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A B S T R A C T 

In this paper we analyze the influence of the Rashba spin-orbit coupling on the quantum Hall 
magnetoresistivity in a two-dimensional electron system (2DES). The study is based on an analytical 
model for the integer quantum Hall effect (IQHE) and the Shubnikov-de Haas (SdH) phenomena. This 
model shows the behaviour of the Hall magnetoresistivity when the Rashba parameter is varied, and 
reproduces Hall plateaux of a 2DES confined in a III—V heterostructure. We also discuss the Rashba and 
Zeeman competition and its effect on the width of the Hall magnetoresistivity plateaux. 

© 2009 Elsevier B.V. All rights reserved. 

The quantum Hall effect is one of the most amazing and 
interesting phenomena in the condensed matter physics discov­
ered at the end of the past century. The integer quantum Hall 
effect (IQHE) is characterized by the appearance of quantized 
plateaux in multiples of ve2/h in the non-diagonal magnetocon-
ductivity axy (h is the Planck constant, e the electron charge and 
v = 1,2,3, ... an integer), and vanishing values in the diagonal 
magnetoconductivity axy observed at the same magnetic field 
ranges [1]. The magnetoconductivities are measured on a 
two-dimensional electron system (2DES) at very low tempera­
tures. Up to now the physical realizations of a 2DES are provided 
in semiconductor heterostructures, MOSFETs devices, and more 
recently in graphene layers [2]. From the theoretical point of view 
several attempts to understand the integer quantum Hall effect 
(IQHE) have been published. The most accepted is based on the 
'gendanken' experiment thought up by Laughlin [3], where the 
2DES localized states due to ionized impurities and defects play a 
crucial role to explain the plateaux. However, experimental 
evidences show that higher electron mobility (materials with 
less defects and impurities) provides better plateaux precision [4]. 
The appearance of even and odd plateaux (v even or odd) in the 
IQHE is due to the breakdown of the spin degeneration of every 
Landau level (LL) as a consequence of the Zeeman effect, creating 
spin-polarized carriers with parallel and anti-parallel orientations 
with respect to the direction of the applied magnetic field and 
splitting the LLs. Even without any external magnetic field applied, 

the carriers of the 2DES confined in the inversion layer of an 
heterostructure can be spin-polarized by the spin-orbit magnetic 
field created by the internal built-in electric field, that is formed by 
the structure inversion asymmetry (SIA) of the heterostructure 
device. The carriers have parallel and anti-parallel orientations 
with respect to the spin-orbit magnetic field. In 1989 Das et al. [5] 
obtained an evidence of spin splitting at zero magnetic field in 
InGaAs/InAlAs heterostructures. The SIA electric field is normal to 
the 2DES confined in the inversion layer or quantum well, and the 
spin splitting provided by this is given by the expression [6]: 

AEÏ -2 a k (1) 

where k = (kx, ky) is the 2DES wave vector, and the Rashba 
parameter, that depends on the electric field asymmetry of the 
heterostructure, a has values that varies between 2 x 10~12 eV m 
and 5 x l O " n e V m for InAs [7,8] and is of the order of 
1.5 x 10"13 eV m for AlGaAs [9]. In 1990 Datta et al. [10] proposed 
a spin-polarized field effect transistor based in the interference of 
two spin-polarized currents, controlling the polarization of the 
currents with the gate electric field. Yang and Chang [11] have 
found that Rashba spin splitting energy has a nonmonotonic and 
anisotropic behaviour with the momentum, in contrast to the 
widely used isotropic linear model. In our model the 2DES is 
confined in the In053Ga047As layer of the device used in Ref. [12], 
and we consider a linear behaviour with the momentum of the 
Rashba spin splitting. 

On the other hand, zinc-blend semiconductors have bulk 
inversion asymmetry (BIA), varying their lattice potential with the 
crystal directions and therefore the local electric field. Due to this 
there exist an intrinsic BIA spin-orbit effect. The BIA effect is 
stronger than the SIA effect in the GaAs/AlGaAs heterostructure 



2DES, and the values measured of spin-split energy in this alloy 
are of the order of 20 ueV at the Fermi level [13]. In quantum well 
and heterostructure devices made with InGaAs/InAlAs systems 
the SIA effect has a dominant effect on BIA effect, being SIA spin-
orbit split energy at least two times greater than BIA spin-orbit 
split energy [14]. Measured spin-split energies are of the order of 
meV at Fermi level [15]. Ref. [16] shows a theoretical analysis of 
the interplay between Zeeman spin splitting, Rashba and 
Dresselhaus spin-orbit interaction. 

In a previous paper [17] we have presented an analysis of the 
diagonal magnetoresistivity in a 2DES affected only by Rashba 
spin-orbit coupling, and this paper treats its effect on the Hall 
magnetoresistivity at larger magnetic fields. The model used is a 
simple semi-classical theory of a 2DES confined in a quantum well 
under the application of external electric and magnetic fields [18], 
and with the presence of Rashba spin-orbit coupling [17]. In this 
theory we assume that variations in the external magnetic field 
produces a fluctuation in the electron density, keeping constant 
the chemical potential, which is fixed by the environment. In all 
realization of a confined 2DES there is a reservoir of charge 
surrounding the system that provides electrons to it. Then the 
chemical potential must be established by the whole 3D structure. 
A similar scenario was intended at the beginning of the discovery 
of the quantum Hall effect [19], although considering a capture 
mechanism of electrons by the impurities. 

At zero external magnetic field we consider the 2DES as a two-
dimensional non-interacting electron gas under the effective mass 
approximation, perturbed by impurities, defects and spin-orbit 
coupling. Then, the energy of each electron can be approached by 
E(k) = h2k2/(2m + U) ±AES0/2, where m is the electron effective 
mass, U takes into account the electrostatic interaction with 
impurities and defects, and A£So is the spin-orbit split energy 
caused by the SIA effect (Eq. (1)). On the other hand, when an 
external magnetic field B is applied normal to the 2DES, and 
assuming no spin-orbit coupling effects, the energy of the system 
is discretized in Landau levels (LL) with values 

no coincidence condition of E¿¡ and E~N, (NL=¿NL) levels. The 
oscillations of the magnetoresistivity at low magnetic field can be 
used to determine the spin-split energy, and hence the Rashba 
parameter [12,17] assuming no BIA spin-orbit effect. 

If we compare Eq. (2) with the conventional spin-up and spin-
down energy states associated with NL Landau level number, this 

corresponds to E£ and E~N +-¡ states, i.e. AEspin = \Ejí¡ -E~N +-¡ [22]. 

In the absence of Rashba effect, Eq. (2) reproduces well-known LL 
energy spectrum. In the limit of large magnetic fields the Zeeman 
term dominates the spin splitting obtaining AEspin = gfiB. In the 
opposite limit when B->0, we obtain AE„ 2a kF at the Fermi 

£± =(NN[L + \/2)h(o ±\/2g/j.B, where the last term (Zeeman J 0 ^ ) = J + + J - = e ^ / tsf(E)D(E)sdE 

energy, where kF = ~J2TI n is the Fermi wave vector and n the 
equilibrium carrier concentration. At intermediate magnetic fields 
also exists a competition between Rashba and Zeeman effects 
which occurs by the coincidence of levels Ej¡¡ and E~N + -¡, i.e. when 
£ + =E~N + 1 at a fixed value of the magnetic field. In this point 
A£Spm=0. At magnetic fields below this field the Rashba effect 
dominates, and for fields above, the Zeeman effect does. When the 
coincidence occurs at Fermi level, in very clean samples, a 
maximum in magnetoresitivity (and also in magnetoconductivity) 
should be observed [12,23]. Fig. 2 shows a fan of energy levels of 
the 2DES. Continuous line corresponds to conventional Landau 
levels with spin degeneration, and dash lines correspond to 
energy levels obtained from Eq. (2). In the figure, we have used 
higher values of Rashba parameter (a=3 x 1 0 - 1 1 eVm) and the 
gyromagnetic factor (g= - 8) in order to show the Rashba-Zeeman 
competition Ej¡¡ = E~N + 1 s» Ef with more detail, that occurs near to 
14.5T(£F=0.096eV). 

The magnetoconductivities are obtained relating the current 
carrier density for a 2DES to the applied electric and magnetic 
fields, taking into account the presence of two populations of 
electrons in the 2DEG with two different spin orientations. Then, 
the general expression for the current density is given by 

(3) 

term) correspond to spin f J, orientations, NLL = 0, 1, 2, 3. . . , 
to = e B/m the cyclotron frequency, ¡i the Bohr magneton and g is 
the effective g-factor, that can be as high as 15 in InGaAs alloys 
[20]. In a 2DES confined in a heterostructure device immersed in 
an external magnetic field, and taking into account the SIA and 
Zeeman effects, the energy of the carriers is determined by the 
expression [6] 

hat 
N i + 4 i m \ y », (2) 

where v s is the carrier velocity, £ the electron energy, D(E)S the 
density of states for each spin orientation [12,24], and / is the 
modified distribution function due to the electric and magnetic 
fields [25]. We assume that the density of states is the ad hoc 
function D(E)S = (eB/h)£ s £ N i [(t/2) r £ j -V2exp{-2 ( £ - % ) / 
rj, s}, and with gaussian level broadening rNlS of the energy 

0.03 

with s= ± 1 for NL = 1, 2, 3, ..... and s= +1 for NL=0 (the index s 
refers to spin f J, orientations), where y = 8a2m2/h3e, and m0 is 
the free electron mass. Rashba and Zeeman effects break the spin 
degeneration. We analyze the entire two-dimensional electron 
gas as two 2DES with different spin orientations (parallel and 
anti-parallel to the magnetic field) with quantized energies £^ . 
When the applied magnetic field increases, the energy levels £^ 
move to the Fermi level (£F), and the conduction occurs when 
each energy level crosses£F, providing beating patterns in the 
Subnikov-de Haas oscillations and in the Hall magnetoresitivity, 
with nodes at the same values of magnetic field (Fig. 1). Fig. 1 is 
reproduced with Eqs. (5a) and (5b) and the values showed are 
obtained from the experimental data given in Ref. [12], with a 
carrier concentration of 2.0 x 1016 m~2 at zero magnetic field, an 
effective mass of 0.05m0, a=0.72 x 1 0 - 1 1 eV m, g = - 4 , and a 
relaxation time of T = 1.0 X 10~12 S [21]. The maximum/minimum 
(nodes) oscillations are due to the coincidence/no coincidence of 
different energy levels £^ at the Fermi level. The nodes occur with 
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Fig. 1. SdH and Hall magnetoresistivity oscillations of a 2DES confined in 
the InO.53GaO.47As layer of a heterostructure computed with data obtained in 
Ref. [12], with a zero field carrier concentration of 2.0xl016m~2, a Rashba 
parameter a=0.72 x 10 ~ " eV m and a g-factor of - 4. 

http://InO.53GaO.47As


> 
0) 

O) 

c 
LU 

X10 1 

Fig. 2. Plot of the energy levels (from NL=0-6) of the 2DES system. Continuous line 
are the conventional Landau levels without spin split. Dash line corresponds to £^ 
levels. It shows the Rashba-Zeeman competition where the adjoining levels 
intersect. The used values of Rashba parameter and g-factor are a=3 x 10 - 1 1 eVm 
and g= - 8 , respectively, and m=0.05m0. The Rashba-Zeeman competition occurs 
near 14.5 T at Fermi level. 

levels that strongly depends on the range of the scattering 
potentials [24]. For short range scatters r^ iS depends on the 
strength of the magnetic field. The broadening due to long range 
potentials is proportional to fluctuations of the local potential 
energy (V(r)— <V(r)>)2, and can be considered negligible in <5-
doped samples where the impurities are far from the 2 DES. Then, 
we use the expression given by Ando et al. [24] for short range 

scatters rNLS = T0 + KJ (2k1 /n) (CU/T), where F0 and K are fitting 
parameters, and x is the relaxation time without applied magnetic 
field. 

Hence, we assume two currents with different spins (parallel 
and anti-parallel to the magnetic field). Taking into account the 
relationship j = [a] E, where E is the electric field and [er] the 
magnetoconductivity tensor, with terms ffxx=ffyy=(e2Nxlm)l 
(1+(CUT)2), axy= -ffyx=(e2nœx2lm)l(\+(œx)2). n is the whole 
equilibrium carrier concentration, and N the carrier concentration 
at Fermi level, given by 

n = n++n_ = ] T / f0(E)D(E)sdE 

N = N++N. = J2 / D(E)SE dE 
dE 

(4a) 

(4b) 

where/0 is the Fermi-Dirac distribution function. Fig. 3(a) and (b) 
shows the oscillations of each equilibrium concentration of the 
two carrier's populations as a function of the magnetic field, and 
the sum of both, Eq. (4a), with the data used in Ref. [12], and as 
obtained from the model. Fig. 3(a) represents n in all the magnetic 
field range and Fig. 3(b) at low magnetic fields. As it is seen, in the 
limit of zero magnetic field, different values for n+ and n_ appears 
as a consequence of the Rashba spin-orbit effect. Therefore, this 
difference of the carriers concentration also allows to determine 
the Rashba parameter. Of course, the two kind of spin carriers are 
presented in samples where more than one sub-band is occupied 
[26,27] and with non-parabolic energy dispersion. Taking into 
account that tensor of the resistivity is obtained from [p] = [crj-1, 
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Fig. 3. (a) Oscillations of the bulk carrier concentrations n_ and n+, and the sum of 
both (Eq. (5)), as a function of the magnetic field. The figure was obtained with the 
data used in Fig. 1[12]. (b) Detail of the carrier concentrations of Fig. 3a at low 
magnetic field. 

the magnetoresistivities diagonal and Hall are 

(5a) 

Pxy = Puall = 'Pyx = - ° V ( ° i + aly) ( 5 b ) 

As we mentioned before, the whole 2DES can be viewed like 
two 2DES with different spin orientation, separated in energy by 
AEf£ = 2akF. Then, from a naïve point of view assuming a 
parabolic energy dispersion, and taking into account the density 
of states of a 2DES at zero magnetic field, D(E) = m/2nh2 for each 
electron spin system, the Rashba parameter can be deduced from 
the expression (4a) 

2D(E)kF 
(6) 

where An0=n0_ - n 0 + is the difference in carrier concentrations at 
zero field between both possible spin orientations. Thus, for 
example, the value obtained with this procedure with the data 
used in Fig. 3b is a=0.77 x 10~12 eV m. 



Fig. 4. Quantum Hall magnetoresistivity at three different Rashba parameters and 
an effective g-factor of - 8 . Continuous line correspond to a=0. For a=3 x 10 -11 

eVm (dash-dot line) and a=5 x 10 -11 eVm (dot line) the v=5 and v=3 plateaux 
vanishes, respectively. This occurs in both cases due to the Rashba-Zeeman 
competition at these values of the magnetic field. 

Fig. 4 shows the Hall magnetoresistivity at three different 
values of Rashba parameter and considers an effective g-factor of 
- 8. In order to resolve even and odd plateaux (even and odd v, 
respectively) we use small gaussian width of energy levels [17]. 
When a=0 the spin degeneration is broken only by the Zeeman 
effect, and the width of the plateaux grows with the magnetic 
field. The odd plateaux became wider when B grows. When a # 0 
the width of the plateaux varies due to the effect of the Rashba 
spin-orbit, producing the disappearance of the odd plateaux in 
the magnetic field regions where the Rashba-Zeeman 
competition occurs, i.e. when Ej¡¡ = £ ¡ v + 1 near to Fermi level. 
For a=3.0 x 1 0 - 1 1 eV m this happens near to 14.5 T, vanishing the 
v = 5 plateaux, and for a = 5.0 x 1 0 - 1 1 eV m Rashba-Zeeman 
competition occurs at values close to 25 T, vanishing the v=3 
plateaux. As expected, the value of the Hall magnetoresistivity is 
not affected by the SIA spin-orbit effect (pXJ,= h/(ye2)=25812.807/ 
v Í2, v = 1,2,3, ...). In fact, the quantum Hall effect is reproduced in 

dirty samples where local high electric fields due to impurities 
exist. 

In summary, we have studied the Hall magnetoresistivity pxy 

of a 2DES with a Rashba spin-orbit coupling in a perpendicular 
magnetic field, where we have assumed the system composed by 
two kinds of carriers (electrons with parallel and anti-parallel 
spins). At low magnetic fields pxy also reflects the beating pattern 
with nodes at values of magnetic fields where the nodes of the 
SdH appear. At higher fields pxy have values of h/(ve2)} and not 
depends on the Rashba parameter. The whole spin degeneration 
only affects the width of the plateaux, vanishing the odd plateaux 
in the region of the magnetic field where Rashba effect is almost 
equal to Zeeman effect. 
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