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ABSTRACT

Nowadays, the increasing amount of semantic data available
on the Web leads to a new stage in the potential of Seman-
tic Web applications. However, it also introduces new issues
due to the heterogeneity of the available semantic resources.
One of the most remarkable is redundancy, that is, the ex-
cess of different semantic descriptions, coming from different
sources, to describe the same intended meaning.

In this paper, we propose a technique to perform a large
scale integration of senses (expressed as ontology terms), in
order to cluster the most similar ones, when indexing large
amounts of online semantic information. It can dramati-
cally reduce the redundancy problem on the current Seman-
tic Web. In order to make this objective feasible, we have
studied the adaptability and scalability of our previous work
on sense integration, to be translated to the much larger sce-
nario of the Semantic Web. Our evaluation shows a good
behaviour of these techniques when used in large scale ex-
periments, then making feasible the proposed approach.
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1. INTRODUCTION

An increasing amount of online ontologies and semantic
data is available on the Web, enabling a new generation of in-
telligent applications that exploit this semantic information
as source of knowledge [5]. However, the growing amount of
semantic content also leads to an increasing semantic het-
erogeneity.

Heterogeneity is something inherent to the current (and
future) Semantic Web. Far from assuming an “ideal” Se-
mantic Web (under the authority of a few high-quality large
ontologies, with maximal coverage and expressivity levels),
we advocate to learn how to deal with the “real” one instead,
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where semantics is constructed by different authors, for very
different domains, and with very different levels of expres-
sivity and richness.

The redundancy problem. As a direct consequence of
heterogeneity in the Semantic Web, the problem of redun-
dancy arises. It is characterized by the excess of different
semantic descriptions, coming from different sources, to de-
scribe the same intended meaning.

For example, if one searches ontological terms to describe
the keyword “apple” in the Swoogle semantic web search
engine', 262 different results are obtained®. Each of them
represents a possible semantic description for a particular
meaning of “apple”. Obviously, this number is quite above
the real polysemy of the word “apple”. For example, Word-
Net corpus® identifies only two possible meanings for this
word (the fruit and the tree), while Wikipedia® identifies
around 20. However, it is still far from the number of pos-
sible senses given by Swoogle. If we take a look at the first
page of results in Swoogle, the redundancy problem becomes
evident (e.g., the meaning of “apple” as a kind of “fruit” ap-
pears repeated in five, out of ten, ontological terms).

In order to solve the problem of redundancy, we propose a
method to cluster the ontology terms that one can find on the
Semantic Web, according to the meaning that they intend to
represent.

Achieving such a clustering is not only essential for hu-
man users to better apprehend the results of semantic web
search engines, and generally the content of the Semantic
Web, but is also crucial for applications that rely on the
knowledge from the Semantic Web (see e.g. [5]). Indeed,
eliminating redundancy is a way to improve performance
for such applications, but more importantly, knowing which
ontological entities refer to the same sense, and which refer
to different meanings, makes possible the automatic selec-
tion of relevant knowledge in a more accurate and precise
way.

Proposed solution. Such an ambitious goal cannot be
tackled without relying on an index of the ontological ele-
ments accessible through the Semantic Web. For this, our
work is supported by the Watson system [4]. Watson is a
gateway to the Semantic Web that crawls the Web to find

"http://swoogle.umbc.edu
2Checked on 23 October 2008, using the exact match mode
(localname:apple) for the query.

Shttp://wordnet.princeton.edu
“http://en.wikipedia.org
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and index available semantic resources, providing a single
access point to online semantic information. It also pro-
vides efficient services to support application developers in
exploiting the Semantic Web voluminous distributed and
heterogeneous data.

To tackle the problem of redundancy reduction on the
Semantic Web, we define a clustering technique that we ap-
ply to the base of ontological terms collected by Watson,
and that creates groups of ontological terms having simi-
lar meanings. The result is a set of concise senses for each
keyword one can find in Watson.

For example, a search of “apple” will return all the ontol-
ogy terms that refer to the meaning “fruit”, grouped together
as a single integrated sense. Different integration levels are
possible, to adapt the “granularity” in senses discrimination
to the requirements of client applications, and to the dif-
ferent points of view of users. Let us imagine that a user
considers that “Apple” as “electronics label” and “Apple” as
“computer company” should be treated differently, while for
many others they intend the same meaning. Therefore, it
is important to make the integration flexible, preserving the
original source of information still accessible, just in case the
user is not satisfied with the proposed integration.

To achieve this goal of sense integration we do not start
from scratch. As a matter of fact, in [21] we presented a tech-
nique that integrates various keyword senses, when they are
similar enough. It was developed for a system that analyzes
a keyword-based user query in order to automatically ex-
tract and make explicit, without ambiguities, its semantics.

However, this technique was initially targeted to a small
scale context, the one given by the few keywords involved in
a user query. Therefore, an additional goal that motivates
this paper is to adapt these small scale integration techniques
to be used in a much more ambitious context: the Semantic
Web reachable by the Watson gateway.

The idea of adapting these integration techniques, to be
imbricated in the process of indexing the Semantic Web,
leads to another more specific task, that is a scalability
study, in order to check the feasibility of these techniques
when applied to a much larger body of knowledge.

In this work we have tackled both the redundancy and scal-
ability problems. First we propose a large scale integration
method that applies our semantic techniques, in order to re-
duce the redundancy problem on the current Semantic Web,
and second we contribute with a scalability study to evaluate
the feasibility of our proposal.

The rest of the paper is organized as follows. In Section 2
we present some previous work which serves as background
for the present study. In Section 3, our proposal for large
scale redundancy reduction is presented. Section 4 focuses
on how to optimize the integration level and, in Section 5, we
detail the scalability study that we have performed in order
to check the suitability of our techniques. Some illustrating
examples and further discussion can be found in Section 6.
Section 7 reviews some related work and, finally, conclusions
and future work appear in Section 8.

2. BACKGROUND

In this section we briefly present some background work
that serves as basis for this study.
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2.1 Discovering Senses of User Keywords

In a previous work [21] we have developed a system that
analyzes a keyword-based user query in order to automat-
ically extract and make explicit its semantics. Firstly, it
discovers candidate senses for these keywords among pools
of web ontologies (accessed by Watson [4] or Swoogle [8]).
Also other local ontologies and lexical resources, as Word-
Net [15], can be accessed. Secondly, it extracts the ontolog-
ical context that characterizes each candidate sense, and an
alignment and integration step are carried out in order to
reduce redundancy. Finally, a disambiguation process is run
to pick up the most probable sense for each keyword, ac-
cording to the context. The result can be eventually used in
the construction of a well-defined semantic query (expressed
in a formal language) to make explicit the intended meaning
of the user [3, 21].

It was not the first technique to match and merge onto-
logical information from different ontologies [7]. Neverthe-
less, it was quite novel in combining the use of any available
pool of online ontologies (without being restricted to a set
of predefined ones) as source of knowledge, as well as in the
extraction and use of only the relevant portions of semantic
descriptions, instead of the whole ontologies (following the
recommendation in [1]). Also the absence of pre-processing
tasks is a remarkable characteristic of this method.

Among all the different techniques developed in [21], we
will focus, in this work, on the alignment and integration
services. They give us the tools we need to recognize similar-
ities among ontological terms, and to integrate them when
necessary. The latest version of the alignment service re-
ceives the name of CIDER (Context and Inference baseD
alignER), and it was successfully tested during the Ontol-
ogy Alignment Evaluation Initiative (OAEI) 2008 [10].

2.2 Watson: A gateway to the Semantic Web

As already mentioned, Watson [4] is a gateway to the Se-
mantic Web. It makes use of a set of dedicated crawlers
to collect online semantic content. A range of validation
and analysis steps is then performed to extract information
from the collected semantic documents, including informa-
tion about the ontological terms they describe and their re-
lations. This information provides a valuable base of meta-
data, employed to create indexes of the semantic content
currently available on the Web.

Watson provides both a Web interface for human users®,
as well as a set of Web services and APIs for building ap-
plications, exploiting the semantic information available on
the Web. These services and this interface provide various
functionalities for searching and exploring online semantic
documents, ontologies, and ontological terms, including key-
word search, metadata retrieval, the exploration of ontolog-
ical term descriptions and formal query facilities.

This combination of mechanisms for searching, retriev-
ing and querying online semantic content provides all the
necessary elements enabling applications to select and ex-
ploit online semantic resources, without having to download
the corresponding ontologies or to identify them at design
time. Many applications have already been developed that
dynamically exploit online semantic content in an open do-
main thanks to Watson [5].

®http://watson.kmi.open.ac.uk
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3. LARGE SCALE INTEGRATION SYSTEM

In this section we summarize our proposed large scale re-
dundancy reduction technique. The idea is to carry out an
off-line process that analyzes the whole set of ontology terms
indexed in Watson (classes, properties and individuals), in
order to identify clusters that group the terms according to
their intended meaning, by exploring how similar they are.
These equivalent ontology terms are also integrated, to show
a unified semantic description of the meaning they represent.

A second processing step is carried out at run-time, when
the system needs to be adapted, in terms of the granular-
ity of the provided clustering, to accommodate the user’s
view or the application requirements. An overview of the
approach is shown in Figure 1, and will be explained in the
following subsections.

Keyword maps

Synonym maps
luu (each synonym map)

Ontology terms Sense

clustering

similarity >
threshold?,

Sense
v
Senses
modify
integration?
yes
Modifying

integration degree
s

Figure 1: Scheme of the approach

3.1 Preliminary definitions

Let us call C,P,I the sets of all classes, properties, and
individuals, respectively, indexed by Watson. In the rest of
the paper, we will call ontology term (and denote ot) any
element of the union set: ot € CUP U I.

We will denote OF the set of all ontological elements that
can be accessed by Watson, considering as elements not only
ontology terms, but also any other semantic information
that characterizes an ontology: hierarchies, axioms, lexical
entries, etc. (we adopt here the characterization of ontology
given in [6]).
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A keyword k will represent, throughout this paper, an el-
ement of the set of strings S (sequences of letters of any
length over an alphabet), with any special significance. We
will represent the set of all possible keywords as K.

Definition 1. Watson search. Let us denote P(C'), P(P)
and P(I) the o-algebras formed by the power sets (sets of
all subsets) of C, P, T respectively. We define the function
Watson Search as:

wSearch(k) : K — P(C) U P(P)U P(I)

from a keyword k to the set of ontology terms retrieved from
Watson for this keyword.

In particular, we employ a dedicated function of the Wat-
son API corresponding to the search of any ontological term
that matches the keyword in its label or identifier. The
matching that is used is said to be exact, as it would dis-
card any ontological term for which the keyword is only a
part of the identifier or label®.

Definition 2. Extraction. Given the power set (set of all
subsets) of OF, that we denote P(OFE), we define extraction
as a function

ext: CUPUI — P(OF)

that, for each ontology term, retrieves its neighbouring on-
tological elements characterizing its meaning.

We are not being more specific in this definition deliber-
ately, leaving open the particular criteria of what is consid-
ered as part of the “neighbourhood” of an ontology term. For
our purposes, we use the extraction described in [21, 10].

Definition 3. Ontological context. Given an extraction
function ext, we define ontological context of an ontology
term ot, and denote OCyt, as the element of P(OFE) such
that

OC,t = ext(ot)

Finally, in the following subsections we will introduce the
use of a similarity measure. Recalling the definition given
in [7], similarity is a function from a pair of objects to a real
number expressing how similar they are. For our purposes,
the compared objects will be subsets of OF, even when,
for simplicity, we say “similarity between ontology terms”
instead of “between their ontological contexts”.

3.2 Keyword maps

Due to the huge amount of available semantic informa-
tion on the current Semantic Web, it is not computationally
feasible to establish comparisons among all accessible ontol-
ogy terms, in order to cluster them. We have conceived,
instead, a pre-processing step to reduce the space of com-
parisons, by establishing an initial grouping of all ontology
terms with identical labels. In the following, we call them
keyword maps.

SHowever, this matching is not case sensitive and relies on
simple tokenization techniques to properly match compound
terms independently of the employed separators (e.g. “cup-
of-tea” matches “CupOfTea”).
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Definition 4. Keyword map. Given a keyword k € K,
and a set of ontology terms OT € P(C)U P(P) U P(I), we
define the keyword map of k as the tuple (k, OT), such that
OT = wSearch(k)

Here, and in the rest of the paper, we will use the term
map to mean any abstract structure that contains, among
other information, an associative array (a collection of unique
keys and their associated values) of ontology terms, where
their URIs act as unique keys.

3.3 Synonym maps

We subsequently enrich these keyword maps by including
all the possible synonym labels, obtained by the Watson syn-
onymy service”. We call these sets of ontology terms direct
synonym maps (or simply synonym maps). More formally:

Definition 5. Direct synonymy. We define direct syn-
onymy between two different keywords k1, k2 € K, and de-
note it as k1 = k2, as a relationship that satisfies:

wSearch(ki) NwSearch(k2) # 0

That is, different keywords are considered synonyms if they
return the same ontology term in a Watson search.

Definition 6. Direct synonym map. We define direct
synonym map as the tuple (SYN, OT), where SYN C K and
OT € P(C)U P(P) U P(I), such that

Vki € SYN 3k; € SYN | ki = k;

Vot € OT 3k € SYN | ot € wSearch(k)

Up to this point, we have grouped all ontology terms corre-
sponding to an equivalent syntactical expression. It is sym-
bolized in Figure 2, where a synonym map is represented,
not only grouping the ontological terms that correspond to
“apple” but also to any of its direct synonyms. Note that if
multilingual ontologies have been accessed, terms in differ-
ent languages could be provided as synonyms, as for example

“manzana’®:

wSearch(“manzana”) N wSearch(“apple”’) # 0

3.4 Sense clustering

Each execution of this process receives as input a synonym
map, containing all the ontology terms that are candidates
to describe the meaning of certain keyword. An iterative
algorithm takes each ontology term, extracts the ontological
context that describes the term in the ontology, and com-
putes its similarity degree with respect to each of the other
terms (and corresponding ontological contexts) in the syn-
onym map, by using the measure described in [10, 21].

The extracted ontological context depends on the type
of term, and it includes synonyms, comments, hypernyms,
hyponyms, domains, ranges, etc. A reasoner enhances this
extraction step, by adding some inferred facts that are not

"http://watson.kmi.open.ac.uk/API/term/synonyms
8“manzana’ is the translation of “apple” in Spanish.
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Figure 2: Synonym map: expanding the keyword

map with synonyms.

present in the asserted ontology. Although different infer-
ence levels can be applied, we use simple inferences based
on the transitivity of the subclass relation, due to the fact
that it has shown a good balance between quality of results
and processing time according to our experiments. Also the
access methods in the Watson API provide ways to access
classes and subclasses inferred through transitivity (thus
saving us much time in local processing and reasoning).

The similarity computation explores the ontological con-
text of the compared terms, providing a measure of how
similar they are. When the obtained value is under a given
threshold, we consider them as different senses, and the al-
gorithm continues comparing other terms. If, on the con-
trary, the similarity is high enough, the terms are consid-
ered equivalent and they are integrated into a single sense.
The comparison process is then reinitiated among the new
sense and the rest of terms in the synonym map. If we find
a new equivalence between the new sense and another on-
tology term, a further integration is done. We can consider
it as an agglomerative clustering technique [14].

In the following definitions we clarify what we mean by
integration of ontology terms and equivalence between two
terms.

Definition 7. Integration. Let us call T either C', P or I.
Given a certain eztraction function, we define integration of

n € N ontological terms, and denote int(oti, ..., oty ), as the
function

int : T" — P(OE)
such that, int(ot1, ..., 0tn) = OCot; U ... U OCot,

Definition 8. Equivalence. Let us call T either C, P
or I. Given a similarity measure sim between two sets of on-
tological elements, and a certain threshold, we define equiva-
lence between two different ontology terms ot1, ote € T with
respect to sim, as a relationship, denoted ot; = otz, such
that 3t € T® (k € N) that satisfies one of the following:

s5im(OCot, , int(ots, t)) > threshold

sim(int(ot1,t), OCot,) > threshold
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Note that a consequence of the previous definition is that,
sim(OCot,,0Cot,) > threshold = ot1 = ot

(in case t = (). That is, two ontology terms are equivalent if
their contexts are similar enough, or if one of them belongs
to an integration which is similar enough to the other. In
general, we use sim(oti,ot2) as an equivalent notation for
sim(OCotl 5 OCOt2 )

The output of this process is a set of integrated senses.
Each sense groups the ontology terms that correspond to the
same intended meaning, as exemplified in Figure 3. We will
store the obtained integrated senses in the output structures
that we define in the following:

Definition 9. Sense map. We define sense map as the
tuple (SYN,OT), where SYN C K, and OT € P(C) U
P(P)U P(I) such that,

Voti,otj c OT = ot; = Ot]‘

Vk € SYN 3ot € OT | ot € wSearch(k)

Sense maps group together ontological terms that, accord-
ing to their similarity, are expected to represent the same
meaning. As we have to deal with their integrated ontolog-
ical information, they are part of the more complete defini-
tion of sense. The following definition accommodates (and
slightly extends) the idea of sense presented in [21]:

Definition 10. Sense. We define a sense as the tuple
(SYN,OT,int(OT), descr, pop, syndgr), where (SYN,K OT)
is a sense map, int(OT) is the integration of the involved
ontology terms, including also the graph that describes topo-
logically the integration, descr is a textual description, pop
(popularity) is the number of integrated ontology terms:
pop = |OT|, and syndgr is a value corresponding the re-
sultant similarity degree of the integration.

The Tree

q ‘. apple g apple
appled\ PP apple

g apple
aPPle tree apple tree

i3 4

ﬂPIﬂemanzaha i

h apple

The Frult

«z

Apple Inc.

apple )
..The Company

aﬁﬂle applé

Figure 3: Sense maps obtained for “apple”

Note that, by definition, a sense map only contains ontol-
ogy terms of the same type. Therefore classes, properties
and individuals are treated separately, thus never trying to
integrate ontology terms of different nature.
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Our process never “destroys” semantic information be-
cause, even when the final sense includes an integration, con-
taining only parts of the involved ontologies, it also preserves
all original ontological terms in a sense map. It makes pos-
sible that, when needed, a particular application traverses
the sense map to reach further information from the original
ontologies.

This clustering process is repeated with the rest of the syn-
onym maps, to create eventually a pool of integrated senses
which covers all ontology terms in Watson indezes.

3.5 Modifying integration degree

As commented before, a threshold is given as input of our
system, to decide whether to integrate or not two senses.
Later, in Section 4, we explore possible ways to decide an
“optimal” threshold.

However, a fixed threshold leads to a particular integra-
tion scheme. That is, the obtained clusters represent what
our application interprets as optimal integration, but may
differ from other opinions or necessities. Therefore, we con-
sider that different integration levels should be possible, to
adapt the “granularity” in senses discrimination to the re-
quirements of client applications, or to the different points
of view of users.

We propose a subsequent run-time process that further
integrates or disintegrates the initial clusters, as represented
in Figure 4. Without entering into details, the idea is that,
given a new threshold, and given the set of senses associated
to a certain keyword, the system have to explore how to
modify the integration, according to the new threshold.

Optimal
threshold

Falling threshold
(Integration)

i

Rising threshold
(Disintegration)

Figure 4: Integration/disintegration example.
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A rising threshold (newthreshold > threshold) means a
lower integration level. Each considered sense s is disinte-
grated, and the sense clustering algorithm is applied again
to its ontology terms S\OT. More than one new sense can be
created during the process, covering the meaning that the
initial s represented.

A falling threshold (newthreshold < threshold) means a
higher integration level. In this case all senses are candidate
for further integration, so the clustering algorithm is applied
again on all the senses (not necessarily on their elemental
ontology terms, as in the disintegration case). A number of
senses equal or lower than the initial set is created.

4. OPTIMIZATION STUDY OF THE SIMI-
LARITY THRESHOLD

As mentioned before, a threshold is used to decide whether
two terms are similar enough or not. However, one question
arises: What is the best threshold value to identify a correct
synonymy between ontology terms? We have different ways
to decide it:

1. Experimenting with ontology matching benchmarks.
That is, running our similarity measure with known
alignment test cases, and comparing results with the
provided reference alignments.

. Contrasting with human opinion, in experiments where
direct or indirectly some human evaluators assess the
correctness of our measure.

Optimizing response time. As different thresholds lead
to different integration degrees, we expect different ex-
ecution times as well. We can try to discover a thresh-
old that minimizes response time.

In the rest of the section, we explore all these possibili-
ties and provide a method to decide the optimal threshold,
which relies on the latter point (that is, it prioritizes time
response).

4.1 Finding threshold from OAEI benchmarks

Regarding a comparison to benchmarks, we submitted
CIDER system (our alignment service) to the OAEI’08 com-
petition®, in order to evaluate the capabilities of our seman-
tic similarity measure for ontology matching tasks [10]. We
participated in benchmark and directory tracks, obtaining
good results in both of them. As benchmark track was open
(organizers provided the reference alignment), we were able
to deduce the threshold for the similarity measure (around
0,13 in an interval [0,1]) that lead to the best results.

Nevertheless, we do not trust this value very much, as
the nature of the comparisons in the benchmark data sets is
quite restricted!®, not representing the great variety of real
semantic descriptions one can find on the Semantic Web. In
general, we expect higher thresholds when integrate senses
because, with benchmark test cases, it is highly probable
that minimal similar information, as for example same la-
bels, assures that two terms are equivalent (as ontologies
are very similar). However, equal labels are not enough, in

http:/ /oaei.ontologymatching.org/2008

10Most comparisons are between an ontology and itself, with
some modification rules applied, and always in the biblio-
graphic domain.
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general, to assess equivalent meanings when more heteroge-
neous semantic data are involved. Therefore, we accept the
obtained threshold, but only as a lower bound for an optimal
one, to be used in a more general scenario.

4.2 Finding threshold from human assessment

Another possibility, as it was above mentioned, is to devise
an experiment where human evaluation is present to assess
the quality of the matching that our measure provides. We
already did such an experiment in [9], where a method to im-
prove a background-based ontology matching technique was
proposed. Without entering into further details (see [9]),
our measure was used to add a confidence level to 354 map-
pings initially provided for the background-based technique,
between two ontologies of the agricultural domain. We ap-
plied different thresholds to this confidence level, to decide
the validity of the mappings, and we compared this to an
assessment made by human observers.

A particular optimum threshold did not arise from this
experiment, depending the particular choice on the balance
between precision and recall one needs. However, a range of
reasonable good values was found between 0.2 and 0.3.

4.3 Finding threshold from performance op-
timization

We have measured the variation of the response time of the
system, during alignment and integration, when the thresh-
old is modified. Our goal is to discover in which ranges
our integration works better, in terms of performance. In
fact, we expect different response time depending on the
threshold, because the number (and size) of clusters differs
with the integration level, therefore consuming different time
when comparing and merging them during our iterative in-
tegration algorithm.

For this purpose we have set up an small experiment with
505 randomly selected keywords, with a number of asso-
ciated ontology terms ranging from 2 to 511, which were
used as input of our alignment and integration system. We
have experimented with different levels of integration (that
is, corresponding to different thresholds). We evaluated the
integration level as

# final integrated senses
# initial ontology terms

integration level = 1 — (1)

The computer used for this test had the following charac-
teristics: 4 x Intel® Core™?2 Quad CPU Q6600 at 2.40GHz,
8GB RAM (with Ubuntu 8.04 Linux).

Figure 5 shows the averaged integration levels obtained.
As expected, the higher the threshold, the lower the inte-
gration level, which is consistent with the discussion in Sec-
tion 3.5. In Figure 6, the average time that our similarity
computation and integration processes took in the experi-
ment, for different thresholds, is shown.

Analyzing the results, we can see two local maximum val-
ues in the graphic, corresponding to the highest and the
lowest integration levels respectively. In fact, each iteration,
in our integration algorithm, needs to compare a new ontol-
ogy term to the others already examined. If there are no
(or few) clusters, this number of comparisons could be high,
thus consuming more time. On the contrary, if there is a
high integration level, the time is spent merging ontological
data, as well as comparing each new integration with the rest
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Integration level

013 016 019 022 025 028 031 034 037

Threshold

04 043 046 049 052 055

Figure 5: Integration level with different threshold.

Time (s)

013 016 019 022 025 028 031

Threshold

034 037 04 043 046 049 052 055

Figure 6: Response time with respect to threshold.

of the ontology terms again. The results show that the best
performance corresponds to an integration level around 0.5.
In particular, we found the best performance for a threshold
value of 0.22 in this experiment.

4.4 Proposed optimization method

As conclusion of our experience, described in previous
paragraphs, we advocate for an optimal threshold estab-
lished to maximise performance. The main reasons are:

1. It will reduce the response time of the overall system.
Figure 6 shows how an optimal threshold selection can
easily double or triple the speed with respect to other
thresholds.

is compatible with the range of good ones found by
comparing the results with human evaluations (Sec-
tion 4.2).

It is not always feasible to have a large enough num-
ber of humans, or reference alignments, in order to
assess the behaviour of a similarity measure. On the

The optimal threshold we can find this way (Section 4.3),
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contrary the performance-based method is completely
automatic, not needing human supervision.

Finally, as explained in Section 3.5, the ideal integra-
tion level is dependent on the user’s view and on the
requirements of particular applications. Therefore, it
is reasonable to chose an initial integration that can
be established quickly, letting the user, or client appli-
cation, chose later how it should be modified to fit his
particular needs.

Therefore, we propose to automatically train the system
with a large number of test cases, analyzing the response
time with respect to the threshold. Then, we deduce the
threshold that minimize the time value, that will be pro-
posed as the optimal threshold of our system.

Finally, the information of subsequent “manual” tuning
of the threshold can be stored, and utilized to improve the
initial threshold by using machine learning schemes.

S. SCALABILITY STUDY

In this section we explore the scalability of the techniques
we presented in [21], when used to align and integrate on-
tological information extracted from Watson indexes. This
way, we can check whether the scenario described in Sec-
tion 3 is feasible or not.

5.1 Empirical analysis of costs

The method developed in [21] to integrate senses of user
keywords, was conceived initially for a context of use where
only a reduced set of keywords (corresponding to a user
query) were involved. For this case, the set of tests we run
showed a good behaviour of the method, in terms of perfor-
mance. However, the new goal we describe in this paper is
much more ambitious, as the context of application grows
enormously in scale. Therefore, a scalability study is needed
in order to figure out whether our integration algorithm is
applicable to a large scale context (the whole set of online
ontologies indexed by Watson) or not.

Generally speaking, we say that a system is scalable when
the cost per unit of output remains relatively constant with
proportional changes in the number of units (or size) of the
inputs. There are two ways of analyzing the cost in time of
an algorithm: theoretically or empirically. We have chosen
the second way, because we already dispose of an advanced
implementation of the system. To empirically study the re-
sponse time of the system, we need to run it with a statis-
tically significant sample of input data. Then, we will infer
the performance of the system from the obtained results.

Experimental setup. For these experiments, we used the
set of synonym maps that Watson indexes hosted on June
2008, from which we randomly selected a 10%, taking a rep-
resentative keyword from each map to be used as input for
our experiment, resulting in an initial number of 28800. Af-
ter removing the keywords with only one ontology term as-
sociated (it makes no sense to apply our integration process
on them)u, we counted 9156 different keywords, associated
to 73169 different ontology terms to be clustered in this ex-
periment. We used a threshold = 0.27 during our sense
clustering step.

11 A small number of keywords that could not been processed,
due to different technical reasons, was also removed (e.g., not
available in Watson indexes at the time the test was run).
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The computer utilized for this tests had these characteris-
tics: 2 x Intel® Xeon® CPU X5355 at 2.66GHz, 6GB RAM
(with Red Hat Enterprise Linux 5).

5.2 Studying the size of keyword maps

The target of this experiment is to study the response in
time of our system, with respect to the number of ontology
terms per keyword that have to be processed during the
clustering step. We expect that the greater the number of
ontology terms associated to a keyword, the longer it takes
to be integrated. Owur objective is to figure out whether
this time is always limited and controllable, even for a high
amount of terms, or not. It is something hard to predict in
advance, due to the great variability of input data, in terms
of the quantity and quality of semantic information.

In Figure 7 we see how final results distribute. It shows
the total response time per number of ontology terms in each
keyword map. Each point corresponds to a test case (a total
of 9156 cases were run, one per different input keyword). We
have adjusted the given results to different curves, finding
that the best fit is a linear regression with equation y =
367x, and correlation coefficient R = 0.97. If we consider
the distribution of time responses, the mean value of all cases
is 2.5 seconds, and the median value is 0.5 seconds

250000

300000

250000

200000

150000

100000

50000

total time (ms)

[ 100

00 300 400 500 600 Too
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Figure 7: Time vs. number of initial ontology terms
per keyword.

From the given results we observe:

1. 99% of cases corresponds to keywords with less than
100 associated ontology terms. In all these cases the
system’s response takes no more than a few seconds,
thus confirming its capacity of being used for real-time
purposes (as it was first conceived in [21]).

. The expected result time is always controlled and can
be approximately predicted for any value of the input,
as the ratio processing time/num. ontological terms
remains constant.

As our alignment and integration algorithms show a con-
trollable behaviour, we can focus more on technical opti-
mization issues to improve performance (parallelization,
cache schemes, etc.) when the real application scenario re-
quires it (e.g., it is expected that Watson indexes continue
growing with time).
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5.3 Studying the size of ontologies

As an additional result of our scalability study, we were
interested in confirming that, due to the use of the Watson
inverted indexes, the size of the accessed ontologies has not
effect on the response time of our techniques. Our results
confirmed it, as it is shown by the cloud shaped dispersion
in Figure 8 (zoomed for convenience), where the time re-
sult according to the size of the involved ontologies appears.
After having statistically analyzed the results, we have not
found any dependence between ontology size and response
time of our system.

This independence between the size of ontologies and the
response time of our system, even if expected, shows a re-
markable advantage of accessing the ontological information
by using Watson, instead of other sources that requiere a
preliminary load step before using the ontologies. In that
cases, the time taken for downloading (and querying) the
ontologies depends on their size.
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Figure 8: Time vs. size of accessed ontologies.

6. ILLUSTRATING EXAMPLES

The main target of our test series has been to study the
scalability and performance of our integration techniques.
In this section we want to give also an idea of the quality of
the results, by inspecting some selected clustering examples.
A larger human-based evaluation is pending as future work.
Meanwhile, we have inspected the results given with these
polysemic words: “turkey”, “plant”, and our motivating ex-
ample “apple”. Due to space limitations, we only detail the
first example, summarizing the results of the other two.

Case 1: Turkey. After synonymy expansion, the synonym
map (SYN, OT) contained the keywords SYN = { Turkey,
Tiirkes, Tirkiye}, and a set of 58 ontology terms: |OT| = 58.
Our sense clustering step was carried out with threshold =
0.27. The system grouped the initial 58 ontology terms
into 9 different senses (integration level = 0.84, according
to Equation 1). Table 1 summarizes some aspects of the
integrated senses'Z.

120ntologies mentioned in Table 1 can be found, respectively,
at http://islab.hanyang.ac.kr/damls/Country.daml,
http://139.91.183.30:9090/RDF /VRP /Examples/tap.rdf,
http://reliant.teknowledge.com/DAML /Economy.daml,
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#* type pop | syndgr | comments

1 class 1 0 It appears as “a country” in Country.daml ontology.

2 class 1 0 In tap.rdf ontology (however its ontological context does not clarify its meaning).

3 class 2 0.48 Integration of “turkey” as “a livestock” from the Economy.daml and Economy.owl on-
tologies.

4 class 2 0.28 Integration of “turkey” as “a bird” from the ontosem.owl and mesh.owl ontologies.

5 | individual | 12 0.61 It integrates many instances of “turkey” as “light meal”.

6 | individual | 34 0.42 It integrates many instances of “turkey” from annotated conversations in social webs,
most of them referring to meanings similar to “place”, “country”, “area”.

7 | individual 3 0.62 Integration of “turkey” as an instance of “a place”, from different versions of epitaph.rdf
ontology.

8 | individual 2 0.41 It integrates “turkey” as an instance of “document” in annotated blogs.

9 | individual 1 0 It comes from a test ontology, being an instance of “Foo”.

Table 1: Summary of obtained senses for “turkey”.

In order to experiment with different integration levels, we
decreased the threshold to 0.17, resulting in an integration
level = 0.88. In particular senses 6 and 7 were integrated
into a single one (with pop = 37, syndgr = 0.38), as well
as senses 3 and 4 (pop = 4, syndgr = 0.38). The oth-
ers remained the same. On the contrary, if we increase the
threshold to 0.37, the number of obtained senses rises to 12
(integration level decreases to 0.79). Particularly, sense 4 is
split in two, and sense 5 is split in three new senses.

Case 2: Plant. The obtained synonymy expansion was { plant,
plants}. Watson retrieved 52 ontology terms for these key-
words. After running our clustering step, with threshold =
0.17, 16 final senses were obtained: 14 classes and two indi-
viduals (integration level = 0.73). The most remarkable one
was a class that integrated 32 ontology terms, all with the
meaning of “plant” as a kind of “living organism”.

Case 3: Apple. Watson retrieved initially 38 terms for this
keyword. The synonym expansion did not add significant
synonyms. Our sense clustering step, with threshold = 0.27,
grouped the initial ontology terms into nine different senses
(integration level = 0.76): five individuals and four classes.
Among the possible senses, we find “apple” as “a fruit”, as
an “ingredient”, as an annotation tag in Flickr'®, and as an
instance of “document” in many annotated blogs (most of
them refer to the meaning of “the electronics company”).

Discussion. Our examples show the ability of our system
to reduce the number of repeated senses one can discover on
the Semantic Web, to represent the meaning of a keyword.
It is specially useful to cluster terms form different versions
of the same ontology. Also references in social tags, where
semantics is quite poor, are easily grouped. We have also
found that very different meanings are not wrongly mixed
easily (e.g., “turkey” as “country” with “turkey” as “food”).
On the other hand, it is hard to obtain a total integration
of all terms of the same type referring to the same meaning.
It is due to the very different semantic descriptions some-

http://reliant.teknowledge.com/DAML/Economy.owl,
http://morpheus.cs.umbc.edu/aks1/ontosem.owl,
http://www.berkeleybop.org/ontologies/obo-
all/mesh/mesh.owl, and
http://139.91.183.30:9090/RDF /VRP /Examples/epitaph.rdf
http://fickr.com/
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times used to model the same concepts. We have also found
that some expected meanings do not appear among our re-
sults (e.g., “apple” as “a tree”). It is a consequence of the
still limited coverage of the current Semantic Web.

7. RELATED WORK

Our proposal represents the first large-scale effort, so far,
to provide a pool of clusters of cross-ontology terms free
of redundancy. Therefore, direct comparison with other
alternatives is quite difficult. Clusty'*, for example, is a
metasearch engine that groups search results in clusters that
group pages about a similar topic. The general idea could be
equivalent, but our search domain is the Semantic Web in-
stead of the Web, and we are interested in clustering senses
instead of web pages. Regarding other systems that index
online semantic content [17, 8, 11], neither of them have
incorporated redundancy reduction techniques yet.

Technologically speaking, even though we reuse ontology
matching and integration techniques, our work is neither
solely about ontology matching [7, 6], nor about ontology
integration or merging [18, 13, 12], in the sense of obtain-
ing a new ontology from matched ontologies [7]. It is closer,
however, to the idea of ontology construction from online
ontologies given in [1]. In his work, Alani proposes a gen-
eral strategy to dynamically segment, map and merge online
ontologies in order to support ontology construction. Our
target is not the same, but we share some commonalities,
and we think that our proposal could indeed support and
benefit such kind of systems.

Regarding our particular techniques, notice that our def-
initions of extraction, ontological context and equivalence,
given in Section 3, are general enough to accommodate other
similarity measures, always that they come with a clear no-
tion of neighbourhood, as for example in [19] (where they
propose the idea of virtual documents, containing neigh-
bouring information, to describe the intended meaning of the
ontology terms). Also, other segmentation techniques [20,
16, 2] could substitute the extraction we use. However, the
main target of these techniques is usually to reduce the size
of large ontologies, to make them treatable and scalable,
instead of characterizing a single sense. Furthermore, the
good results given by the CIDER alignment service, when
compared to others in the OAEI contest [10], confirm the

“http://www.clusty.com
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validity of its extraction and similarity computation, when
applied to ontology matching tasks.

8.  CONCLUSIONS AND FUTURE WORK

We have proposed a method to perform a large scale in-
tegration of ontology terms, to cluster the most similar ones
into integrated senses, when indexing huge amounts of online
semantic information. The method is flexible enough to dy-
namically modify the integration level according to the user
point of view, by tuning the similarity threshold. We have
also explored possible methods to find an optimal integra-
tion level, finally proposing one that is based on performance
optimization.

The work presented here is quite innovative in some as-
pects. For example, it is the first large-scale effort, so far,
to provide a pool of clusters of cross-ontology terms free of
redundancy (to a certain extent).

A scalability study has been performed in order to inves-
tigate the feasibility of our proposal. The results show that
our techniques lead to processing times that are controllable
and predictable, thus making scalability possible.

As future work, we plan to complete the implementation
of the system, only partially covered by our current proto-
type. It will be provided as a service in Watson eventually.
In this way, many applications, that exploit Watson to dy-
namically access online semantic content, will take advan-
tage of our method.

We plan also to perform a large scale test with human
opinion, to judge the quality of the obtained senses.
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