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A numerical study is carried out of the injection of a very viscous liquid of small 
electrical conductivity at a constant flow rate through an orífice in a metallic píate 
under the action of an electric field. The conditions under which the injected liquid 
can form an elongated meniscus with a thin jet emanating from its tip are investigated 
by computing the flow, the electric field and the transport of electric charge in the 
meniscus and a leading región of the jet. A stationary solution is found only for 
valúes of the flow rate above a certain minimum. At modérate valúes of the applied 
field, this minimum flow rate decreases when the applied field or the conductivity of 
the liquid increase. The electric shear stress acting on the surface of the liquid is not 
able to drive the liquid into the jet at flow rates smaller than the minimum while, 
for any flow rate higher than the minimum, the transfer of electric current to the 
surface may occur in a slender región of the jet where charge relaxation effects are 
small and the field induced by the electric charge of the jet is important. At high 
valúes of the applied field, the flow rate must be higher than another minimum, which 
increases with the applied field, in order for the viscous stress to balance the strong 
electric stress acting on the meniscus. The two conditions taken together determine 
lower and upper bounds for the applied field at a given flow rate, but the valué of 
the applied field at which a stationary jet is first established when this parameter is 
gradually increased is higher than the lower bound, leading to hysteresis. When the 
liquid is electrosprayed in a surrounding dielectric fluid, the viscous shear stress that 
this fluid exerts on the surface of the jet eventually balances the electric shear stress 
and stops the continuous stretching of the jet. A fraction of the conduction current is 
left in the jet when the effect of the outer liquid comes into play in the región where 
this current is transferred to the surface, and no stationary solution is found above a 
máximum flow rate that decreases when the viscosity of the outer liquid increases or 
the applied field decreases. Order of magnitude estimates of the electric current and 
the conditions in the current transfer región are worked out. 

1. Introduction 
The electrospray is a technique for generating nearly monodisperse sprays of small 

electrically charged drops of an electrically conducting liquid using electric stresses. 
A meniscus of the liquid to be sprayed is subject to an electric field by applying a 
high voltage between the liquid, which is in contact with an electrode, and another 



electrode at some distance from the meniscus. The electric field induces an electric 
current in the liquid that accumulates electric charge at its surface and causes an 
electric stress that elongates the meniscus in the direction of the field. Under different 
conditions, the meniscus may either shed charged drops or emit one or several jets 
that in turn break into drops. The different functioning modes of an electrospray 
and the transitions between them have been classified by Cloupeau & Prunet-Foch 
(1990, 1994) and Jaworek & Krupa (1999). The cone-jet mode (Cloupeau & Prunet-
Foch 1989), in which the meniscus takes a conical shape with a single stationary 
jet emanating from its tip and breaking into drops at some distance downstream, is 
the most suitable for generating small monodisperse drops and has been extensively 
studied. In his pioneering work with a meniscus formed at the end of a capillary, 
Zeleny (1915, 1935) first showed that the balance of electric and surface tensión 
stresses in the cone-jet mode requires a voltage of order (ya/eo)1/2, where y is the 
surface tensión of the liquid, a is the radius of the base of the meniscus and eo 
is the permittivity of the surrounding médium. Taylor (1964) carried out a correct 
analysis of the balance of stresses using a spheroidal approximation for the shape 
of the meniscus in order to determine the onset voltage and showed that a conical 
meniscus of semiangle a = 49.29° is an exact hydrostatic solution (at least in the 
vicinity of the tip) for a special valué of the voltage. Smith (1986) and Cloupeau 
& Prunet-Foch (1989) found hysteresis, whereby the cone-jet can be maintained 
when the voltage is decreased below the onset voltage at which the cone-jet first 
appears when the voltage is gradually increased. Once a cone-jet is formed, the main 
parameters determining the size of the cone-to-jet transition región and the drops are 
the conductivity of the liquid and the flow rate injected into the meniscus. The size 
of the drops decreases when the flow rate decreases or the conductivity increases; see 
Fernández de la Mora & Loscertales (1994), Chen & Pui (1997) and Gañán-Calvo, 
Dávila & Barrero (1997), among others, for scaling laws of the size of the drops and 
the electric current, and Barrero et al. (2004) for extensions of these results to cone-jets 
in baths of dielectric liquids. A stable cone-jet exists only within a range of valúes of 
the flow rate that shifts towards lower flow rates as the conductivity increases (Smith 
1986). 

Cloupeau & Prunet-Foch (1989) experimentally determined the domain of operation 
or región of the voltage/flow rate plañe where a cone-jet of a given liquid can be 
established. This región is bounded by a minimum voltage that depends on the 
flow rate and at which the system jumps to an oscillatory mode, and a máximum 
voltage above which instabilities, or a múltiple-jet mode, or electrical discharges in 
the surrounding gas appear. As was already mentioned, the flow rate can be varied at 
constant voltage in the domain of operation between certain minimum and máximum 
valúes. Fernández de la Mora (2007) noted that the existence of a máximum flow rate 
probably reflects that the surrounding gas becomes unable to pass the increasing flux 
of drops generated when the flow rate increases. The minimum flow rate determines 
the thinnest jet and the highest surface electric field that can be attained with a given 
liquid (Fernández de la Mora & Loscertales 1994). The breakup of the jet into drops 
is most regular near this minimum flow rate, leading to the smallest drops and the 
narrowest size distributions (Rosell-Llompart & Fernández de la Mora 1994). 

The origin of the minimum flow rate is not yet clear, despite the large amount 
of work devoted to ascertain it. Fernández de la Mora & Loscertales (1994) 
experimentally found that the minimum flow rate is of order ego in many cases, where 
e is the dielectric constant of the liquid and Qo = <¡oY/pK, with p and K denoting 
the density and electrical conductivity of the liquid. According to these authors, 



charge relaxation effects appear in a certain región around the tip of the meniscus 
where the residence time of the flow is of the order of the electric relaxation time of 
the liquid te = <¡<¡o/K, SO that the electric charge of a material element of the liquid 
surface cannot increase at the same pace as the electric field acting on the surface 
element during its transit across the relaxation región. This condition determines 
the order of the electric current as a function of the flow rate. It also implies that the 
electric field due to the applied voltage enters the liquid in the relaxation región and 
leads to an electric shear stress that can drive the liquid into the jet. Fernández de 
la Mora (2007) pointed out that the scaling laws for the length and radius of the jet 
derived by Cherney (1999) on the basis of these charge relaxation effects suggest that 
the jet could effectively disappear, or break up before the transfer of charge to its 
surface is complete, when the flow rate is of order ego- As an alternative explanation, 
Guerrero et al. (2007) noted that the relaxation región is largely autonomous and is 
able to suck a flow rate of order e go or larger independently of the conditions of 
the meniscus, which may make a stationary configuration impossible if the meniscus 
is fed with a flow rate small compared to eg0- Gañán-Calvo et al. (1997) proposed 
that charge relaxation effects occur in a certain región of the jet, rather than around 
the tip of the meniscus, and obtained a minimum flow rate of order e1/2 g0 from this 
condition. Higuera (2008a) estimated the characteristic time of charging of the liquid 
surface in the región of the jet where the conduction current is transferred to the 
surface, showing that this time may be large compared to the electric relaxation time 
of the liquid. 

In this paper, a model configuration is used to numerically investígate the domain 
of operation of a cone-jet of a very viscous liquid, for which the effect of the inertia 
can be neglected in the meniscus and in a leading región of the jet. The model 
differs from typical experiments in two important aspects. First, the disparity of 
scales between the radius of the jet and the base of the meniscus is not as large 
in the computations as in real experiments. As a consequence, some of the results 
depend on the size of the meniscus, while Fernández de la Mora & Loscertales (1994) 
find that this size is irrelevant in their experiments and others. Second, a parallel 
píate electrode configuration is assumed, leading to a uniform electric field far from 
the meniscus instead of the more complex electric field around the metallic needle 
often used in experiments. The difference between the two fields is large at distances 
from the meniscus of the order of its size, but it is not expected to be essential 
around its tip, where the elongation of the meniscus intensifies the field in any case. 
The two differences between model and experiments commented here are required 
to make the computations affordable, but they may have an effect on the results 
that should be kept in mind when comparing them to the experiments reviewed 
above. 

In the framework of this model, a minimum flow rate is found below which no 
stationary solution exists. At small valúes of the electric field applied to the meniscus, 
the minimum flow rate is determined by the failure of the electric shear stress to 
deflect the liquid surface and drive liquid into the jet against the restoring effect of the 
surface tensión, which overcomes the normal electric stress when the minimum flow 
rate is approached. At high valúes of the applied field, the electric stresses are large 
and disrupt the meniscus if they are not balanced by large viscous stresses, which 
exist only for sufficiently high flow rates. Charge relaxation effects may be small in 
the vicinity of the minimum flow rate in both cases. A máximum flow rate is also 
found when the viscous forcé exerted on the jet by a surrounding fluid is taken into 
account. 



2. Formulation 
A flow rate Q of a liquid of viscosity ¡x and electrical conductivity K (liquid 1 

hereafter) is injected through a circular orífice of radius a in a planar metallic píate 
into a región occupied by a dielectric liquid of viscosity Á/x (liquid 0) which is at 
rest far from the orífice. The permittivity of this liquid is eo and the permittivity 
of the liquid injected through the orífice is e0e. The two liquids are immiscible with 
an interfacial surface tensión y. The metallic píate is set to a high voltage relative 
to another distant parallel píate, which leads to a uniform field E*VJ far from the 
orífice. This field induces a conduction current in liquid 1 that accumulates electric 
charge at its surface. The surface charge is convected by the flow, originating a 
surface current additional to the conduction current in liquid 1. In addition, the 
electric field and the surface charge cause an electric stress whose components normal 
and tangent to the surface (denoted rn

e and r/ is what follows) are given in the 
right-hand sides of (2.3b) and (2.3c) (see Landau & Lifshitz 1960; Saville 1997). 
In the conditions envisaged here, the electric stress strains the liquid into a jet 
of radius small compared to the radius a of the injection orífice. The analysis of 
the evolution and conditions of existence of this jet is the subject of the present 
paper. 

The Reynolds number Re = p\vca¡ \x = p\ya¡ \x2, where p\ is the density of liquid 1 
and vc = y//x is a characteristic velocity determined by an order-of-magnitude balance 
of viscous and surface tensión stresses, is assumed to be small. This Reynolds number 
is 1.8 x 10~3 for glycerol in air and 7.4 x 10~4 for glycerol in hexane when a = 0.5 mm. 
The motion of the liquid in and around the meniscus and in at least a leading 
región of the jet is dominated by viscous forces and obeys the Stokes equations when 
Re <€ 1. The electric field in liquid / (with i = 0, 1) is E¡ = — V<p¿, where <p¿ is the electric 
potential in liquid i, which satisfies Laplace's equation. At the interface, the electric 
potential is continuous (<po = <pi) and the electric field satisfies eo(^o — íE1)-n = a 
(Landau & Lifshitz 1960). Here n is a unit vector normal to the interface and 
pointing towards liquid 0 and a is the density of free surface charge. This a satisfies 
the transport equation Dcr/Dí = KE\ •n + an-Yvn, where Dcr/Dí = da/dt + vYa 
is the material derivative of a and v is the velocity of the liquids at the interface. The 
first term on the right-hand side of the equation for a is the rate of accumulation 
of charge per unit área of the interface and unit time due to the component of the 
conduction current density in liquid 1, j = KEX, normal to the interface. The second 
term is the rate of change of a due to the stretching of the interface. Here n-lvn 
is the negative of the straining rate of a material element of the interface (Batchelor 
1967). Conduction from liquid 1 tends to accumulate charge at the interface, but 
this charge reduces the normal electric field Ex-n that drives conduction (because 
E1-n = (Eo • n — a/e0)/e from the boundary condition for the electric fields normal 
to the interface). The characteristic time for conduction to screen liquid 1 from the 
outer field is the electric relaxation time te = <¡o<¡/K, which follows from the balance 

<j/te~ KE\ •« with a ~ €QEQ * K ~ €Q€E\ •«. 
The mathematical formulation of the electrohydrodynamical problem is similar to 

that of (Higuera 2006, 20076, 2008a) and will be described briefly here. Distances are 
scaled with the radius a of the orífice, velocities with the viscous-capillary velocity 
vc = y/l¿, and electric fields with Ec = (y/<¡oa)1/2. The electric potentials, density of 
surface charge and electric currents are scaled with Eca, €QEC and <¡oEcvca, respectively. 
The interface between the liquids, which is a free material surface, is denoted by 
f(x, í) = 0. The governing equations and boundary conditions are (subscripts 0 and 



1 denote velocities, pressures and electric fields in liquids 0 and 1) 

V-l!0 = 

in liquid 0, for f{x, t) > 0, 

V-i>i 

in liquid 1, for f(x, t) < 0, 

Po - P\ + n • {x[ -

= 0, 0 = -Vpo + /LV2D0, V>o = 0 

= 0, 0 = -VPl + V 2 D 1 ; V2<pi=0 
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(2.1) 

(2.2) 

(2.3a) 

(236) 

(2.3c) 

(2.3d) 

(2.3e) 

at the interface, f(x, t) = 0, which is assumed to be anchored to the edge of the orífice 
( / = 0 at the edge), 

a- n = Vl = o (2.4) i > o = 0 , 

at the metallic píate (x = 0), and 

Po = Pi = 0, 

l>! = 

DO = 

— i , 
K 

= 0, V<p0 = V<?i = -Emi (2.5) 

far from the píate. Here ph with i = 0 , 1 , is the pressure of liquid / referred to the 
pressure of liquid 0 far from the orífice and scaled with ¡xvc/a; r¿ =/L[VD0 + (VD0) ] 
and T1' = VD1 + (V«i) are the dimensionless viscous stress tensors; n and t are unit 
vectors normal and tangent to the interface; E0„ = E0-n, E0t = E0-t, and similarly 
for E\n and E\t; i is a unit vector perpendicular to the metallic píate, and x is the 
dimensionless distance to the píate. 

The five dimensionless parameters that appear in (2.1)-(2.5) are 

ya¿ y1'1 €QY 

The electric current / induced by the applied field E(a is the sum of the conduction 
current in the bulk of liquid 1 and the surface current due to the convection of 
the free electric charge at the interface. The sum of the two contributions to the 
current is a constant independent of x for any stationary solution of (2.1)-(2.5). For 
an axisymmetric solution, I = Ib + Is with 

r* 
Ib=2%A / Eíxrár and Is = 2%avsrs, (2.7) 

where Eíx is the axial component of the electric field in liquid 1, r is the distance to 
the symmetry axis, rs(x) is the radius of the cross-section of the interface and vs(x) is 
the velocity of the liquids at the interface. 

The asymptotic form of the solution of (2.1)-(2.5) far from the orífice is very much 
affected by the presence of the outer liquid. In the absence of whipping or breakup, 
the stationary flow in the jet is quasi-unidirectional for x > 1. The Stokes equation 



in (2.2) can be integrated across the jet to yield, upon using the boundary conditions 
(2.36) and (2.3c), 

which is a generalization of the result in Feng (2002) (see also Higuera 2006). Here 
v = Ca/nr2 is the velocity of liquid 1, which is nearly uniform in the jet cross-section, 
and (rn

e, x¡) and (rn°, r,
0) are the components normal and tangent to the interface of the 

electric stress and the stress of liquid 0 on the interface. Far from the orífice Elt« E(a 

and the electric shear stress is xf = aElt«(/ — Ib)Ecors/2Ca, where the density of 
surface charge has been obtained from the equality IS = I — h with Is x2navrs, and 
h^TiAE^r2. 

In the absence of outer liquid (Á = 0), it is 3rn°/3x = r,0 = 0 in (2.8). The balance of 
the axial forces due to the effective axial viscous stress (first term of the equation), to 
the axial gradient of the pressure variation caused by the surface tensión (in the second 
term), and to the electric shear stress (third term) gives in this case (Higuera 2006) 

(2.9) 

The radius of the jet, and therefore the conduction current, tend to zero far from the 
orífice. 

When X > 0, the motion that the jet induces in the outer liquid can be represented as 
a line distribution of Stokeslets (Happel & Brenner 1965). The condition of continuity 
of the velocity at the interface gives the viscous shear stress of the outer liquid on 
the interface as r® = —Áv/rs, up to logarithmically small terms. This stress eventually 
balances the electric shear stress (r,0« —rt

e), giving the algebraic equation 

2XCc2 

TlE{x 
KAE^)r: = ^ ^ - (2.10) 

for the radius of the jet. The result that the radius of the jet tends to a constant 
asymptotic valué far downstream is to be understood as a coarse approximation 
only, given the large error involved in the evaluation of r® above. This constant 
asymptotic radius is to be compared to the continuous decrease of the radius 
in (2.9). The conduction current tends to a constant valué in the approximation 
leading to (2.10). This equation has two positive real roots if the parameter group 
G = P/ÁA2EcoCa2 > 277t/2 and none elsewhere. If G is large, the conduction current 
is small compared to the total current for the lower root of (2.10) and approximately 
equal to the total current for the upper root. The lower root, which is much smaller 
than the upper root and is probably the only one physically attainable in these 
conditions (see § 3.2), and the associated valúes of the velocity of the liquid and the 
density of surface charge, are 

21Ca2V/4 ÍECJ\ÍI2 í XP ^ / 4 

TiEmI I ' \ 2iík I ' \ %nEa,Ca2 (2.11) 

Stationary axisymmetric solutions of (2.1)-(2.5) have been computed by letting the 
system evolve in time from an arbitrary initial condition. Boundary element methods 
have been used to solve the Laplace and Stokes equations (2.1) and (2.2), and a second 
order Runge-Kutta method has been used to intégrate the evolution equations for 
the liquid interface and the density of surface charge in (2.3a) and (2.3e). As in 
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FIGURE 1. Dimensionless electric current (7) as a function of the dimensionless flow rate (Ca) 
for e =20, 1 = 0 (solid), 0.01 (dashed) and 0.1 (chain), Em = 1, 2, 3, 4 and 5, increasing from 
bottom to top, and A = 103 (a) and 2 x 104 (£>). Some of the boundaries of the range of Ca 
where a solution exists are marked with dots. 

previous works (Higuera 2006, 2007a, 2008a), the jet has been artificially truncated at 
a distance from the orífice sufficiently large to ensure, through numerical tests, that 
the solution is insensitive to the truncation. 

3. Results and discussion 
The electric current in shown in figure 1 as a function of the flow rate Ca for e = 20, 

different valúes of the applied field Em and the viscosity ratio 1, and two valúes of 
the dimensionless conductivity A. The electric current always increases with Ca and 
Em. It also increases with A, though less than linearly, and with L The valúes A = 103 

and 2 x 104 used in figure 1 can be obtained for glycerol in air with a = 0.5mm and 
conductivities K = 7.6x lO^Sm"1 and 1.5 x lO^Sm"1 . 

There are several boundaries of the región of the parameter space where a stationary 
solution with a jet emanating from the tip of the meniscus of liquid 1 exists. There 
is a minimum flow rate below which no stationary solution is found. At low Em, 
the minimum flow rate decreases slightly when E(a increases (though this cannot 
be clearly seen at the scale of figure 1; see figures 2a and 3) and the stationary 
solution breaks down in a leading región of the jet when the minimum flow rate is 
approached. At high Em, on the other hand, the electric forces are strong enough to 
disrupt the meniscus when the flow rate is too small, leading to a minimum flow rate 
that increases with E(a (see figure 3). 

In the presence of an outer liquid (Á > 0), there is also an upper limit to the flow 
rate, which increases with Em and decreases when X increases. The electric shear at 
the interface is not able to overeóme the viscous shear due to the outer liquid for 
valúes of the flow rate above this máximum. The stationary solution breaks down at 
the beginning of the jet when the máximum flow rate is approached. 

The characteristics of the flow are analysed separately for X = 0 and Á > 0 in what 
follows. 

3.1. Case ofl = 0 
3.1.1. Minimum flow rate at hysteresis 

Figure 2(a) shows contours of constant volume of the meniscus in a región of the 
(Zíoo, Ca) plañe for e = 20, 1 = 0 and 7l = 103 (solid contours) and 2 x 104 (dashed 
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FIGURE 2. Contours of constant volume in the electric field/flow rate plañe (a) and the electric 
field/electric current plañe (b) for e =20, A = 103 (solid contours) and 2x 104 (dashed contours). 
Dotted curves give the minimum flow rate (in (a)) and the minimum electric current (in (£>)) 
as functions of the electric field for each valué of A. Contours shown are, from bottom-right 
to top-left, y =0.7, 0.9, 1.2, 1.5 and 2 for A = 103, and y =0.7, 0.9, 1.2 and 2 for A =2 x 104, 
where V is the volume of liquid in the meniscus scaled with a3. 

contours). Stationary solutions with a given volume of liquid in the meniscus exist 
only above a certain E(a at which the corresponding contour in figure 2{a) becomes 
vertical. The minimum E(a decreases, and the associated minimum Ca increases, when 
the volume of liquid increases. The locus of these minima (dotted curves in figure 2a, 
for each of the two valúes of A considered) defines the first boundary of the región of 
existence of stationary solutions mentioned above. In the operation of an electrospray 
at constant Em, the domain is traversed downwards along a vertical line when the 
dimensionless flow rate Ca decreases. The volume of the meniscus decreases with Ca 
until the lower boundary (minimum Ca and volume for the valué of E(a chosen) is 
reached. The electric current emitted by the jet is shown in figure 2(b). 

It may be noted that a hydrostatic meniscus (Ca = 0) with a given volume of liquid 
attached to a metallic píate exists when Em is smaller than a certain Em¡¡ that also 
decreases when the volume of the meniscus increases (see e.g. Higuera 20086). For a 
given volume, this E(aH is larger than the minimum E(a in figure 2{á). For example, 
it is £ ^ « 0 . 8 6 for y =0.9 and £ ^ « 0 . 5 6 for V =2, where V is the volume of 
liquid scaled with a?. Therefore there is a range of Ead where two stable solutions 
are possible for a meniscus of a given volume; a hydrostatic solution with a rounded 
surface and a meniscus that emits a thin jet from its tip, as in figure 4(a). (The second 
solution, of course, requires a continuous supply of liquid to make for the flow rate 
emitted by the jet and keep the volume constant). This multiplicity leads to hysteresis, 
as will be discussed below. 

In addition to the two stable solutions, there is also an unstable hydrostatic 
solution for the same volume of liquid when Ead is in a range that extends from 
E(aH to a smaller valué Emc < Em¡¡ (see e.g. Taylor 1964; Miksis 1981; Wohlhuter 
& Basaran 1992). The origin of this branch of unstable hydrostatic solutions is in 
the intensification of the electric field and the electric stress at the surface when 
the meniscus elongates under the action of the electric stress. The elongation of the 
unstable meniscus increases when Em decreases, until the meniscus develops a conical 
tip with an angle equal to the Taylor angle (Taylor 1964) for E(a = Emc, which is the 
end point of the unstable branch. The shape of this hydrostatic pointed meniscus has 



been computed by Pantano, Gañán-Calvo & Barrero (1994) for different valúes of 
the volume of liquid in the usual configuration where the meniscus is formed at the 
tip of a capillary, but similar results should be expected for a meniscus attached to a 
metallic píate. 

It has been proposed (Pantano et al. 1994; Fernández de la Mora 2007) that the 
meniscus of a cone-jet tends to this pointed hydrostatic meniscus when the minimum 
flow rate is approached. This proposal is based on the grounds that (i) the pressure 
variation and viscous stresses due to the motion of the liquid are small compared to 
the electric and surface tensión stresses on most of the surface of the liquid when the 
flow rate is small; and (ii) the electric field induced at the meniscus by the electric 
charge of the jet is small. If these two conditions are satisfied, the electric stress is 
determined by the shape of the meniscus only, and the equilibrium of electric and 
surface tensión stresses (plus a nearly uniform pressure of the liquid) is not be affected 
by the flow in the meniscus or the presence of a jet. The finding of Fernández de la 
Mora (1992), that cone angles very cióse to Taylor's are formed near the minimum 
flow rate, gives strong support to this proposal. 

In the present configuration of a meniscus attached to a metallic píate, the 
hydrostatic pointed meniscus analogous to that of Pantano et al. (1994) would 
be realized at the lower boundary in figure 2(a), and the valué of Em at which the 
contour in this figure for a given volume of liquid becomes vertical would coincide 
with E(ac. In these conditions, the minimum valué of E(a in figure 2{a) for a given 
volume of liquid should be independent of A, because this parameter does not enter 
the analysis of the hydrostatic meniscus. This is not confirmed by the numerical 
results; inspection of the numerical solutions shows that the charge per unit length of 
the jet depends on the dimensionless conductivity A, and the electric field induced by 
this charge on the meniscus is not entirely negligible for the valúes of A used in the 
computations. The result, however, could be peculiar to liquids of low conductivity. 
The estimates of §3.1.2 suggest that, at the minimum flow rate, the charge per unit 
length of the jet and the length of the current transfer región decrease when the 
conductivity of the liquid increases. This tends to bring the limiting shape of the 
meniscus at the lower boundary in figure 2{á) closer to the hydrostatic shape for 
liquids of high conductivity. But, since the hydrostatic meniscus is unstable, it is not 
clear how closely it can be approached, by decreasing the flow rate and therefore the 
effect of the charge of the jet, before the instability develops. This instability could set 
a different lower bound to the flow rate for liquids of high conductivity. The insets in 
figure 5 below show that the limiting meniscus may resemble a Taylor cone already 
for the modérate conductivities considered here. 

Figure 3 shows a more complete picture of the domain of operation of a cone-jet. 
It includes an upper E(a boundary, at the right-hand side of the figure, in addition 
to the lower boundary discussed above. The electric stresses at the surface increase 
with Em and disrupt the meniscus when the upper boundary is crossed. Below this 
boundary, the electric stresses are balanced by pressure and viscous stresses, whose 
strength increases with the flow rate Ca. For this reason, the minimum Ca at which 
a stationary solution ceases to exist increases with E(a on this upper boundary. The 
insets at the right-hand side of the figure illustrate the disruption of the meniscus 
when the upper boundary is crossed. The meniscus does not resemble a Taylor 
cone near this boundary. Moreover, since the condition of axisymmetry used in the 
computations needs not be satisfied in reality, a transition to a múltiple-jet mode 
may occur for a valué of E(a smaller than the upper boundary. Figure 3 also shows 
that the volume of the meniscus decreases when Em increases at constant flow rate, 
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FIGURE 3. Contours of constant volume in the electric field/flow rate plañe for e =20, A = 103 

and 1 = 0. Contours shown (solid curves) are V =0.5, 0.6, 0.7, 0.8, 0.9, 1.2, 1.5 and 2, increasing 
from bottom to top. The dashed curves give the minimum and máximum valúes Em between 
which a stationary solution exists as functions of the flow rate Ca. The chain curve gives the 
valué of Em at which a cone-jet is first established when this parameter is gradually increased 
at constant flow rate. 

which is in agreement with experimental results (Hayati, Bailey & Tadros 1987; 
Cloupeau & Prunet-Foch 1989). The radius of the jet in the current transfer región 
(not shown) follows the same trend. The dash-and-dot curve in figure 3 shows Em¡¡ 

for different valúes of the volume of the meniscus. Since no hydrostatic solution 
exists above Em¡1, this curve gives the valué of E(a at which a cone-jet first appears 
when Em is gradually increased, while the dashed curve at the left-hand side of the 
figure gives the valué of Em at which the cone-jet disappears when Em is gradually 
decreased. 

3.1.2. Current transfer región and breakdown at the lower E{X> boundary 
Figure 4 shows different magnitudes pertaining to the solution of (2.1)-(2.5) as 

functions of the distance x from the metallic píate for A = 2 x 104, e = 20, X = 0, V = 1.2, 
and the two valúes of the applied field Seo = 0.568 (which is about the minimum Em 

for this valué of the volume; see figure 2a), and Seo = 0.70. The corresponding 
valúes of the dimensionless flow rate are Ca = 0.111 and 0.877, respectively. As 
can be seen in figure 4(b), there is a cross-over point where the conduction and 
convection contributions to the electric are equal to each other. This oceurs at x « 2 
in the first case and at x « 3 in the second. The components of the electric field 
normal and tangent to the surface (not displayed) have máxima near this cross-over 
point. 

In the two cases shown in figure 4, the current transfer región where convection of 
the surface charge takes over from conduction is well into the jet, where the flow is 
quasi-unidirectional and (2.8) applies. To further check this result, the three terms of 
(2.8) (with 3rn°/3x = rí° =0) have been evaluated using the full numerical solution of 
(2.1)-(2.5) with the velocity at the symmetry axis playing the role of v. The results are 
shown in figure 4(c). The sum of the three terms (dotted curves), which would be zero 
if (2.8) were satisfied exactly, gives an idea of the error involved in the approximation 
of quasi-unidirectional flow. As can be seen, this error is small in the current transfer 
región, where the viscous and electric forces (first and third terms of (2.8); dashed 
and solid curves in figure 4c) are the major axial forces. The estimates worked out 
elsewhere for a slender current transfer región (Higuera 2006, 2008a) are therefore 
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FIGURE 4. (a) Radius of the cross-section of the surface, (b) conduction (solid) and convection 
(dashed) contributions to the electric current, (c) axial forces acting on the liquid per unit 
streamwise length (electric forcé, 2nrsx¡ in the last term of (2.8) (solid); viscous forcé, first 
term of (2.8) (dashed); forcé due to the normal electric stress and the surface tensión, 
nrjd(r^ — l/rs)/dx in the second term of (2.8) (chain) and sum of these three forces (dotted)) 
and (d) stresses normal (T„ = T* — V-«, solid) and tangent (T, = T/, dashed) to the surface as 
functions of the distance x to the píate for V = 1.2, e =20, A =2 x 104,1 = 0, and Em =0.568 
and 0.7 (in (a)-(c)), and 0.568, 0.7 and 2 (in (d)), increasing as indicated by the arrows. The 
dotted line in (a) has the slope of a Taylor cone. 

valid down to nearly the minimum Em and Ca in figure 2{a). Briefly summarized, 
these estimates give the electric current, the radius of the jet in the current transfer 
región and the characteristic length of this región as 

A^E^Ca2'3, 
Ca1'3 

r, ~ r.. 
AWE. 1/6' l 

Ca1'3 

F2/3 (3.1) 

for A1/2/Eco > e . The results (3.1) follow from the conditions that (i) the conduction 
and convection contributions to the current are of the same order (AE(ar

2 ~avrs, 
with v ~ Ca/r2); (ii) the axial field induced by the electric charge of the jet, which acts 
as a line of charge, partially balances the applied field (ars/£~ Em; see e.g. Ashley 
& Landahl 1965; Hinch 1991) and (iii) the axial electric forcé acting on the surface 
(2nrsTf in (2.8)) is of the same order as the axial viscous forcé (first term of (2.8)), 
which gives r2v/í2 ~ rsaE(a. In dimensional variables, denoted with asterisks, the 



FIGURE 5. Máximum valué of eEi„/a on the surface of the liquid as a function of Em for 
e =20, A = 103 (solid) and 2 x 104 (dashed), 1 = 0 and y =0.7, 0.9, 1.2, 1.5 and 2 for A = 103 

and 0.7, 0.9, 1.2 and 2 for A =2 x 104, increasing from right to left. The insets show the 
contours of the menisci at minimum ECCl for V =0.9. 

estimates (3.1) read 

r ~ e¿V / 6^1 / 2£ 
,2/3 

Q 
2/3 c¿V / 1 2g1 / 3 1/3/11/3 

T 
/¿1 / Je 

»2/3 (3.2) 

for /¿1/2íT1/2/eo£'ró^e> which are independent of the radius of the orífice a. 
According to (3.1), the ratio of the electric relaxation time (te = e/A in dimensionless 

variables) to the residence time of the flow in the current transfer región 
(tr=£/v~£r2/Ca) is tjtr ~€E(a/A

112 <C 1 in the conditions when (3.1) applies. 
Electric charge has plenty of time to accumulate at the surface and screen the 
liquid from the outer normal field EQ„ during the transit of the liquid across the 
current transfer región. Therefore charge relaxation effects are not expected to play 
an important role when ¿E^/A112 is small. This is confirmed in figure 5, where 
the máximum valué of eEln/a is small for A =2 x 104 (dashed curves), for which 
eEm/A1/2 is of the order of 0.1 in the conditions of the figure, and modérate for 
A = 103 (solid curves), for which €Em/A112 is about 4.5 times larger. In both cases, 
íE\n¡a increases with Em, except in the vicinity of the minimum Em. Notice that 
€E(a/A

í/2 = <¡<¡0E*co//x
1/2K1/2 does not depend on the radius of the orífice. 

The slender current transfer región discussed here is quite different from the current 
transfer región around the tip of a conical meniscus analysed by Fernández de la 
Mora & Loscertales (1994), where charge relaxation effects are necessarily important. 
For the modérate conductivities considered in this paper, the numerical results show 
that charge relaxation effects are not important insofar as €E(a/A

í/2 is small. However, 
the situation may be more complex for liquids of high conductivity or larger injection 
orífices, for which the dimensionless radius of the jet is very small and the electric field 
acting on the jet is of the order of the electric field of a Taylor cone in a wide región 
downstream of the apparent apex of the meniscus. The balances leading to (3.1), 
which rely on the assumption that the electric field is of order Em, should be modified 
when the transfer of current to the surface occurs in this región. Replacing E*m in 
(3.2) by the field of a Taylor cone at a distance t from its apex, ET ~ (Y/GQÍ!*)1/2, 
these estimates transform into the well-known alternative estimates 

y l / 2 ^ 1 / 2 g l / 2 ) 4/4^Qm 1/2^1/2 

yV*K 1/4 r 
v>llQ 

,1/2 
(3.3) 



which are applicable with the restrictions noted in Higuera (2003) and could provide a 
connection with the charge relaxation región of Fernández de la Mora & Loscertales 
(1994). In particular, analysis of this important case should clarify whether the current 
transfer región still extends into the jet at the minimum flow rate. Unfortunately, this 
analysis is beyond the scope of the numerical method used here, due to the disparity 
of the jet and meniscus scales. 

Figure 4(d) shows the normal and tangent stresses acting on the surface of the 
liquid for three valúes of Em. The net normal stress is the difference between the 
outward electric stress rn

e and the inward surface tensión stress V-«. The tangent 
stress is xf. At the largest valué of E(a in figure 4(d), the normal stress is positive 
(points away from the liquid) in the whole meniscus and an ampie región of the jet, 
pulling the liquid into the jet in combination with the electric shear stress. As E(a 

decreases keeping the volume of liquid constant, the normal stress becomes negative 
in the meniscus and takes positive valúes only in a limited región of the jet. This 
región disappears, leaving a normal stress that points everywhere towards the liquid, 
when E(a approaches its minimum valué. In these conditions, the motion of the liquid 
towards the tip of the meniscus and into the jet is only due to the electric shear 
stress, with the normal stress inducing a pressure gradient that pushes the liquid in 
the streamwise direction only within the región of the jet where 3(rn

e — l/rs)/3x >0 
(see (2.8)). 

The flow rate that the electric shear stress can drive into the jet decreases with 
¿ico, despite the intensiíication of the field around the tip of the meniscus due to the 
decrease of the jet radius, which causes the peak valué of xf in figure 4(d) to increase 
when Em decreases in the vicinity of its minimum. Apparently the electric shear stress 
cannot overeóme the inward normal stress when Ex falls below the minimum in 
figure 2(a), and a stationary solution ceases to exist. 

Numerical simulations of the evolution following a step decrease of E(a from a valué 
slightly above this minimum to a valué slightly below show that the jet collapses at 
a point not far from the meniscus and the tip of the meniscus subsequently recedes 
and becomes blunt. 

The electric shear stress is always small in the meniscus. The normal stress is nearly 
uniform in the meniscus at the smallest valué of Em in fig ure 4(d), which means that 
the flow is weak and the normal stress is balanced by a nearly uniform pressure of 
the liquid. When Em increases, the flow in the meniscus intensifies and the normal 
stress ceases to be uniform. 

In orders of magnitude, the ratio of surface tensión to normal electric stress in the 
current transfer región is (í/rs)/xf ~ \/{AÍIAEiJJ

6Caíli), where use has been made of 
(3.1) to estimate the normal electric stress as rn

e~cr2~(ir s r /Ca)2 . This ratio is small 
if Ca^l/iA^E^2) (or Q >y3/(eo/¿7/4^3/4£» /2), independent of a, in dimensional 
variables), whereas the effect of the surface tensión comes into play and may lead 
to the capillary breakup of the jet before the transfer of current to its surface is 
complete if this condition is not satisfied. This coarse estimation suggests a minimum 
flow rate that decreases when the electric field or the electrical conductivity of the 
liquid increase, in qualitative agreement with the trends of the numerical results in 
figure 2{á). Similar arguments have been used by Kim & Turnbull (1976) and Larriba 
& Fernández de la Mora (2009) for a related problem. 

3.2. Case of 2 > 0 
Figure 6{a) shows longitudinal sections of the interface for 1 = 0, 0.01 and 0.1 and 
constant valúes of other parameters. The radius of the jet increases with 1 and does 



FIGURE 6. (a) Radius of the cross-section of the surface, (£>) conduction (solid) and convection 
(dashed) contributions to the electric current, (c) density of free surface charge and (d) axial 
forces acting on the inner liquid per unit streamwise length (electric forcé, 2nrsx¡ in the last 
term of (2.8) (solid); forcé due to the axial viscous stress in the inner liquid, first term of (2.8) 
(dashed); forcé due to the normal electric stress and the surface tensión, nrjd(r^ — l/rs)/dx in 
the second term of (2.8) (chain) and viscous forcé due to the outer liquid, 2nrsT® in the last 
term of (2.8) (dotted)) as functions of the distance x to the píate for Ca =3 , Em =2, e =20, 
A = 103 and 1 = 0, 0.01 and 0.1, increasing as indicated by the arrows. 

not tend to zero far from the orífice when X > 0. As was discussed in § 2, this is due 
to the viscous shear stress of the outer liquid on the interface, which slows down the 
inner liquid and causes the jet to thicken in order to absorb the imposed dimensionless 
flow rate Ca. The increase of the radius has a direct effect on the size of the drops, if 
the jet eventually breaks up. It also has an effect on the electric current transported 
by the jet. The bulk conduction current and the surface convection current are shown 
in figure 6{b). The conduction current does not tend to zero far downstream. When 
X increases, the conduction current increases and makes an increasing contribution 
to the total current, which also increases (see figure 1), while the convection current 
decreases. The density of electric charge at the interface (figure 6c) increases with 
X, despite the decrease of Is = 2navrs, because the decrease of vrs overcomes that 
of Is. The continuous stretching of the jet that causes a to decrease downstream of 
the current transfer región when X = 0 ceases to exist when X > 0. The máximum of 
a becomes shallow and even disappears when X increases. The axial forces per unit 
length of the jet in the región of quasi-unidirectional flow are shown in figure 6(d). 
The electric forcé (solid curves) does not tend to zero far downstream when X > 0. It 
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FIGURE 7. Contour of V = 0.9 in the electric field/flow rate plañe (a) and the electric 
field/electric current plañe (£>) for e =20, A = 103 and 1 = 0, 0.01 and 0.03, increasing from top 
to bottom. 

is balanced mainly by the viscous forcé due to the outer liquid {2iirsx^ in (2.8); dotted 
curves in figure 6d), while the forcé due to the axial viscous stress of the inner liquid 
(dashed curves) tends to zero faster than when 1 = 0. 

Apparently it is not always possible for the jet to attain the asymptotic viscous-
electric shear balance discussed in §2. The numerical computations fail to converge 
to a stationary solution above a certain Ca that decreases when 1 increases or Em 

decreases, as was mentioned before. Notice that this limitation due to the viscous 
shear stress on the interface of the jet is different from the limitation due to the drag 
of the drops generated by the breakup of the jet, which leads to a space charge that 
reduces the field on the meniscus if the voltage applied between the electrodes is kept 
constant (Fernández de la Mora 2007). 

The increase of the electric current with 1 in figure 1 is accompanied by an increase 
of the volume of the meniscus, whose shape also changes, making the transition to 
the jet more smooth when 1 increases. If the volume of the meniscus is kept constant, 
then the flow rate and the electric current are decreasing functions of Á (see figure 7). 
The minimum valué of Em at which a stationary solution with a jet exists for a given 
volume of liquid increases with L 

The order of magnitude estimates leading to (3.1) can be extended to take into 
account the effect of the viscous shear of the outer liquid on the interface, and thus 
may shed some light on the conditions under which this effect is important. For very 
small valúes of 1, the effect of the outer liquid comes into play only far downstream 
of the current transfer región, at distances from the orífice where rs given by (2.9) 
becomes of the order of rsc0 in (2.11) and the continuous stretching of the jet is 
arrested. The ratio of this asymptotic radius to the characteristic radius of the jet in 
the current transfer región {rST in (3.1)) is 

n 
1/4 with n 

XA1'2 

(3.4) 

where / from (3.1) has been used to evalúate rsc0. Thus, the conduction current left 
in the jet is small compared to the total current, and the estimates (3.1) apply, when 
n <C 1. When n is of order unity, the viscous shear stress of the outer liquid is of the 
order of the electric shear stress in the current transfer región, and the two stresses 



can balance each other before the transfer of current to the interface is complete. 
This result provides a qualitative explanation of the numerical computations, which 
show that the fraction of the total current left as conduction current in the far jet 
increases with X (figure 6b) and also when A increases or Em decreases (results not 
displayed). The parameter group G = P/ÁA2EcoCa2 in the discussion following (2.10) 
is large when n <C 1, in which case the radius of the jet approaches the lower root of 
(2.10) when the viscous shear stress of the outer liquid becomes important far from 
the orífice, while G = 0(l) when n = (9(l), in which case the two positive roots of 
(2.10) are of the same order or do not exist. 

The estimates also suggest that, when n becomes large, the axial forcé 2nrsx^ 
due to the viscous shear stress of the outer liquid becomes of the order of the axial 
viscous forcé of the inner liquid (first term of (2.8)) in a leading región of the jet where 
the electric current is still dominated by conduction in the inner liquid. The axial 
field induced by the surface charge of the jet almost completely balances the applied 
field in this región, making Et<€.Em. The surface charge satisfies ars/x ~E m , as in 
the derivation of (3.1), so that r^ ~ (x/rs)

2E^ and nr2dx„/dx ~ E^x in the second 
term of (2.8). This forcé, due to the axial gradient of the pressure variation induced 
by the normal electric stress, drives the liquid in the región of interest, which is 
defined by the simultaneous balances d(3Kr2dv/dx)/dx~Kr2dx„/dx ~2nrsx¡>. Using 
v~Ca/r2 and T®~Áv/rs, these balances give x ~ l = Ca113/E2!3 (as in (3.1)) and 
rs ~r s 0 =l1/2Ca1/i/E2¿i. The term 3(37tr23u/3x)/3x becomes negligible for x^í, 
and the balance of the other two terms gives then rs ~ Á1/2Ca1/2/Ecox

1/2 = rs0(£/x)1/2. 
The axial field needed in the inner liquid in order for conduction to supply the 
surface charge required in this región (a ~(x/r,s)£00) is Eíx ~ E^x3/Á2ACa, from 
the condition AEíxr

2 ~ovrs. This axial field becomes of the order of E^ when 
x ~ pl3AV3Ca}l3/E%3 = Yl2'3i, w h e r e r^r^/Tl1'3 and (Ib, Is)~W3A2'3El¿3Ca2'3. 
The condition £ l í ~ £ 0 0 defines the current transfer región when n > l . The axial 
electric forcé (2nrsr¡ in (2.8)) overcomes the pressure gradient forcé Kr2dx„/dx in the 
current transfer región, and the equilibrium x®« —xf leading to (2.10) is achieved 
downstream of this región. However, the estimate of the electric current derived here 
amounts to G = (9(1) for n > 1, so that (2.10) might not have solution. 

The role of the outer liquid discussed in this section can be easily played by a gas 
(which is very often present), given the small valúes of Á required for the outer fluid 
to have a noticeable effect on the jet. The inertia of the outer fluid is not likely to 
bring qualitative changes to the results of this section insofar as the thickness of the 
viscous layer of this fluid is of the order of the radius of the jet or larger. 

4. Conclusions 
Numerical computations of the flow, the electric field and the transport of charge 

in the meniscus and the current transfer región of an electrospray of a very viscous 
liquid of small conductivity have been carried out to determine the conditions of 
existence of a stationary cone-jet. Different boundaries of the domain of operation in 
the applied field/flow rate plañe have been found. At constant flow rate, the applied 
field can be varied between a minimum, below which the electric shear stress cannot 
sustain the cone-jet, and a máximum, above which the electric stress disrupts the 
meniscus. Both limits depend on the flow rate. Electric relaxation effects may be small 
in the current transfer región of the jet, which is a slender región for any valué of the 
flow rate. 



A viscous dielectric fluid often surrounds the cone-jet, and the viscous drag due to 
this fluid then balances the electric shear forcé and stops the stretching of the jet at 
some distance from the meniscus. An estimate has been worked out of the conditions 
under which the effect of the outer liquid comes into play in the current transfer 
región and modifies the electric current. The numerical results show that a stationary 
cone-jet can be established only below a certain máximum flow rate in the presence 
of an outer fluid. 

The author is indebted to Professor Fernández de la Mora (Yale) for insightful 
comments and criticisms. This work was supported by the Spanish Ministerio de 
Educación y Ciencia through Project No. DPI2007-66659-C03-02. 
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