Equation of state and singularities in FLRW cosmological models

Leonardo Fernández-Jambrina and Ruth Lazkoz
ETSI Navales, Universidad Politécnica de Madrid, Arco de la Victoria s/n, 28040-Madrid, Spain
Física Teórica, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao, Spain
E-mail: leonardo.fernandez@upm.es, ruth.lazkoz@ehu.es

Abstract

We consider FLRW cosmological models with standard Friedmann equations, but leaving free the equation of state. We assume that the dark energy content of the universe is encoded in an equation of state $p=f(\rho)$, which is expressed with most generality in the form of a power expansion. The inclusion of this expansion in Friedmann equations allows us to construct a perturbative solution and to relate the coefficients of the equation of state with the formation of singularities of different types.

1. Introduction

Since the end of the 20th century there has been an increase of evidence for an accelerated expansion of the universe [1]. These puzzling observations do not fully fit in our present theoretical framework and therefore there are two trends of development attempting to amend it.

One trend is grounded on modifications of general relativity as the correct theory of gravity [2]. The other major trend assumes the validity of general relativity and postulates the existence of an exotic component in the content of the universe known as dark energy [3].

So far the only final state for our universe could be either infinite expansion or a final collapse, the big crunch. But these new scenarios open the possibility of a different final fate, since both violate some of the classical energy conditions [4]. New candidates for a final fate of our universe are the big rip [5], sudden singularities[6], big brake [7], big freeze [8], inaccessible singularities [9], directional singularities [10], w-singularities [11], in braneworld models [12], among others.

In [13] we dealt with such singular scenarios from the point of view of geodesic completeness in modified theories of gravity. In this talk we do it following the approach of a dark energy fluid. More details can be found in [14].

2. Equations of state

Instead of restricting to a specific model, we propose a framework which may comprise most of them. With this aim in mind, we assume the validity of standard Friedmann equations,

$$
\begin{equation*}
H^{2}=\rho, \quad \dot{\rho}+3 H(\rho+p)=0 \tag{1}
\end{equation*}
$$

assuming that pressure p has a power series in density ρ of the matter content around a value ρ_{*}, for which a qualitative change of behaviour is expected,

$$
\begin{equation*}
p=p_{0}\left(\rho-\rho_{*}\right)^{\alpha_{0}}+p_{1}\left(\rho-\rho_{*}\right)^{\alpha_{1}}+\cdots, \tag{2}
\end{equation*}
$$

where the exponents are real and ordered, $\alpha_{0}<\alpha_{1}<\cdots$.
Combining cosmological equations with our power expansion, we get

$$
\begin{equation*}
\dot{\rho}=-3 \sqrt{\rho_{*}}\left(\rho_{*}+\frac{3}{2}\left(\rho-\rho_{*}\right)+\frac{3}{8} \frac{\left(\rho-\rho_{*}\right)^{2}}{\rho_{*}}+\cdots+p_{0}\left(\rho-\rho_{*}\right)^{\alpha_{0}}+p_{1}\left(\rho-\rho_{*}\right)^{\alpha_{1}}+\cdots\right) . \tag{3}
\end{equation*}
$$

We may integrate it for ρ in powers of $\left(t_{0}-t\right)$, where t_{0} satisfies $\rho_{*}=\rho\left(t_{0}\right)$, if it exists,

$$
\rho(t)=\rho_{*}+\rho_{1}\left(t_{0}-t\right)^{\beta_{1}}+\rho_{2}\left(t_{0}-t\right)^{\beta_{2}}+\cdots .
$$

In order to compare our results with previous ones in terms of expansions of the scale factor of the universe [15],

$$
\begin{equation*}
a(t)=a(t)=c_{0}\left|t-t_{0}\right|^{\eta_{0}}+c_{1}\left|t-t_{1}\right|^{\eta_{1}}+\cdots, \tag{4}
\end{equation*}
$$

we are to relate both series through Friedmann equation,

$$
\rho=\frac{\eta_{0}^{2}}{\left(t-t_{0}\right)^{2}}+\frac{2 c_{1}}{c_{0}} \eta_{0}\left(\eta_{1}-\eta_{0}\right)\left(t_{0}-t\right)^{\eta_{1}-\eta_{0}-2}+\frac{2 c_{2}}{c_{0}} \eta_{0}\left(\eta_{2}-\eta_{0}\right)\left(t_{0}-t\right)^{\eta_{2}-\eta_{0}-2}+\cdots,
$$

These expansions cope with almost every cosmological model, except those with oscillatory behaviour as the ones in [16]. The results are consigned in table 1.

Table 1. Expansions of density and scale factor.

ρ_{*}	β_{1}	β_{2}	η_{0}	η_{1}	η_{2}
0	$(-\infty,-2)$	$\left(\beta_{1}, \infty\right)$	-	-	-
0	-2	$(-2, \infty)$	$\pm \sqrt{\rho_{1}}$	$\left(\eta_{0}, \infty\right)$	$\left(\eta_{1}, \infty\right)$
0	$(-2,0) \cup(0, \infty)$	$\left(\beta_{1}, \infty\right)$	0	$\frac{\beta_{1}+2}{2}$	$\left(\eta_{1}, \infty\right)$
$\neq 0$	$(0,1)$	$\left(\beta_{1}, \infty\right)$	0	1	$(1,2)$
$\neq 0$	1	$(1, \infty)$	0	1	$[2, \infty)$
$\neq 0$	$(1, \infty)$	$\left(\beta_{1}, \infty\right)$	0	1	2

3. Classification of singularities

We follow the popular classification of singularities in [4]:

- Big bang / crunch: zero a, divergent H, density and pressure.
- Type I: "Big rip": divergent a. [5]
- Type II: "Sudden": finite a, H, density, divergent \dot{H} and pressure. [6]
- Type III: "Big freeze": finite a, divergent H, density and pressure. [8$]$
- Type IV: "Big brake": finite a, H, \dot{H}, density, pressure, divergent higher derivatives. [7]

In [17] a detailed analysis of the strength of these singularities is performed, making use of the concepts of geodesic completeness [18] and the definitions of strong singularities due to Ellis, Schmidt, Tipler and Królak [19]. Sudden and big brake singularities cannot be considered as such [20], since the cosmological spacetime may be continued beyond the singular event. And particles travelling at the speed of light do not experience the big rip, since they need infinite proper time to reach it [17]. These results may be checked in table 2 in terms of the exponents of the expansion of the density. Conformal diagrams for these models can be found in [21].

Table 2. Singularities and density expansions.

ρ_{*}	β_{1}	Tipler	Królak	N.O.T.
No	$(-\infty,-2)$	Strong	Strong	Big crunch/rip
No	$(-2,0)$	Weak	Strong	III
No	$(0,2)$	Weak	Weak	II
No	$[2, \infty)$	Weak	Weak	IV
Yes	$(0,1)$	Weak	Weak	II
Yes	$[1, \infty)$	Weak	Weak	IV

4. Singularities and equations of state

Now we have all the ingredients for checking the formation of singularities in cosmological models with an equation of state of the form (2). We may integrate (3) in terms of power series of time and get the relevant exponents and coefficients. Comparing them with the results in table 2 , we are ready to obtain the types of singularities which may appear in these models. The results may be found in table 3 .

Table 3. Singularities and equation of state.

ρ_{*}	p_{0}	α_{0}	β_{1}	N.O.T.
0	Any	$(-\infty, 0)$	$2 /\left(1-2 \alpha_{0}\right)$	II
0	Any	$[0,1 / 2)$	$2 /\left(1-2 \alpha_{0}\right)$	IV
Yes	Any	$(-\infty, 0)$	$\left(1-\alpha_{0}\right)^{-1}$	II
Yes	$\neq-\rho_{*}$	0	1	IV
Yes	$-\rho_{*}$	0	$1 /\left(1-\alpha_{1}\right)$	IV
Yes	Any	$(0, \infty)$	1	IV

5. Conclusions

In this talk a detailed classification of the future behaviour of FLRW cosmologies in terms of the equation of state is provided. It depends at most on the exponents of the first two terms of a power expansion of the equation of state. The scheme provides an easy route to conclude the sort of singular behaviour.

Acknowledgments

R.L. is supported by the University of the Basque Country through research grant GIU06/37 and by the Spanish Ministry of Education and Culture through research grant FIS2007-61800.

References

[1] Riess A G et al 1998 Astron. J. 1161009
Perlmutter S et al 1999 Astrophys. J. 517565
Davis T M et al 2007 Astrophys. J. 666716 Wood-Vasey W M et al 2007 Astrophys. J. 666694 Spergel D N et al. 2003 Astrophys. J. Suppl. 148175

Spergel D N et al 2007 Astrophys. J. Suppl. 170377
[2] Maartens R 2007 J. Phys.: Conf. Ser. 68012046
Durrer R and Maartens R 2008 Gen. Rel. Grav. 40301
Capozziello S and Francaviglia M 2008 Gen. Rel. Grav. 40357
Nojiri S and Odintsov S D 2007 Int. J. Geom. Meth. Mod. Phys. 4115
Starobinsky A A 2007 JETP Lett. 86157
Hu W and Sawicki I 2007 Phys. Rev. D 76064004
Appleby S A and Battye R A 2007 Phys. Lett. B 6547
Tsujikawa S 2008 Phys. Rev. D 77023507
Nojiri S and Odintsov S D 2007 Phys. Lett. B 652343
Nojiri S and Odintsov S D 2007 Phys. Lett. B 657238
Nojiri S and Odintsov S D 2008 Phys. Rev. D 77026007
Capozziello S, De Laurentis M, Nojiri S and Odintsov S D 2009 Phys. Rev. D 79124007
Bamba K, Geng C, Nojiri S and Odintsov S D 2009 Phys. Rev. D 79083014
Bamba K, Odintsov S D, Sebastiani L and Zerbini S Preprint arXiv:0911.4390
Bamba K Preprint arxiv:/0909.2991
Nojiri S and Odintsov S D Preprint arXiv:0911.2781
[3] Padmanabhan T 2006 AIP Conf. Proc. 861179
Albrecht A et al Preprint astro-ph/0609591
Sahni V and Starobinsky A 2006 Int. J. Mod. Phys. D 152105
[4] Nojiri S, Odintsov S D and Tsujikawa S 2005 Phys. Rev. D 71063004
[5] Caldwell R R, Kamionkowski M, Weinberg N N 2003 Phys. Rev. Lett. 91071301
[6] Barrow J D 2004 Class. Quantum Grav. 21 L79
Nojiri S and Odintsov S D 2004 Phys. Lett. B 5951
Barrow J D 2004 Class. Quantum Grav. 215619
Lake K 2004 Class. Quantum Grav. 21 L129
Nojiri S and Odintsov S D 2004 Phys. Rev. D 70103522
Dąbrowski M P 2005 Phys. Rev. D 71103505
Barrow J D and Tsagas C G 2005 Class. Quantum Grav. 221563
Chimento L P and Lazkoz R 2004 Mod. Phys. Lett. A 192479
Dąbrowski M P 2005 Phys. Lett. B 625184
Balcerzak A and Dąbrowski M P 2006 Phys. Rev. D 73101301
Barrow J D, Batista A B, Fabris J C and Houndjo S 2008 Phys. Rev. D 78123508
Barrow J D and Lip S Z W 2009 Phys. Rev. D 80043518
Nojiri S and Odintsov S D 2008 Phys. Rev. D 78046006
Setare M R and Saridakis E N 2009 Phys. Lett. B 671331
[7] Gorini V, Kamenshchik A Y, Moschella U and Pasquier V 2004 Phys. Rev. D 69, 123512
[8] Bouhmadi-López M, Gonzalez-Díaz P F and Martín-Moruno P 2008 Phys. Lett. B 6591
[9] McInnes B 2007 Class. Quantum Grav. 241605
[10] Fernández-Jambrina L 2007 Phys. Lett. B 6569 (Preprint arXiv:0704.3936)
[11] Dabrowski M P and Denkiewicz T 2009 Phys. Rev. D 79063521
Fernández-Jambrina L (in preparation)
[12] Shtanov Y and Sahni V 2002 Class. Quantum Grav. 19 L101
Brown R A, Maartens R, Papantonopoulos E and Zamarias V 2005 J. Cosmol. Astropart. P. JCAP11(2005)008
Tretyakov P, Toporensky A, Shtanov Y and Sahni V 2006 Class. Quantum Grav. 23, 3259
[13] Fernández-Jambrina L and Lazkoz R 2009 Phys. Lett. B 670 254-258 (Preprint arXiv:0805.2284)
[14] Fernández-Jambrina L and Lazkoz R (in preparation)
[15] Cattoën C and Visser M 2005 Class. Quantum Grav. 224913
Cattoën C 2006 MSc thesis (Victoria University of Wellington)
[16] Cailleteau T, Cardoso A, Vandersloot K and Wands D Preprint arXiv: 0808.0190v2
[17] Fernández-Jambrina L and Lazkoz R 2004 Phys. Rev. D 70121503 (Preprint gr-qc/0410124)
[18] Hawking S W and Ellis G F R 1973 The Large Scale Structure of Space-time (Cambridge University Press)
[19] Ellis G F R and Schmidt B G 1977 Gen. Rel. Grav. 8915
Tipler F J 1977 Phys. Lett. A 648
Królak A 1986 Class. Quantum Grav. 3267
Clarke C J S and Królak A 1985 Journ. Geom. Phys. 2127
[20] Fernández-Jambrina L and Lazkoz R 2006 Phys. Rev. D 74064030 (Preprint gr-qc/0607073)
[21] Hohn P A and Scott S M 2009 Class. Quantum Grav. 26035019

