of the western parts 
of the ranges of dwarf mountain pine (Pinus mugo Turra sensu stricto) and bog 
pine/peatbog pine [Pinus rotundata Lmk/Pinus X pseudopumilio (Willk.) Beck]. 

Methods In total, 786 individuáis of P. mugo sensu lato from 29 natural 
populations, and 85 individuáis of P. sylvestris from four natural populations 
were genotyped at three chloroplast microsatellites (cpSSRs). Populations were 
characterized for standard genetic diversity statistics and signs of demographic 
expansión. Genetic structure was explored using analysis of molecular variance, 
differentiation statistics and Bayesian analysis of population structure (BAPS). 

ResuIts One hundred haplotypes were identified in P. mugo sensu lato. There was a 
strongerdifferentiationbetweengeographicalregionsthanbetweenmorphologically 
identified taxa (P. mugo sensu stricto, P. uncinata and P. rotundata/P. X 
pseudopumilio). Overall genetic differentiation was weak (GST = 0.070) and 
displayed a clear phylogeographic structure [NSr = 0.263, NSr > NSr (permuted), 
P < 0.001 ]. BAPS identified a Pyrenean and an Alpine gene pool, along with several 
smaller genetic clusters corresponding to peripheral populations. 

Main conclusions The core regions of the Pyrenees and Alps were probably 
recolonized, respectivelybyP. uncinata and P. uncinatalP. mugo sensu stricto, from 
múltiple glacial refugia that were well connected by pollen flow within the mountain 
chains. Pinus rotundata/P. X pseudopumilio populations from the Black Forest, 
Vosges and Jura mountains were probably recolonized from various glacial 
populations that kept their genetic distinctiveness despite late glacial and early 
Holocene expansión. Marginal P. uncinata populations from the Iberian System are 
compatible with elevational shifts and long-term isolation. The causes of haplotype 
sharing between P. mugo sensu lato and P. sylvestris require further research. 

Keywords 
Chloroplast microsatellites, conservation, genetic clusters, haplotype sharing, 
historical demography, hybridization, Pinus mugo complex, Pinus sylvestris, 

post-glacial recolonization, western Europe. 



INTRODUCTION 

The Pleistocene climate oscillations affected the distribution of 
genetic variation within plant species in complex ways (Petit 
et al, 2003; Tribsch & Stuessy, 2003). During the cold stages, 
some cold-adapted tree species of the Northern Hemisphere 
were not restricted to southern glacial refugia but maintained 
fairly extensive populations cióse to the ice sheets (Tarasov 
et al, 2000). These populations expanded during warm stages 
and experienced extensive gene flow (Maliouchenko et al, 
2007). As a consequence, woody species with boreal-temperate 
contemporary distributions show significantly lower genetic 
differentiation at maternally inherited markers than species 
that were restricted to southern glacial refugia (Petit et al, 
2003; Aguinagalde et al, 2005). At lower latitudes, in contrast, 
cold-adapted tree species commonly thrived in the mountain 
foothills during cold stages and migrated to higher elevations 
during warmer interglacials (Davis & Shaw, 2001; Robledo-
Arnuncio et al, 2005). Decreased gene flow and increased 
genetic drift may produce substantial differentiation among 
such interglacial high-mountain populations (Robledo-Arnun-
cio et al, 2005), leading even to speciation events (Aguirre-
Planter et al, 2000; Jaramillo-Correa et al, 2008). 

Pinus mugo Turra sensu lato (s.l.), the mountain pine 
complex, is a very polymorphic species complex with a 
montane distribution in southern and central Europe, in which 
16 species, 91 varieties and 19 forms had been described prior 
to the taxonomic revisión of Christensen (1987a). The 
delimitation of taxa is difficult because of a high morpholog-
ical variability in growth habit (single versus multi-stemmed, 
erect versus prostrate), cone and needle characters (Christen
sen, 1987a,b; Boratynska & Boratynski, 2007, and references 
therein; Marcysiak & Boratynski, 2007), and possible hybrid-
ization with Scots pine, Pinus sylvestris L. (Christensen, 
1987a,b; Wachowiak & Prus-Glowacki, 2008). Taxonomic 
resolution has also been impaired because many studies 
examined only small parts of the complex's distribution range 
or made unsuitable interpretations of phenotypic traits or 
taxon ñames (see Businsky, 1999; Hamerník & Musil, 2007). 
At present, the two most complete revisions of the group differ 
in their conclusions: Christensen (1987a,b) recognized two 
subspecies, Pinus mugo Turra ssp. mugo and P. mugo Turra 
ssp. uncinata (Ram.) Domin, and one 'hybrid taxon', P. mugo 
Turra nothossp. rotundata (Link) Janchen & Neumayer, which 
he believed to have arisen from hybridization between the 
other two species. Businsky (1999) Usted Pinus mugo Turra, 
Pinus uncinata Ramond and Pinus rotundata Link as sepárate 
species. Hamerník & Musil (2007) provided comparative tables 
for the taxon ñames used in the literature to refer to specific 
morphologies and distribution ranges, and here we follow their 
nomenclature (see figures 2 and 3 in Hamerník & Musil, 2007, 
for growth habit and cone morphology, and figures 4 and 5 
in Hamerník & Musil, 2007, for distribution ranges). Pinus 
uncinata Ramond, mountain pine sensu stricto (s.s.), is usually 
a monocormic (single-stemmed) tree with asymmetrical cones 
and grows in the subalpine vegetation belt up to the upper 

forest limit, and even up to the upper tree limit (1000-2300 m 
elevation) in the western part of the range of the complex. It is 
found in the Iberian System (Sierra de Gúdar and Sierra de 
Cebollera) in Spain, the Pyrenees, the Massif Central, the Mont 
Ventoux and the western Alps (Cantegrel, 1983; Christensen, 
1987a; Hamerník & Musil, 2007). It overlaps with Pinus mugo 
Turra s.s., dwarf mountain pine, in eastern Switzerland and 
western Austria, where transitive forms occur. The latter has a 
shrubby (polycormic) growth habit and symmetrical cones, 
and forms large mats in subalpine habitats of the eastern Alps, 
the Erzgebirge, the Dinaric Alps, the Carpathians and the Rila 
and Pirin mountains of Bulgaria, with an isolated population 
in the Italian Apennines and other outlier populations in the 
western Alps (Christensen, 1987a; Hamerník & Musil, 2007). 
Pinus rotundata Link, bog pine, is ecologically highly special-
ized to peat bog habitats and occurs in the northern part of the 
distribution range, from the Germán Black Forest in the west 
to the Polish Table Mountains in the east. It is generally 
monocormic and has weakly to strongly asymmetrical cones. 
A common synonym used mostly for eastern European bog 
pine is Pinus uliginosa Neumann (Businsky, 1999; Hamerník & 
Musil, 2007), although recent work suggests that P. rotundata 
and P. uliginosa might be distinct species (Businsky & 
Kirschner, 2006). Polycormic specimens of different heights 
(sometimes even prostrate) found mainly on raised bogs are 
thought to be of hybrid origin between P. rotundata and 
P. mugo s.s. and are classified as Pinus X pseudopumilio 
(Willk.) Beck, peatbog pine (Businsky, 1999; Hamerník & 
Musil, 2007). Pinus sylvestris is closest to P. uncinata with 
respect to needle sclerenchyma characters (Boratynska & 
Boratynski, 2007), whereas its cone morphology more closely 
resembles that of P. mugo s.s. (Christensen, 1987b; Marcysiak 
& Boratynski, 2007). Divergence within the P. mugo species 
complex is thought to have initiated in the Pliocene, when 
increased ice and snow cover in the Alps broke up a large 
distribution range, leading to separation into individual 
Pleistocene refugia (Sandoz, 1983; Christensen, 1987a). 

The location of glacial populations of the P. mugo complex 
is poorly known to date because P. mugo s.l. pollen is very 
similar to that of the more common P. sylvestris and Pinus 
nigra, and therefore palynological records seldom distinguish 
these species (Willis et al, 1998). Even macrofossil remains are 
often not sufficiently well preserved to enable unambiguous 
identification of P. mugo and P. sylvestris (García-Amorena 
et al, 2007). In the Iberian Península, fossil pollen indicates 
glacial populations of P. sylvestrisIP. mugo in the Cantabrian 
Atlantic Mountains, in the Iberian System - including the 
Sierra de Cebollera, where P. uncinata grows today (Franco 
Múgica et al, 1998; Ramil-Rego et al, 1998; Gil García et al, 
2002), in eastern Spain (Carrión, 2002), and in the Betic 
System (Pons & Reille, 1988). Fossil P. sylvestrisIP. mugo 
trunks dated from c. 20,000 to c. 34,000 yr BP indícate refugia 
on the Portuguese coast (García-Amorena et al, 2007). Glacial 
refugia existed very probably in the Alps, where travertine 
formations dated to 11000-10000 yr BP unambiguously reveal 
cone imprints of P. uncinata (in the southern French Alps at 



2200 m elevation, Ali et al, 2003) and of P. undnata and 
P. mugo s.s. (in the Susa Valley, Italy at c. 1300 and 1900 m 
elevation, Ali et al, 2006). Fossil pollen records additionally 
suggest P. sylvestrisIP. mugo presence up to c. 1400 m eleva
tion in the Swiss central and southern Alps during the Oldest 
Dryas (15,000-13,000 yr BP, Burga, 1988). In eastern Europe, 
Feurdean et al (2007) reported that P. mugo formed part of 
the late glacial (14,700 yr BP) vegetation at mid-altitude in the 
Carpathians, based on fossil pollen. Furthermore, P. mugo 
charcoal remains prove the glacial-period presence on several 
sites at latitudes as far north as the Czech Republic (48.87° N, 
Willis & van Andel, 2004). The fossil pollen studies clearly 
show a wider natural range and higher levéis of P. sylvestris/ 
P. mugo pollen representation than at present, suggesting an 
early range-wide post-glacial expansión starting about 13,000 
yr BP (Burga, 1988; Ramil-Rego et al, 1998; Rósch, 2000; Gil 
García et al, 2002; Cheddadi et al, 2006; Feurdean et al, 
2007). Milder tempera tures than those of the Last Glacial 
Máximum (LGM, 18,000 yr BP) were common during the 
Weichselian glacial stage (110,000-10,000 yr BP, van Andel, 
2002; Van Meerbeeck et al, 2009), so that numerous 
P. sylvestrisIP. mugo populations could have been supported 
(see also West, 1980; Field et al, 2000). Given that today 
P. undnata and P. mugo s.s. are species of the subalpine 
vegetation, the interglacial retreat to high elevations may also 
have played an important role in shaping their genetic structure. 

In the last few decades, P. mugo s.l. populations have started 
expanding into higher elevations in response to decreased 
grazing pressures and climate warming (Ozenda, 1988; Cam
arero et al, 2005; Dirnbóck et al, 2008). Upslope migration is 
also observed in species that occur in the subalpine vegetation 

belt below, and occasionally in sympatry with P. mugo s.l., 
such as P. sylvestris and the more shade-tolerant Picea abies 
(Ozenda, 1988; Camarero et al, 2005). The upward pressure 
by P. sylvestris is especially important in marginal populations 
of P. undnata that have already reached the mountain tops of 
low mountains in Spain (Camarero et al, 2005). Pinus 
sylvestris and P. mugo s.l. are partially interfertile (Schmid & 
Bogenrieder, 1998; Wachowiak et al, 2005), although the 
natural extent of introgression between them appears to be low 
(Christensen, 1987b). The sub-optimal growth conditions 
of the marginal P. undnata populations and the competition 
and potential hybridization with P. sylvestris may represent 
a significant threat to their conservation. Furthermore, if 
marginal P. undnata populations are genetically distinct from 
core populations, their loss may represent a significant 
diminution of diversity and adaptive potential for the species 
(Hampe & Petit, 2005; Eckert et al, 2008). 

In this paper we investígate the distribution of genetic 
diversity in P. undnata and its genetic relationships with 
P. rotundatalP. X pseudopumilio and P. mugo s.s. The geo-
graphical pattern of genetic diversity has recently been 
described for P. undnata (Dzialuk et al, 2009), and a lack of 
genetic differentiation between P. undnata and P. mugo s.s. 
has been observed in the Alps (Monteleone et al, 2006). 
However, the phylogeographic history of the species complex 
has so far not been investigated at a larger geographical scale. 
We genotyped 29 populations of mountain pine morpholog-
ically classified as P. mugo s.s., P. undnata or P. rotundatal 
P. X pseudopumilio, using three (out of 18 tested) hypervari-
able chloroplast DNA microsatellites (cpSSRs) that resolved 
100 haplotypes. In particular, we (1) tested whether morpho-

u 
O 
O 
o 
0 
o 
o 
0 
o 
0 
o 
o 
® 
© 

Cluster 1 

Cluster2 

Cluster 3 

Cluster 4 

Cluster S 

Cluster 6 

Cluster 7 

Cluster 8 

Cluster 9 

Cluster 10 

Cluster 11 

Cluster 12 

P rotundata/ 
P x pseudopumilio 
P. mugo s.s. 

O P- undnata 

A P. sylvestris 

Figure 1 Results of the spatial Bayesian cluster analysis, BAPS, showing genetically homogenous groups of populations of the Pinus mugo 
species complex in western Europe. 



logically identified species were genetically differentiated, (2) 
checked for the presence of genetically homogeneous clusters 
of populations, and (3) investigated historical demographic 
processes operating in populations. We also genotyped 
four populations of P. sylvestris sampled in the vicinity of 
P. uncinata, aiming to evalúate in situ hybridization. 

MATERIALS AND METHODS 

Plant material and cpSSR genotyping 

A total of 786 individual trees were sampled from 29 natural 
populations of P. mugo s.l. located in the Iberian System, the 
Pyrenees, the French Mont Ventoux, Vosges and Jura moun-
tains, the Germán Black Forest and throughout the Alps 
(Fig. 1, Tables 1 & 2). Populations were morphologically 
classified as P. uncinata, P. mugo s.s. or P. rotundatal 
P. X pseudopumilio. Bog-affected populations of the northern 
Black Forest are generally polycormic (P. X pseudopumilio), 

whereas those of the southern Black Forest are generally 
monocormic (P. rotundata), but they were treated here as the 
same species category as they have similar ecology, occur in 
geographical proximity and their taxonomy is very uncertain. 
Our sample represents a range-wide sample for P. uncinata, 
but covers only the western part of the distribution of P. mugo 
s.s. and of P. rotundatalP. X pseudopumilio. Populations from 
the Alps and Pyrenees are relatively extensive and can be 
considered core populations, whereas the peripheral popula
tions grow in more fragmented parts of the range. 

Samples consisted of silica-dried needles or seeds; the latter 
were germinated before DNA extraction from the embryo. 
Because we suspected introgression of chloroplast DNA 
(cpDNA) haplotypes through hybridization with P. sylvestris, 
85 individuáis of P. sylvestris from four populations were also 
sampled at a distance of < 60 km from two P. mugo s.l. 
populations (Fig. 1, Tables 1 & 2). DNA was extracted using 
the DNeasy™ Plant Mini Kit (Qiagen, Hilden, Germany) and 
amplified separately at three paternally inherited cpSSRs 

Table 1 Characteristics of sampled populations of the Pinus mugo species complex in western Europe. Latitude and longitude are given in 
decimal degrees. 

Species 

P. mugo s.s. 

P. mugo s.s. 

P. mugo s.s. 

P. mugo s.s. 

P. rotundata 

P. rotundata 

P. rotundata 

P. rotundata 

P. rotundata 

P. X pseudopumilio 

P. X pseudopumilio 

P. X pseudopumilio 

P. uncinata 

P. uncinata 

P. uncinata 

P. uncinata 

P. uncinata 

P. uncinata 

P. uncinata 

P. uncinata 

P. uncinata 

P. uncinata 

P. uncinata 

P. uncinata 

P. uncinata 

P. uncinata 

P. uncinata 

P. uncinata 

P. uncinata 

P. sylvestris 

P. sylvestris 

P. sylvestris 

P. sylvestris 

ID 

F2 

Al 

A3 

A2 

F6 

S2 

S4 

S3 

SI 

NI 

N2 

N3 

E5 

E4 

El 

E3 

E2 

POG 

PIT 

LAN 

VXN 

VXS 

F5 

C2 

Fl 

F4 

Cl 

F3 

11 

LMT 

CAD 

FOC 

LUR 

Locality 

Mont Ourne 

Kellaspitze 

Wildseeloder 

Raxalpe 

Bas Beillard 

Ibacher Moor 

Rotmeer 

Briglirain 

Steerenmoos 

Grosses Muhr 

Saumisse 

Hohlohsee 

Vinuesa 

Alcalá de la Selva 

Panticosa 

Sierra de Guara 

Llavorsi 

La Molina 

Pinet 

Les Angles 

Ventoux sud 

Ventoux nord 

Les Rousses 

Vallée de Joux 

Le Blétonnet 

Pinatelle 

Solalex 

Col de Sálese 

Endkopf 

La Matte 

Cadarache 

Forcalquier 

Lure 

Latitude 

N 44.10 

N 47.22 

N 47.43 

N 47.70 

N 48.08 

N 47.72 

N 47.87 

N 48.10 

N 47.81 

N 48.62 

N 48.56 

N 48.70 

N 42.00 

N 40.38 

N 42.73 

N 42.33 

N 42.50 

N 42.34 

N 42.86 

N 42.57 

N 44.17 

N 44.18 

N 46.50 

N 46.57 

N 44.83 

N 44.53 

N 46.29 

N 44.15 

N 46.80 

N 42.60 

N 43.70 

N 43.95 

N 43.93 

Longitude 

E 7.53 

E9.88 

E 12.54 

E 15.72 

E6.81 

E 8.07 

E 8.10 

E 8.17 

E 8.20 

E 8.21 

E 8.28 

E 8.42 

W2.75 

W0.72 

W0.25 

W0.17 

E 1.18 

E 1.96 

E 1.99 

E2.07 

E 5.25 

E 5.27 

E6.08 

E6.18 

E6.75 

E6.78 

E 7.14 

E 7.23 

E 10.55 

E2.62 

E 5.77 

E 5.78 

E 5.87 

Región 

Alpes Maritimes (France) 

Lechtaler Alpen (Austria) 

Kitzbühler Alpen (Austria) 

Steiermark (Austria) 

Vosges (France) 

Southern Black Forest (Germany) 

Southern Black Forest (Germany) 

Southern Black Forest (Germany) 

Southern Black Forest (Germany) 

Northern Black Forest (Germany) 

Northern Black Forest (Germany) 

Northern Black Forest (Germany) 

Sierra de Cebollera, Soria (Spain) 

Sierra de Gúdar, Teruel (Spain) 

Pirineos Centrales (Spain) 

Prepirineos (Spain) 

Pirineos Orientales (Spain) 

Pirineos Orientales (Spain) 

Pyrénées orientales (France) 

Pyrénées orientales (France) 

Provence (France) 

Provence (France) 

Jura Mountains (France) 

Jura Mountains (Switzerland) 

Hautes Alpes (France) 

Alpes de Haute-Provence (France) 

Berner Alpen (Switzerland) 

Alpes Maritimes (France) 

Ótztaler Alpen (Italy) 

Pyrénées orientales (France) 

Provence (France) 

Provence (France) 

Provence (France) 

Site 

Mineral soil 

Mineral soil 

Mineral soil 

Mineral soil 

Bog 

Bog 

Bog 

Bog 

Bog 

Bog 

Bog 

Bog 

Mineral soil 

Mineral soil 

Mineral soil 

Mineral soil 

Mineral soil 

Mineral soil 

Bog 

Mineral soil 

Mineral soil 

Mineral soil 

Bog 

Bog 

Mineral soil 

Mineral soil 

Mineral soil 

Mineral soil 

Mineral soil 

Mineral soil 

Mineral soil 

Mineral soil 

Mineral soil 

Elevation (m) 

2100-2200 

1900-2000 

1700-1800 

1700-1900 

600 

910 

965 

990 

1000 

1060 

895 

981 

1900-2100 

1800-2000 

1600-2200 

1800-2000 

1600-2200 

1600-2200 

800 

1800 

1700 

1500 

1060 

1040 

2100-2200 

1700-2000 

1670-1810 

1800-2000 

1900-2000 

1550 

300 

500 

450 



Table 2 Diversity and differentiation statistics of the Pinus mugo species complex in western Europe. BAPS group: cluster assigned in the Bayesian analysis of population structure (see text); 

n: sample size; AR (13): allelic richness based on a sample size of n = 13; HE: haplotypic diversity; mean pairwise FST: average differentiation between the focal population and all other populations 

measured with FST; no. pairwise FST with P < 0.05: number of pairwise differentiation tests significant at a level of 0.05 after Bonferroni correction; D^i,]): genetic distance between haplotypes 

within populations (see text for definition). 

Core populations 
Alps 

Pyrenees 

Mont Ventoux 

ID 

A2 
Al 
A3 
11 
Cl 
Fl 
F2 
F3 
F4 
El 
E2 
POG 
LAN 
VXN 
VXS 

Peripheral populations 
Black Forest 

Jura Mountains 

Vosges 
Pyrenees 

Iberian System 

All P. mugo s.l. 

All P. sylvestris 

SI 
S2 
S3 
S4 
NI 
N2 
N3 
F5 
C2 
F6 
E3 
PIT 
E4 
E5 

LMT 
CAD 
FOC 
LUR 

Population 

Steiermark (Austria) 
Lechtaler Alpen (Austria) 
Kitzbühler Alpen (Austria) 
Ótztaler Alpen (Italy) 
Berner Alpen (Switzerland) 
Hautes Alpes (France) 
Alpes Maritimes (France) 
Alpes Maritimes (France) 
Alpes de Haute-Provence (France) 
Pirineos Centrales (Spain) 
Pirineos Orientales (Spain) 
Pirineos Orientales (Spain) 
Pyrénées Orientales (France) 
Provence (France) 
Provence (France) 

Southern Black Forest (Germany) 
Southern Black Forest (Germany) 
Southern Black Forest (Germany) 
Southern Black Forest (Germany) 
Northern Black Forest (Germany) 
Northern Black Forest (Germany) 
Northern Black Forest (Germany) 
Jura Mountains (France) 
Jura Mountains (Switzerland) 
Vosges (France) 
Prepirineos (Spain) 
Pyrénées Orientales (France) 
Sierra de Gúdar (Spain) 
Sierra de Cebollera (Spain) 

Pyrénées orientales (France) 
Provence (France) 
Provence (France) 
Provence (France) 

Species 

P. mugo s.s. 
P. mugo s.s. 
P. mugo s.s. 
P. uncinata 
P. uncinata 
P. uncinata 
P. mugo s.s. 
P. uncinata 
P. uncinata 
P. uncinata 
P. uncinata 
P. uncinata 
P. uncinata 
P. uncinata 
P. uncinata 

P. rotundata 
P. rotundata 
P. rotundata 
P. rotundata 
P. X pseudopumilio 
P. X pseudopumilio 
P. X pseudopumilio 
P. uncinata 
P. uncinata 
P. rotundata 
P. uncinata 
P. uncinata 
P. uncinata 
P. uncinata 
P. mugo s.l. 

P. sylvestris 
P. sylvestris 
P. sylvestris 
P. sylvestris 
P. sylvestris 

BAPS 
group* 

A 
A 
A 
A 
A 
A 
A 
A 
A 
P 
P 
P 
P 
A/P 
A/P 

A 
A 
NBF 

NBF 
A 

n 

24 
24 
24 
24 
24 
24 
24 
48 
24 
21 
22 
24 
28 
17 
13 

48 
24 
24 
24 
24 
24 
24 
24 
24 
24 
23 

91 
21 
22 

786 

33 
17 
18 
17 
85 

No. 
haplotypes 

13 
16 
14 
12 
15 
14 
15 
27 
12 
12 
8 

11 
13 
10 
10 

25 
6 

13 
10 
12 
8 

11 
10 
17 
10 
9 
8 
5 
7 

100 

18 
6 
7 

14 
23 

No. 
prívate 
haplotypes 

0 
1 
1 
0 
2 
0 
3 
4 
1 
2 
0 
0 
2 
1 
3 

7 
0 
2 
1 
4 
0 
0 
0 
3 
1 
3 
2 
1 
6 

7 
0 
1 
2 

AR (13) 

7.57 
9.01 
8.24 
7.77 
9.03 
8.08 
8.97 
9.76 
6.85 
7.73 
5.75 
7.27 
7.31 
7.49 
9.00 

9.39 
4.23 
8.40 
6.57 
7.49 
4.77 
7.25 
6.34 
9.74 
6.03 
5.46 
3.43 
3.44 
5.20 

10.44 

8.53 
4.67 
5.30 

10.13 
8.74 

H E 

0.913 
0.946 
0.931 
0.931 
0.957 
0.909 
0.953 
0.966 
0.851 
0.919 
0.879 
0.924 
0.915 
0.919 
0.962 

0.959 
0.808 
0.946 
0.895 
0.913 
0.786 
0.917 
0.862 
0.967 
0.815 
0.810 
0.758 
0.748 
0.866 
0.956 

0.939 
0.846 
0.863 
0.971 
0.922 

Mean 
pairwise P S T 

0.040 
0.027 
0.038 
0.047 
0.039 
0.050 
0.052 
0.036 
0.064 
0.036 
0.059 
0.038 
0.040 
0.060 
0.036 

0.061 
0.084 
0.048 
0.074 
0.087 
0.108 
0.054 
0.102 
0.057 
0.085 
0.125 
0.123 
0.152 
0.115 

0.022 
0.016 
0.023 

-0.007 

No. pairwise P S T 
with P < 0.05 

9 
7 
6 

12 
8 
7 

11 
6 
8 
6 

11 
10 
11 
8 
7 

24 
14 
9 

17 
27 
20 
10 
23 
16 
14 
25 
28 
24 
28 

1 
0 
1 
0 

m,j) 

0.92 
2.82 
1.98 
1.04 
2.35 
1.43 
1.51 
5.39 
0.89 
4.93 
1.91 
0.99 
1.13 
4.78 

19.1 

2.21 
0.49 
4.92 
0.93 
1.48 
0.85 
1.57 
0.79 
2.53 
2.07 
1.47 
2.06 
5.56 
5.86 

1.61 
0.60 
1.03 
1.90 

"A, Alpine cluster (cluster 8 in Fig. 1); P, Pyrenean cluster (cluster 12 in Fig. 1); NBF, northern Black Forest cluster (cluster 6 in Fig. 1). 



(Mogensen, 1996): Ptl5169, Pt41093 and Pt71936 originally 
isolated from Pinus thunbergii (Vendramin et al, 1996). These 
loci were chosen for their high polymorphism and non-
overlapping product sizes out of 18 loci tested (Schmid, 2000; 
Appendix SI in Supporting Information). The 25-piL mix for 
polymerase chain reaction (PCR) contained 0.2 min of each 
dNTP, 2.5 min MgCl2, 0.2 min of each primer (the forward 
primer being labelled with a fluorescent dye), 10X reaction 
buffer (GE Healthcare, Waukesha, WI, USA), 25 ng of DNA 
and 1 unit Taq polymerase (GE Healthcare). PCR conditions 
were 5 min at 95 °C, 25 cycles of 1 min at 94 °C, 1 min at 
55 °C, 1 min at 72 °C, with a final step of 8 min at 72 °C. 
Amplification products of the three loci were mixed, separated 
on an ALF sequencer (GE Healthcare) and sized by comparison 
with internal size standards of 50, 100 and 200 bp using the 
software FRAGMENT MANAGER ver. 1.2 (GE Healthcare). 

Genetic diversity analysis 

In order to characterize polymorphism in each population, we 
recorded the number of haplotypes and the number of 
population-specific (i.e. prívate or endemic) haplotypes, and 
we estimated rarefied haplotypic richness, which is the number 
of haplotypes expected in each population for a standardized 
sample size (13 individuáis in our case), using the program 
RAREFAC (Petit et al, 1998). The program SPAGEDI (Hardy & 
Vekemans, 2002) was used to compute haplotypic diversity, H, 
corrected for small sample size. In order to estímate divergence 
between haplotypes within populations, we computed the 
average distance Djh(i,j) between all pairs of individuáis i and 
;', defining the distance between the haplotypes carried by i and 
; according to a microsatellite stepwise mutation model (Echt 
et al, 1998; Vendramin et al, 1998): 

Dí(i,í)=xr1 
/ „ \a¡k — ajk\ 

where a^ and a;/¿ are the alíele sizes of the haplotypes carried by 
i and j at the fcth microsatellite región, and K = 3 is the 
number of microsatellite regions analysed. This distance is 
based on the Goldstein et al (1995) distance, but treats the 
non-recombinant chloroplast genome as a single locus (Echt 
et al, 1998; Vendramin et al, 1998). 

Genetic structure analyses 

To evalúate the strength of differentiation of each population 
from all others, we report the number of significant exact tests 
of pairwise population differentiation based on haplotype 
frequencies (FST). Exact tests were computed in ARLEQUÍN 
ver. 3.1 (Excoffier et al, 2005), and a sequential Bonferroni 
correction (Rice, 1989) was applied. A hierarchical analysis of 
molecular variance (AMOVA) of haplotype frequencies, 
implemented in ARLEQUÍN ver. 3.1, was used to assess (1) 
differentiation among species and populations within species, 
and (2) differentiation among geographical regions (Iberian 

System, Pyrenees, Alps, and all populations north of the Alps) 
and among populations within regions. 

SPAGEDI was used to compute overall among-population 
differentiation based on unordered (GST) o r ordered (NSr) 
alíeles. For the estimation of NST, a distance matrix between all 
pairs of haplotypes was computed, defining distances between 
haplotyes as above. The significance of the two differentiation 
statistics was tested with 10,000 permutations of individuáis 
among populations. Phylogeographic structure, namely 
whether phylogenetically cióse haplotypes are found together 
in the same population more often than randomly chosen ones 
(Pons & Petit, 1996), was investigated by comparing Nsr with 
the distribution of NST in 10,000 permutations of haplotype 
distances among pairs of haplotypes (Hardy et al, 2003). 

The overall geographical structure of genetic diversity was 
analysed using Bayesian analysis of population structure 
(BAPS, implemented in the program BAPS ver. 5.1, Corander 
et al, 2003). We applied both a non-spatial and a spatial 
genetic mixture analysis (Corander et al, 2008) to groups 
(sampled populations) of haplotypes. These methods use a 
Markov chain Monte Cario simulation approach to group 
population samples into variable user-defined numbers K of 
clusters. The best partition of populations into K clusters is 
identified as the one with the highest marginal log-likelihood. 
We carried out 10 repetitions of the algorithm for each K 
ranging between 1 and 29. Finally, to test for isolation by 
distance in the whole dataset and various subsets (see Results), 
Mantel tests were conducted between the matrices of pairwise 
genetic differentiation [FST/(1 ~~ FST)] a n d of the logarithm of 
pairwise geographical distances among populations (Rousset, 
1997). 

Demographic inferences from genetic data 

We applied a series of analyses to identify signs of population 
expansión and date them in the P. mugo s.l. dataset, excluding 
potentially introgressed haplotypes. In an expanding popula
tion, the genealogy of a random sample of gene sequences is 
star-shaped, characterized by short internodes and long 
terminal branches (Slatkin & Hudson, 1991). New mutations 
on these branches result in a relative abundance of rare alíeles 
or haplotypes, compared with populations of stationary size. 
Fu's Fs-test statistic is sensitive to such an excess of rare 
haplotypes and takes a large negative valué in expanding 
populations (Fu, 1997). We used ARLEQUÍN ver. 3.1 to test for 
the significance of Fu's Fs. For this, we coded cpSSR data in a 
binary way, representing for each locus the number of repeats 
of the largest variant with T s and replacing the absent repeats 
of shorter variants with '0's. Owing to a particular behaviour of 
the Fs-statistic, a test with P < 0.02 was considered evidence 
for population expansión at the significance level of a = 0.05 
(Fu, 1997). 

We also examined the shape of the distribution of pairwise 
size differences between haplotypes within populations. We 
refer to this as a 'mismatch distribution', as is common 
practice in the literature (Harpending et al, 1993), although 



size differences do not strictly correspond to nucleotide 
mismatches. Mismatch distributions in expanding populations 
are typically monomodal (Slatkin & Hudson, 1991), whereas 
they are ragged and multimodal in populations with a stationary 
size. From the mismatch distribution, the population growth 
parameters x = 2pit (expansión time), 0O = 2piN0 (initial pop
ulation size scaled by mutation rate) and &i - 2/iNi (present 
population size scaled by mutation rate), where pi is the 
mutation rate, t the number of generations since population 
expansión and N0 and Ni the population sizes before and after 
expansión (Rogers & Harpending, 1992), can be estimated 
following the procedure of Schneider & Excoffier (1999). 
Navascues et al. (2006) have shown that the accuracy of 
parameter estimates decreases if there is homoplasy in the data, 
as is common for cpSSRs (Provan et al, 2001). We used their 
new máximum pseudo-likelihood estimation procedure for 
population growth parameters that takes homoplasy into 
account, implemented in the program LMSE (Navascues et al., 
2009). 

RESULTS 

Levéis and structure of genetic diversity 

The numbers of size variants identified at the loci Ptl5169, 
Pt41093 and Pt71936 in P. mugo s.l. were 9, 14 and 8, 
respectively. They combined into 100 haplotypes (see 
Table SI), resulting in a high total haplotypic diversity of 
fíE = 0.96 (Table 2). In the four P. sylvestris populations, the 
same loci displayed 5, 4 and 7 size variants, which resolved 23 
haplotypes (see Table S2). The variant size ranges were roughly 
the same in both species for locus Pt71936. For locus Ptl5169, 
P. sylvestris carried mostly variants [127, 128 and 129 base 
pairs (bp), range 126-130 bp] that corresponded to the upper 
part of the variant size range found in P. mugo s.l. (range: 
119-129 bp). For locus Pt41093, the common variants in 
P. sylvestris (77 and 78 bp, range: 76-79 bp) corresponded to 
the shorter variants of P. mugo s.l. (range: 77-92 bp). Eight 
P. mugo s.l. individuáis displayed a total of seven haplotypes 
characterized by a long variant at Ptl5169 and a short variant 
at Pt41093, indicating that they might be introgressed from 
P. sylvestris. Four of these haplotypes were indeed shared 
between the two species; they occurred in P. mugo s.l. 
populations VXS (haplotypes 84, 88 and 100), F3 (haplotype 
88) and PIT (haplotype 94). The shared haplotypes of the VXS 
population from southern Mont Ventoux occurred in the 
P. sylvestris populations CAD, FOC and LUR, which are all 
within 60 km of VXS, but not in the P. sylvestris population 
from the Pyrenees. The three other suspected introgressed 
haplotypes occurred in population VXS (haplotype 97), and in 
the two Spanish populations El (haplotype 99) and E4 
(haplotype 95), where P. uncinata and P. sylvestris grow 
sympatrically. The P. mugo s.l. populations with (suspected) 
introgressed haplotypes were generally among those with the 
highest divergence between haplotypes [ ¿ ^ ( Í ' J ) around 5 or 
higher, Table 2]. 

The P. mugo s.l. populations with the lowest diversity, 
displaying an allelic richness of 5.5 haplotypes or fewer in a 
random sample of 13 individuáis (Table 2), were peripheral: 
E3-E5 in Spain, PIT in southern France, and N2 and S2 from 
the Black Forest. Together with additional populations from 
the Black Forest, these populations also showed the highest 
number of significant pairwise differentiation tests (Table 2). 
Conversely, the most polymorphic populations, displaying an 
allelic richness of over eight haplotypes, belonged mostly to the 
Alpine range of P. mugo s.l., and these populations were also 
among the least differentiated. 

In a hierarchical AMOVA framework, species belonging to 
P. mugo s.l. were not significantly differentiated from each 
other in the sampled range (FCT - -0.004, P > 0.05), but 
populations were significantly differentiated within species 
(Fsc - 0.078, P < 0.001). Geographical regions were signifi
cantly differentiated (FCT = 0.013, P < 0.05), as were popula
tions within regions (F sc = 0.069, P < 0.001). These results 
indícate that geography is a stronger determinant of genetic 
structure at cpSSRs in the sampled range of P. mugo s.l. than 
taxonomy (see also below). In the overall dataset, among-
population differentiation was FST = 0.076 and Gsr = 0.070 
based on unordered alíeles, and NST = 0.263 based on ordered 
alíeles (all three statistics significant with P < 0.001). The test 
for phylogeographic structure was significant [NST > NSj 
(permuted), P < 0.001]. 

We applied a Bayesian analysis of population structure to 
characterize the overall structure of genetic diversity in 
P. mugo s.l. Results were similar using either a non-spatial or 
a spatial model for genetic mixture analysis; the best partition 
contained 14 or 12 clusters, respectively. A large cluster of 
Alpine populations and a smaller one of Pyrenean populations 
were identified (clusters 8 and 12 for the spatial model, Fig. 1), 
whereas most other populations were found in single-popu-
lation clusters. In the spatial model, the Mont Ventoux 
populations clustered within the Pyrenean cluster. In the non-
spatial model, the eastern Pyrenean populations LAN and POG 
and the southern Mont Ventoux population VXS clustered 
within the Alpine cluster, indicating some haplotype sharing 
with the Alpine range. Differentiation analysis was also carried 
out in the Alpine and Pyrenean clusters defined from the 
spatial BAPS analysis (Fig. 1). Populations from the Pyrenean 
cluster were not significantly differentiated based on unor
dered alíeles (GST = 0.005, P > 0.05), although they were using 
ordered alíeles (NST = 0.139, P < 0.001), essentially as a result 
of the features of the above-mentioned VXS population. 
Differentiation in the Alpine cluster was weak but significant 
[GST = 0.036, P < 0.001; NST = 0.130, P < 0.001; NST > NST 

(permuted), P = 0.001]. Populations of P. mugo s.s. were not 
significantly differentiated from populations of P. uncinata 
within the Alps (FCT = -0.003, P > 0.05), but populations 
within both species were significantly differentiated 
(Fsc = 0.020, P < 0.001). It is also worth noting that the 
seven populations within the Black Forest belonged to five 
distinct clusters (Fig. 1); henee they were strongly differenti
ated despite the short spatial distance separating them 



[GST = 0.085, Nsr = 0.337, Nsr > Nsr (permuted), all 
P < 0.001]. Tests for isolation by distance were marginally 
significant in the overall dataset (P = 0.088) but non-signif-
icant in the Pyrenean and in the Alpine BAPS clusters and in 
the Black Forest. 

Demographic inferences from genetic data 

Fu's Ps-test for population expansión was significant in most 
core populations, but in only a few peripheral populations 
(Table 3). Mismatch distributions were monomodal or slightly 
wavy for Alpine and Pyrenean populations, but very irregular 
for most peripheral populations, in particular for those with 
low genetic diversity (Fig. 2). This suggests that core and 
peripheral populations of P. mugo s.l. have had different 
demographic histories. In the Alps, roughly two types of 
populations could be distinguished: those with strictly mono-
modal mismatch distributions (II, A2, F4, and to a lesser 
extent Fl and F2), and those with wavy, bimodal distributions 
(Al, A3, Cl, F3). The latter were able to maintain a lineage 
with short variants (81-83 bp) at locus Pt41093 and might 
represent oíd populations. The Pyrenean populations' mis-
match distributions were all wavy, and, again, this pattern was 
caused by the geographical distribution of a short variant 
(85 bp) at locus Pt41093 (Fig. 2). Valúes of the time of 
expansión x varied about 3-fold in Alpine and Pyrenean 
populations but oscillated around the same valúes, 
1.9 < T < 5.5 (Table 3), which suggests similar expansión 
times in these two ranges. Interpretations in terms of years 
since expansión are subject to the imprecisión with which 
mutation rates are known for cpSSRs in pines. If a low 
mutation rate of /i = 10~5 (Provan et al, 1999) and a long 
generation time of 100 years (as in Navascués et al, 2006) are 
assumed for the average x = 3.56, the Alpine/Pyrenean 
expansión could be as oíd as 18 X 106 years. A high mutation 
rate (/i = 10~3), suggested by the high diversity found in 
cpSSRs of European pine species (e.g. Robledo-Arnuncio et al, 
2005), and a short generation time of 25 years (as in Brown 
et al, 2004) would still place the expansión at 44,500 years 
ago. Henee, the genetic signs of expansión resulted from 
demographic events that pre-dated the LGM. Our results 
also suggest that the current effective population size of 
P. mugo in core populations (1.3 X 105 < 0 ! < 2.1 X 1013) 
was larger than that in expanding peripheral populations 
(36.5 < e x < 7.6 X 105). 

DISCUSSION 

Absence of species differentiation in Pinus mugo s.l. 

The high morphological variation and adaptation to different 
ecological conditions in the P. mugo complex gave rise to the 
delimitation of the species P. uncinata, P. mugo s.s. and 
P. rotundata (Businsky, 1999), which have numerous syn-
onyms (Hamerník & Musil, 2007). Genetic variation at neutral 
cpSSRs was high in P. mugo s.l., HE = 0.96, similar to or higher 

than in other conifers in Central Europe or the Mediterranean 
Basin (Gómez et al, 2005; Robledo-Arnuncio et al, 2005; 
Terrab et al, 2006). Genetic variation was, however, not 
structured according to morphology, but according to geog-
raphy. In particular, Alpine populations of P. uncinata and 
P. mugo s.s. belonged to a nearly homogeneous gene pool at 
cpSSR markers, indicating a common history and homoge-
nizing gene flow. This result is in agreement with the absence 
of differentiation between 15 Alpine populations of P. unci
nata and P. mugo s.s. at nuclear random amplified polymor-
phic DNA markers (Monteleone et al, 2006), and with a 
smaller allozyme differentiation between Alpine P. uncinata 
and P. mugo s.s. than among P. rotundata populations from 
the Black Forest (Schmid, 2000). Moreover, Lewandowski 
et al. (2000) identified only weak allozyme differentiation 
between populations belonging to different taxa from the 
P. mugo complex. These results suggest that different growth 
forms and ecological adaptations evolved in different parts of 
the distribution range of the complex and were maintained 
despite the existence of extensive gene flow (Sambatti & Rice, 
2006; Savolainen et al, 2007). The evolution of local adapta
tions and the ensuing high taxonomic diversity paralleled with 
low genetic differentiation at neutral markers seem to be a 
common pattern in pines (e.g. Barbero et al, 1998; Savolainen 
et al, 2007). For instance, Flora Europaea lists 26 varieties for 
P. sylvestris (Gaussen et al, 1993) and differentiation is strong 
for quantitative traits (García-Gil et al, 2003), but cpSSR and 
allozyme differentiation are weak over large parts of the range 
(both c. 7%; Cheddadi et al, 2006; Wang et al, 2008). 
Similarly, in maritime pine, Pinus pinaster Ait, at least three 
subspecies are recognized (Barbero et al, 1998), and quanti
tative traits are much more strongly differentiated than 
allozymes (González-Martínez et al, 2002) or cpSSRs (Bucci 
et al, 2007). These observations suggest that adaptations in 
pines probably rest on a few genes while the majority of the 
genome shows only weak differentiation and reflects essentially 
demographic history (Scotti-Saintagne et al, 2004; González-
Martínez et al, 2008). 

Phylogeographic structure 

The pattern of differentiation we identified in the surveyed 
range of P. mugo s.l. was weak (GST = 0.07), but had a clear 
phylogeographic structure [Nsr = 0.263, Nsr > Nsr (per
muted), P < 0.001], with vicariant gene pools in the Pyrenees 
and Alps and several smaller genetic clusters corresponding 
mostly to marginal populations. This differentiation pattern 
suggests that different historical and possibly adaptation 
processes affected central versus peripheral populations of 
P. mugo s.l. in the studied range. Our results are completely 
congruent with a recently published phylogeographic study of 
P. uncinata, which also reports a homogeneous Pyrenean gene 
pool and strongly differentiated populations in the Iberian 
System (Dzialuk et al, 2009). Although macrofossil data 
provided unambiguous support for glacial refugia of P. mugo 
s.l. only in the Alps and in the Czech Republic, differentiated 



Table 3 Tests for population expansión and estimation of demographic parameters in populations of the Pinus mugo species complex in western Europe. BAPS group: cluster assigned in the 
Bayesian analysis of population structure (see text); Fu's test: test of population expansión (Fu, 1997); Population growth parameters (with homoplasy): máximum pseudo-likelihood method of 
Navascués et al. (2009) to estimate ancestral (0O) and current (©i) population sizes, scaled by mutation rate, and the number of generations (T) since the beginning of expansión, scaled by 
mutation rate; -log[CL]: likelihood of the model; n.a.: method not applied because Fu's test was non-significant. 

Región ID Population Species 

P. mugo s.s. 

P. mugo s.s. 

P. mugo s.s. 

P. uncinata 

P. uncinata 

P. uncinata 

P. mugo s.s. 

P. uncinata 

P. uncinata 

P. uncinata 

P. uncinata 

P. uncinata 

P. uncinata 

P. uncinata 

P. rotundata 

P. rotundata 

P. rotundata 

P. rotundata 

P. X pseudopumilio 

P. X pseudopumilio 

P. X pseudopumilio 

P. uncinata 

P. uncinata 

P. rotundata 

P. uncinata 

P. uncinata 

P. uncinata 

P. uncinata 

BAPS 

group* 

A 

A 

A 

A 

A 

A 

A 

A 

A 

P 

P 

P 

P 

A/P 

A 

A 

NBF 

NBF 

A 

n 

24 

24 

24 

24 

24 

24 

24 

47 

24 

239 

20 

22 

24 

28 

94 

26 

48 

24 

24 

24 

24 

24 

24 

24 

24 

24 

23 

90 

20 

22 

Fu's test 

Fu's Fs 

-8.0636 

-9.8363 

-7.7800 

-6.0340 

-8.5510 

-8.4183 

-9.2685 

-16.0977 

-6.9137 

-26.1068 

-5.5979 

-0.8389 

-4.9505 

-6.5923 

-7.7169 

-3.0738 

-17.7173 

-0.9583 

-3.3652 

-3.0294 

-5.0145 

-2.3595 

-3.6368 

-4.3765 

-10.9713 

-2.5319 

-2.3433 

1.0945 

2.3347 

1.3627 

P-value 

0.000 

0.000 

0.000 

0.000 

0.001 

0.000 

0.000 

0.000 

0.000 

0.000 

0.001 

0.343 

0.004 

0.000 

0.004 

0.079 

0.000 

0.278 

0.062 

0.043 

0.004 

0.078 

0.024 

0.005 

0.000 

0.084 

0.084 

0.735 

0.886 

0.754 

Population g 

©0 

1.16 X 

7.15 

4.69 

1.52 X 

4.43 

8.97 X 

6.47 X 

9.13 

7.22 X 

4.85 

2.54 

n.a. 

9.90 X 

9.63 X 

4.86 X 

n.a. 

1.70 

n.a. 

n.a. 

n.a. 

1.03 X 

n.a. 

n.a. 

4.73 X 

3.50 X 

n.a. 

n.a. 

n.a. 

n.a. 

n.a. 

10"4 

10"4 

10"1 

lO"5 

10"1 

lO"5 

lO"3 

10"1 

lO"4 

10"6 

10"6 

rowth parameters 

©i 

2.10 

5.49 

7.50 

1.19 

1.33 

5.28 

3.56 

4.31 

6.67 

8.39 

7.79 

n.a. 

1.44 

1.32 

2.42 

n.a. 

6.86 

n.a. 

n.a. 

n.a. 

3.65 

n.a. 

n.a. 

5.90 

7.61 

n.a. 

n.a. 

n.a. 

n.a. 

n.a. 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

103 

1012 

1012 

1011 

1013 

105 

1012 

105 

1012 

1011 

105 

1012 

105 

105 

104 

101 

105 

105 

(with homoplasy) 

T 

4.58 

1.92 

1.50 

4.20 

2.98 

3.96 

5.48 

4.50 

2.58 

2.81 

2.94 

n.a. 

3.89 

4.20 

4.51 

n.a. 

6.05 

n.a. 

n.a. 

n.a. 

6.03 

n.a. 

n.a. 

3.16 

12.00 

n.a. 

n.a. 

n.a. 

n.a. 

n.a. 

-log[CL] 

39.3158 

24.2562 

31.1874 

38.9933 

22.3526 

26.6068 

26.7261 

56.0157 

31.7544 

879.1600 

25.4610 

n.a. 

33.5098 

34.3784 

306.2670 

n.a. 

64.5111 

n.a. 

n.a. 

n.a. 

28.4685 

n.a. 

n.a. 

38.3271 

23.6352 

n.a. 

n.a. 

n.a. 

n.a. 

n.a. 

Core populations 
Alps 

Alps (pooled) 
Pyrenees 

Pyrenees (pooled) 
Mont Ventoux 

Peripheral populations 
Black Forest 

Jura Mountains 

Vosges 
Pyrenees 

Iberian System 

A2 Steiermark (Austria) 
Al Lechtaler Alpen (Austria) 
A3 Kitzbühler Alpen (Austria) 
II Ótztaler Alpen (Italy) 
Cl Berner Alpen (Switzerland) 
Fl Hautes Alpes (France) 
F2 Alpes Maritimes (France) 
F3 Alpes Maritimes (France) 
F4 Alpes de Haute-Provence (France) 

El Pirineos Centrales (Spain) 
E2 Pirineos Orientales (Spain) 
POG Pirineos Orientales (Spain) 
LAN Pyrénées orientales (France) 

VX Provence (France) 

51 Southern Black Forest (Germany) 
52 Southern Black Forest (Germany) 
53 Southern Black Forest (Germany) 
54 Southern Black Forest (Germany) 
NI Northern Black Forest (Germany) 
N2 Northern Black Forest (Germany) 
N3 Northern Black Forest (Germany) 
F5 Jura Mountains (France) 

C2 Jura Mountains (Switzerland) 
F6 Vosges (France) 
E3 Prepirineos (Spain) 
PIT Pyrénées orientales (France) 
E4 Sierra de Gúdar (Spain) 
E5 Sierra de Cebollera (Spain) 

"A, Alpine cluster (cluster 8 in Fig. 1); P, Pyrenean cluster (cluster 12 in Fig. 1); NBF, northern Black Forest cluster (cluster 6 in Fig. 1). 
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Figure 2 Mismatch distributions of Alpine (top), Pyrenean (middle) and marginal (i.e. peripheral with low diversity, see text) (bottom) 
populations of the Pinus mugo species complex in western Europe. The inset map shows the distribution of the 85-bp variant at Pt40196. 

gene pools in the Alps and Pyrenees suggest colonization of 

both mountain ranges from independent glacial refugia. A 

third major vicariant gene pool for P. mugo s.s. might lie 

within the Balkan Península (not surveyed in our study), 

where Slavov & Zhelev (2004) found only very weak 

differentiation among populations, FS T = 0.04, using allo-

zymes (see also Feurdean et al, 2007). Distinct vicariant gene 

pools on major mountain chains have also been identified for 

other conifers of the región, for instance for Abies alba Mili. 

(Vendramin et al, 1999), P. nigra (Afzal-Rafii & Dodd, 2007) 



and Pinus cembra (Hohn et al, 2009). For P. nigra, differen-
tiated peripheral populations were also observed (Afzal-Rafii & 
Dodd, 2007). 

Our cpSSR data revealed signatures of population expansión 
pre-dating the LGM (c. 18,000 yr BP) in Alpine and Pyrenean 
populations of the P. mugo complex. Palaeobotanical evidence 
indicates that P. sylvestris/P. mugo s.l. was present in Europe 
throughout the Pleistocene cold stages and interglacials (West, 
1980; Field et al., 2000) and spread early in the post-glacial 
period from a wide range of locations, including sites in the 
Iberian Península, the Alps, the Hungarian plains and the 
Carpathians (Cheddadi et al., 2006; see also the Introduction). 
Given that average Weichselian temperatures were higher than 
in the LGM (van Andel, 2002; Van Meerbeeck et al, 2009), the 
earlier spread suggested by our genetic data is conceivable, but 
supporting quantitative palaeobotanical data are not available, 
to our knowledge. Similarly to the case for P. mugo s.l., 
bottlenecks followed by population expansión were detected in 
Eurosiberian, cold-adapted conifers based on nuclear DNA 
sequence data (dated to 150,000-300,000 yr BP in Picea abies, 
Heuertz et al., 2006; to c. 2 Myr BP in P. sylvestris, Pyhájárvi 
et al, 2007). 

Within the Alpine and Pyrenean P. mugo s.l. gene pools, 
overall genetic structure (measured with GST) w a s weak or 
absent, but phylogeographic structure [NST > NST (per-
muted)] was discovered in each mountain range. These results 
suggest that each mountain chain was probably colonized by a 
different series of historically differentiated glacial populations, 
which became well connected by pollen flow within mountain 
chains at the latest during post-glacial recolonization, but 
possibly earlier (see also Liepelt et al, 2002; Heuertz et al., 
2004). In the Alps, good candida tes for a long-term glacial 
refugium are the western Alpine populations F2 and F3, 
harbouring a total of seven endemic haplotypes (see Refugium 
I of Schonswetter et al., 2005). Populations that were probably 
oíd, as indicated by divergent lineages [i.e. populations with 
high D^h(í,j), bimodal mismatch distributions, and/or numer-
ous high pairwise NST-values (results not shown)], were widely 
spread throughout the Alps, from west (Cl, F2 and F3) to east 
(II, Al and A3), on southern (F2) or northern flanks (F4, A3), 
suggesting that colonization of the chain may have happened 
from west, south, east and north. Fossil pollen data are in 
agreement with early post-glacial recolonization from the 
south and the north-west in the Swiss Alps (Burga, 1988). 
In the Pyrenees, our sampling was fairly limited; however, 
populations from west and east of the range harboured 
endemic haplotypes (El and LAN), indicating that, similarly to 
in the Alps, múltiple populations may have contributed to the 
colonization of the current range. More differentiated mater-
nally inherited mitochondrial DNA data (e.g. Liepelt et al., 
2002) might provide further information on locations of 
glacial refugia in áreas where cpSSR data are weakly differen
tiated. However, the mitochondrial región nad3-rpS12, con-
taining microsatellite variation in Pinus species (Soranzo et al., 
1999), was monomorphic in the surveyed P. mugo s.l. range 
(Schmid, 2000). 

The P. rotundatalP. X pseudopumilio populations native to 
disjunct bog habitats of the Black Forest had very variable 
levéis of genetic diversity and were strongly differentiated, 
despite occurring within a small geographical región (the 
máximum distance between populations was 112 km). The 
highly divergent gene pools identified by BAPS suggest 
múltiple origins, including a genetic connection between the 
southern Black Forest and the Alps. High diversity and the 
presence of endemic haplotypes suggest oíd age and large 
population sizes in Steerenmoos (SI), Briglirain (S3) and 
Grosses Muhr (NI), whereas low diversity indicates strong 
genetic drift in Saumisse (N2) and Ibacher Moor (S2). The 
small bog-affected pine populations (typically 2-12 ha, 
mapped by P. von Sengbusch, University of Freiburg, pers. 
comm., 2004) are nowadays separated by silver fir and spruce 
forests (Dierssen & Dierssen, 1984) that inhibit gene flow 
among them, leading to genetic drift. Selection by the local 
environment may also have contributed to the high differen-
tiation. As in other regions, Pinus showed early post-glacial 
expansión and subsequent decline in the Black Forest (pollen 
core of the SI population, Rósch, 2000). Furthermore, human 
impact has been intense in the región since about 7600 yr BP, 
and the present-day bog pine populations seemed to have 
expanded only after medieval burning (Rósch, 2000, and 
references therein). Additional distinct gene pools were 
identified in bog-affected populations: in the isolated popu
lation from the French Vosges (F6), in the Jura (with some 
Alpine influence, Fig. 1, Table 3) and in the French eastern 
Pyrenees (PIT). Overall, these data suggest múltiple glacial 
P. mugo s.l. populations north of the Alps and probably the 
Pyrenees, which kept their genetic distinctiveness despite late 
glacial and early Holocene expansión. 

The marginal populations of the Iberian Península, namely 
Prepirineos (E3), Sierra de Gúdar (E4) and Sierra de Cebollera 
(E5), were the most differentiated populations, all harbouring 
endemic haplotypes and lacking evidence of population 
expansión. These results are in agreement with a model of 
long genetic isolation, probably through several glacial cycles 
(Dzialuk et al, 2009), with populations experiencing eleva-
tional shifts but no considerable growth in size. Robledo-
Arnuncio et al. (2005) showed that P. sylvestris also responded 
to climate oscillations by elevational shifts in northern Spain, 
but, in contrast to P. uncinata, it maintained large population 
sizes. Large P. sylvestris glacial populations survived in drain-
age basins, which connected the individual mountain blocks to 
which the species retreated during warm stages (Robledo-
Arnuncio et al., 2005). It is possible that the occupation of the 
plains by P. sylvestris prevented the establishment of P. unci
nata at lower elevations during cold stages, contributing to the 
presently observed differentiation in P. uncinata. 

Haplotype sharing between P. mugo s.l. and 
P. sylvestris 

We found evidence of haplotype sharing between P. sylvestris 
and P. mugo s.l., which could result from hybridization or 



sharing of ancestral haplotypes, given that the species are 
closely related (Filppula et al, 1992). They are also partially 
interfertile, but the incidence of natural hybridization seems 
to be very low (Christensen, 1987b). In controlled crosses 
(Wachowiak et al., 2005) and under natural conditions 
(Wachowiak & Prus-Glowacki, 2008), viable offspring were 
obtained between the two species only when P. mugo s.l. was 
the pollen donor. However, our finding of P. sylvestris 
haplotypes in P. mugo s.l. would rather suggest P. sylvestris 
to be the pollen donor. Whether our results refiect true 
introgression from P. sylvestris into P. mugo is debatable, as 
the detection power is hampered by our use of few markers 
and by the suggested high levéis of homoplasy of cpSSRs 
(Provan et al, 2001). In Spain, the much more abundant 
P. sylvestris may literally swamp marginal P. uncinata popula-
tions with its pollen. Therefore, the issue of introgression is 
important for the conservation and evolution of P. mugo s.l. 
and requires more attention in future research. 

Identification of conservation priorities 

It is predicted that in the Iberian Península, montane conifer 
species such as P. sylvestris and P. uncinata will suffer intense 
and rapid reductions of their distribution ranges in the future 
because global warming will induce their migration to higher 
elevations, but such áreas of sufficient elevation are not 
available for colonization (Benito Garzón et al., 2008). The 
P. uncinata populations in Sierra de Cebollera and Sierra de 
Gúdar are in this situation. These populations are strongly 
differentiated, and, as southern 'rear edge' populations, they 
may harbour important adaptations relevant to the conserva
tion of the species (Dynesius & Jansson, 2000; Hampe & Petit, 
2005). The P. uncinata population from Sierra de Cebollera is 
showing signáis of expansión owing to lower grazing pressure 
and increased mean temperatures; however, recruitment 
patterns are signiñcantly influenced by the availability of 
suitable habitats for germination at the edges of Calluna 
vulgaris mats (Camarero et al, 2005) and high mínimum 
September temperatures (Camarero & Gutiérrez, 2007). This 
suggests that biotic interactions and nonlinear responses of 
species to temperature need to be considered when predicting 
the effects of climate change (Davis et al., 1998). In particular, 
research on competitive interactions and on the pattern of 
gene flow between P. uncinata and P. sylvestris is required in 
order to understand the effects of the climate-driven invasión 
of P. uncinata populations by P. sylvestris on low mountains in 
Spain. The genetic distinctiveness of P. uncinata populations 
from the Iberian System further justifies conservation mea-
sures. In these low mountains in situ conservation seems 
challenging, and ex situ conservation of seed lots and live 
collections is urgently needed. 

In the Black Forest, many P. rotundatalP. X pseudopumilio 
populations show considerable dieback and insufficient natural 
regeneration. These seem to be delayed consequences of the 
drainage of bogs for peat collection (von Sengbusch, 2002). 
After at least 200 years of regular burning of peat bogs in the 

Black Forest, fire disturbance has ceased, reducing the avail
ability of open habitats for bog pine regeneration. At the same 
time, the lowering of water levéis has allowed the establishment 
of a dense undergrowth and invasión of the drier bog margins 
by the shade-tolerant Picea abies (von Sengbusch, 2002). Lower 
water levéis also trigger a plástic response towards a more 
slender growth habit in straight-stemmed bog pines in the 
southern Black Forest, which makes the trees more prone to 
mechanical stress owing to winter snow cover and winds, 
enhancing the dieback (von Sengbusch, 2002). Because global 
warming is projected to aggravate the dieback, and these 
populations are genetically distinct, conservation measures are 
justified and necessary. A combined strategy of in situ conser
vation of the larger bogs along with the establishment of ex situ 
collections is recommended. 
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