
Reference Ontology and (ONTO)2Agent: The 
Ontology Yellow Pages 

Julio César Arpírez1, Asunción Gómez-Pérez1, 
Adolfo Lozano-Tello2 and Helena Sofia Andrade N. P. Pinto3 

facultad de Informática, Universidad Politécnica de Madrid, Madrid, Spain 
2Departamento de Informática, Universidad de Extramadura, Extremadura, Spain 
'Departamento de Engenharia Informática, Instituto Superior Técnico, Lisbon, Portugal 

Abstract. Knowledge reuse by means of ontologies faces three important problems at 
present: (1) there are no standardized identifying features that characterize ontologies 
from the user point of view; (2) there are no web sites using the same logical organization, 
presenting relevant information about ontologies; and (3) the search for appropriate 
ontologies is hard, time-consuming and usually fruitless. To solve the above problems, we 
present: (1) a living set of features that allow us to characterize ontologies from the user 
point of view and have the same logical organization; (2) a living domain ontology about 
ontologies (called Reference Ontology) that gathers, describes and has links to existing 
ontologies; and (3) (ONTO)2Agent, the ontology-based WWW broker about ontologies 
that uses Reference Ontology as a source of its knowledge and retrieves descriptions of 
ontologies that satisfy a given set of constraints. 

1. Introduction and Motivation 

During recent years, considerable progress has been made in developing the con­
ceptual bases for building technology that allows knowledge component reuse and 
sharing. One of the main motivations underlying both ontologies and problem-
solving methods (PSM) is to enable sharing and reuse of knowledge and reasoning 
behavior across domains and tasks. PSMs and ontologies can be seen as com­
plementary reusable components to construct knowledge systems (Gómez-Pérez 



and Benjamins, 1998). Ontologies are concerned with static domain knowledge 
and PSMs with dynamic reasoning knowledge. The integration of ontologies and 
PSMs is a possible solution to the 'interaction problem' (Bylander and Chan-
drasekaran, 1988), which states that representing knowledge for the purpose of 
solving some problem is strongly affected by the nature of the problem and the 
inference strategy to be applied to the problem. 

Ontologies are defined as a formal, explicit specification of a shared conceptu­
alization (G. Gruber, 1993; Borst, 1997); that is, 'Conceptualization refers to an 
abstract model of some phenomenon in the world by having identified the relevant 
concepts of that phenomenon. Explicit means that the type of concepts used, and 
the constraints on their use are explicitly defined. Formal refers to the fact that the 
ontology should be machine-readable. Shared reflects the notion that an ontology 
captures consensual knowledge, that is, it is not private to some individual, but 
accepted by a group' (Studer et al, 1998). PSMs describe the reasoning process of 
a knowledge-based system in an implementation- and domain-independent man­
ner (Benjamins and Fensel, 1998). There are also the notions of task ontologies 
(Mizoguchi et al, 1995) and PSM ontologies (Chandrasekaran et al, 1998). 

Nowadays, it is easy to get information from organizations that have ontolo­
gies and PSMs on the web. There are even accessible points that gather informa­
tion about ontologies and have links to other web pages containing more explicit 
information about such ontologies (see The Ontology Page, also known as TOP; 
http ://www.medg.lcs.mit.edu/doyle/top) and there are also ontology servers, like 
The Ontology Server (http://www-ksl.standford.edu:5915) (Farquhar et al, 1995, 
1996), Cycorp's Upper CYC Ontology Server (http://www.cyc.com) (Lenat, 1990) 
or Ontosaurus (http://indra.isi.edu:8000/Loom) (Swartout et al, 1997), that col­
lect a huge number of very well-known ontologies. In the PSM area, there are 
also many PSM repositories at different locations but they are not accessible for 
outsiders and they are not compatible (Benjamins et al, 1998). 

At present, the knowledge component reuse and sharing community has 
identified the need to provide intelligent agents or intelligent brokering services on 
the WWW that ease the search for such knowledge components. In the ontology 
field, the need for this kind of services was identified in Fikes and Farquhar (1997) 
and Foundation for Intelligent Physical Agents (1998), but there are no web sites 
that gather information about ontologies that have already been built using the 
same logical organization, and there are no intelligent brokers specializing in the 
ontology field that could help in this search. This paper presents (ONTO)2Agent, 
an ontology-based WWW broker that helps to select ontologies. There is a similar 
project in the PSM field, called IBROW3 (Benjamins et al, 1998), whose goal is 
to develop an intelligent brokering service for PSM reuse on the WWW. 

Apart from the problems arising from component search, the choice of a 
knowledge component that does not match the system needs properly, whose 
usage is expensive (people, hardware and software resources, time), or that has 
not been satisfactorily evaluated technically (verified and validated) may force 
future users to stop reusing the built knowledge component and oblige them to 
formalize the same knowledge again. 

These problems are probably what have led to there being relatively few 
applications known to date in areas like knowledge management, ontology-
based brokers, natural language generation, enterprise modeling, knowledge-based 
systems, and interoperability between systems that reuse ontologies. 

This paper presents a solution to the problem of locating and searching 
the appropriate ontology on the web. End users usually face a complex multi-

http://www.medg.lcs.mit.edu/doyle/top
http://www-ksl.standford.edu:5915
http://www.cyc.com
http://indra.isi.edu:8000/Loom


criteria choice problem when they search for candidate ontologies. Apart from 
the dispersion of ontologies over several servers : 

(a) Ontology content formalization differs depending on the server at which it is 
stored. 

(b) Ontologies on the same server are usually described with different detail levels. 
(c) There is no common format for presenting relevant information about on­

tologies so that users can decide which ontology best suits their purpose. 

To speed up the use of ontologies in applications, our solution is to prepare a kind 
of yellow pages of ontologies that provide classified and updated information about 
ontologies following the same logical organization. These living1 yellow pages help 
future users to locate candidate ontologies for a given application. (ONTO)2Agent, 
the intelligent WWW broker specialized in the ontology field that uses an ontology 
as its knowledge source, spreads information about existing ontologies, helps to 
search appropriate ontologies, reduces the search time for the desired ontology, 
and supplies pointers to the set of ontologies that totally/partially meet user 
requirements. 

This paper is organized as follows. In Section 2, we present an overview of our 
solution. Section 3 presents a set of features to characterize, compare, evaluate 
and assess ontologies from the user point of view. Section 4 shows how we have 
built the Reference Ontology (an ontology in the domain of ontologies) to be 
used by the broker specialized in the ontology field. Finally, Section 5 presents the 
OntoAgent architecture, that is, the technology we use to build ontology-based 
WWW brokers and how it has been instantiated in (ONTO)2Agent, the broker 
that answers questions in the domain of ontologies using the Reference Ontology 
as its knowledge source. (ONTO)2 Agent is capable of answering questions about 
the features of ontologies that have been entered into the Reference Ontology. A 
specimen query would be: give me all the ontologies in the domain D that are 
implemented in languages LI and L2. 

2. An Overview 

Three main tasks were identified in our approach: 

1. Characterization of domain knowledge, which, in our case, is the ontology 
field, by identifying a set of features that allows end users to compare different 
ontologies. 

2. Ontological Engineering, to build the ontology, which, in our case, is the 
Reference Ontology, a domain ontology in the domain of ontologies using the 
METHONTOLOGY framework (Fernández et al, 1997, 1999; Gómez-Pérez, 
1996) and the Ontology Design Environment (Blázquez et al, 1998). 

3. Intelligent brokering services to access the ontology content, which, in our 
case, is the OntoAgent architecture, that is, the technology we have used to 
build ontology-based WWW brokers. 

Figure 1 shows how these tasks are related. The development of the ontology 
was divided into two phases. The first phase is centralized and concerns the 

Living in the sense that ontologies evolve and grow, as presented in Tennison and Shadbolt (1998). 



Fig. 1. General overview of (ONTO)2Agent development process. 

development of the conceptual structure of the ontology, and the identification of 
its main concepts, taxonomies, relations, functions and axioms. The second phase 
is distributed among ontology developers and involves filling in WWW forms 
to enter knowledge about instances into the conceptual structure. The ontology 
(conceptual structure+instances) is centralized and stored in a relational database. 
Using a WWW interface, the user can consult the ontology using the domain 
ontology vocabulary. (ONTO)2Agent searches for instances that satisfy the query 
and provides the answer. 

3. Features for Comparing Ontologies 

3.1. Previous Work 

Although software engineering and knowledge engineering provide detailed fea­
tures for evaluating the fitness of components and calculating their reusability 
in software applications (Slagle and Wick, 1988; Basili et al, 1994; Kan, 1995; 
Khairuddin and Key, 1995; Pressman, 1997), the literature reviewed in the field 
of ontologies shows that there are few papers on identifying features for describ­
ing, comparing and assessing ontologies. There are some articles about ontology 
features (e.g., Fridman and Hafner, 1997; Hovy, 1997; Arpirez, 1998; Uschold, 
1998), and there are articles from which they can be extracted, although they do 
not specifically address ontology features (Uschold and Griininger, 1996). These 
papers are presented in chronological order below. 

One of the first articles from which we can extract general features to char­
acterize ontologies is Uschold and Griininger (1996). The features identified are: 
formality, purpose and domain. Formality expresses the level of formality of 
one ontology. Its possible values are: informal, semi-informal, semi-formal and 
highly formal. Purpose characterizes the different uses of one ontology. The values 



proposed are : communication, interoperability and systems engineering. Domain 
describes the piece of reality that the builder of the ontology wants to represent. 
The problem with this proposal is that it specifies only a few features and, hence, 
ontology characterization is limited. 

Another article presenting features for comparing ontologies is Fridman and 
Hafner (1997). In this proposal, features are classified as: general, related to 
the design process, related to the taxonomy, related to the internal concept 
structure and the relations between concepts, related to axioms and the inference 
mechanism, related to the applications built using the ontology, and important 
contributions. General features try to give an overview of the ontology; for 
instance, whether the ontology is general or domain-specific, its domain (if it 
is a domain-specific ontology), the size of the ontology, the formalism used 
to represent it, purpose, etc. Design process features characterize the building 
process and whether the ontology was evaluated. Taxonomy features characterize 
the structure of the ontology and the main concepts represented in the ontology. 
Internal structure and relations features characterize the concepts represented 
and the relations used to represent those concepts. Axioms and inference features 
characterize the kind of logic used to represent and infer knowledge. Application 
describes the applications built using the ontology. Contributions refer to the 
strengths and weaknesses of the ontology. This taxonomy of 25 features was 
used to compare CYC (Lenat, 1990), Wordnet (Miller, 1990), GUM (Bateman et 
al, 1994), Sowa's Ontology (Sowa, 1997), Dahlgren's Ontology (Dahlgren, 1988), 
UMLS (Humphreys and Lindberg, 1993), TOVE (Gruninger and Fox, 1995), 
GENSIM (Karp, 1993), Plinius (Van der Vet et al, 1994) and KIF (Genesereth 
and Fikes, 1992). The problems with this proposal are the limited characterization 
of ontologies, and the lack of criteria for classifying ontologies according to some 
of the features. 

Proposed at the same time as Fridman and Hafner (1997), Hovy (1997) 
presents a taxonomy of features for comparing ontologies for natural language 
processing. This proposal classifies its 36 features into form, content and us­
age. Form features characterize the conceptual tools with which the ontology 
builder defines terms and axioms. They are related to mathematical logic and 
computational complexity. Some of the most important features according to this 
criterion are : parsimoniousness, type flipping and coercion, inheritance of proper­
ties, support of inferences, worlds or contexts, TMS and non-first-order reasoning. 
Content features refer to terminology, axiom inferences and instances used by the 
ontology builder. They are related to philosophy, epistemology and the domain. 
Some of the most important features covered by this criterion are : size, organiza­
tion, average specificity (general or domain-specific), linkage to other resources, 
characterization of axioms and inferences, instance fidelity and instance coverage. 
Finally, usage features describe the way in which the ontology builder builds, 
uses and maintains the ontology. They are related to software engineering and 
ergonomics. Some of the most important features covered by this criterion are : 
storage size, hardware and software platforms required, viewing and editing tools 
and documentation. The major weakness of this proposal is that it is incomplete. 
Although it covers a considerable number of features, some of the features are not 
defined, some are not clearly defined, some definitions contradict the examples 
and there are several features that are only relevant to natural language issues. 

Uschold (1998) proposes 10 features for classifying ontology applications: 
purpose, representation language and paradigms, meaning and formality, subject 
matter (domain), scale, development (is the ontology implemented, published, 



planned?), conceptual architecture (main components of the application), mech­
anisms and techniques (to use the ontology), implementation platform (hardware 
and software required), and miscellaneous (hidden assumptions). The main draw­
back of this proposal is that ontology characterization is limited. 

Although our initial proposal of 70 features (Arpirez et al, 1988), was published 
at the same time as Uschold's (1998), the purpose of the features we propose is 
quite different from the purposes of previous (Fridman and Hafner, 1997; Hovy, 
1997; Uschold and Griininger, 1996) and simultaneous (Uschold, 1998) proposals: 
we want to characterize ontologies from the user point of view. 

3.2. Characterization of Ontologies 

The goal of this section is to provide a wide initial set of features that allow us 
to characterize the ontologies from the user point of view by identifying the main 
attributes and their values. The kinds of questions we are trying to answer are, for 
example: In which languages is the ontology available? What are the mechanisms 
for interacting with the ontology? Is the knowledge represented in a frame-based 
formalism? What is the cost of the hardware and software infrastructure needed 
to use the ontology? What is the cost of the ontology? Is the ontology well doc­
umented? Was it evaluated (Gómez-Pérez, 1996) from a technical point of view? 

To be able to answer the above questions, we undertook a detailed study of the 
ontologies available at ontology servers on the web (Ontology Server, Cyc Server, 
Ontosaurus) and other ontologies from the literature (PhysSys: Borst et al, 1996; 
Borst, 1997; EngMath: Gruber and Olsen, 1994). Our aim is twofold: first, to 
identify the most representative features of these ontologies (developers, ontology 
server, type, purpose, etc.); second, to define a shared domain ontology about on­
tologies (the Reference Ontology, in Section 4) and relate each individual ontology 
to that shared ontology. This Reference Ontology can help future users to select 
the most adequate and suitable ontology for the application they have in mind. 

To improve and speed up the process of searching for the features of the 
ontology, they are grouped into the following categories: identifying, descriptive 
and functional features, as shown in Fig. 2. A preliminary set of features is 
proposed for each category. Since not all the features are equally important, the 
essential features, that is, features which are indispensable in order to distinguish 
each ontology, are given in bold type. It is compulsory to fill in these features. 
We also stress that: (1) some features cannot be used to characterize certain 
ontologies; (2) the ontology builder may not know the values of some features; 
(3) this is an evolving list of features to be improved and completed with new 
features as and when required; and (4) several features can be interrelated, but 
the characteristics are defined and categorized to find suitable ontologies easily 
and intuitively. 

3.2.1. Identifying Features 

These provide information about the ontology itself, its developers and distribu­
tors. We consider it important to specify the following : 

• About the ontology : its name, server site, mirror sites, web pages, FAQs available, 
mailing lists, natural language description and date when the ontology was built. 

• About the main developers and distributors: their names, web pages, emails, 
contact names, telephone and fax numbers and postal addresses. 



IDENTIFYING 

DESCRIPTIVE. 

- ONTOLOGY 

-DEVELOPERS 

.DISTRIBUTORS 

-GENERAL 

- S C O P E 

— DESIGN 

.REQUIREMENTS 

- C O S T 

1—USAGE 

name, server-sites, mirror-sites. Web-pages. FAQs available, mailing lisis. 
NL- descriptions, built dale 

name, Web-page, e-mail, conlact name, telephone. FAX. postal address. 

name, Web-page, e-mail, contact name, telephone, FAX, postal address 

type of ontology, subject, purpose, ontological commitments, list at higher 
level concepts, Implementation status, on-line and hard-copy documentation 

number of concepts representing classes, number of concepts representing 
instances, number of explicit axioms, numbei of relations, number ol functions, 
number of class concepts at first, second and third levels, number of class 
leaves, average branching factor, average depth, highest depth level 

building methodologies, steps followed, level ol formality of the methodology 
building approach, level of specification formality, knowledge sources, rohability of 
knowledge sources, knowledge acquisition techniques, formalism paradigms, 
integrated ontologies, languages in which the ontology is available 

hardware and software support 

price of use, maintenance cost, estimated price ol required software, estimated 
price of required hardware 

number of applications, list of main applications. 

FUNCTIONAL _ _ _ description of use tools, documentation quality, training courses, on-line help-
operating instructions, availability of modular use, possibility of additing new 
knowledge, possibility of delaying with contexts, availability of PSMs 

Fig. 2. Features for comparing ontologies. 

3.2.2. Descriptive Features 

These provide information about the content and form of the ontology. They 
have been divided into six categories: general, scope, design, requirements, cost 
and usage. 

General features describe basic content issues. Users will frequently consult 
this kind of information, since these features are crucial for looking up other 
features. We considered the following properties : type of ontology (as proposed 
in van Heist et al, 1997, the possible values are application, domain, generic, 
representation), subject of the ontology, purpose (we identified modeling, NL 
understanding, knowledge sharing and reuse, simulation, teaching, theoretical 
research, others, as possible values), ontological commitments (T Gruber, 1993), 
list of higher-level concepts, implementation status, and on-line and hard-copy 
documentation. 

Scope features describe measurable attributes proper to the ontology. They 
give an idea of the content and depth of the ontology. Properties to be taken into 
account are : number of concepts representing classes, number of concepts repre­
senting instances, number of explicit axioms, number of relations and functions, 
number of class concepts at first, second and third levels, number of class leaves, 
average branching factor, average depth, highest depth level. 

Design features describe the method used to build the ontology, the activities 
carried out during the whole process and how knowledge is organized and 
distributed in the ontology.2 

2 The ontology can be divided into several ontologies. 



1. It is important to mention the methodology used, the steps (Fernández et 
al, 1997; Blázquez et al, 1998; Gómez-Pérez, 1998) taken to build the ontol­
ogy (mainly planning, specification, knowledge acquisition, conceptualization, 
integration, implementation, evaluation, documentation and maintenance) ac­
cording to the selected methodology, its level of formality (as proposed in; 
informal, semi-informal, semi-formal, highly formal), and the construction ap­
proach (as proposed in Uschold and Griininger, 1996; top-down, middle-out 
and bottom-up). 

2. Depending on the methodology, the requirement specification may be formal, 
informal or semi-formal (Gómez-Pérez, 1998). 

3. With regard to knowledge acquisition, it is important to state the types of 
knowledge sources (we identified domain books, experts, ontologies, stan­
dards, others, as possible values), how reliable such knowledge sources are (we 
identified three levels of reliability : high, average and low) and the techniques 
used in the process (formal and/ or informal text analysis, interviews, protocol 
analysis, repertory grids and others). 

4. With respect to formalism paradigms, a frame-based formalism, a first-order 
logic approach, a semantic network, like conceptual graphs, or even a hybrid 
knowledge representation paradigm can be selected (the list of possible val­
ues is: classical logic, non-classical logic, non-monotonic logic, frame-based, 
semantic networks, hybrid systems and others). It is important to state here 
that the chosen formalism constrains the knowledge representation ontology in 
which a given ontology is implemented. For example, if we select a frame-based 
formalism paradigm, then the major candidate is the frame ontology at the 
Ontology Server. The formalism paradigm also plays a major role in ontology 
integration. For example, if you want to integrate an ontology built using a 
first-order language into a frame-based paradigm a lot of knowledge will be 
lost due to the weaker expressive power of the latter. 

5. As far as integration is concerned, a list of the integrated ontologies should be 
given. 

6. Finally, we need to know from the implementation point of view, the source 
languages in which the ontology is supplied (as for instance: Ontolingua, G. 
Gruber, 1993; F-Logic, Kifer et al, 1995; LOOM, MacGregor, 1991; Lisp, 
Prolog, Relational Database) and the list of formal KR languages supported 
by available translators. 

Requirement features identify the minimum hardware (swap and hard disk space, 
RAM, processor, operating system) and software support requirements (knowl­
edge representation languages and implementation language underneath the KR 
language) for using the ontology. All these features will greatly influence costs. 

Cost features help to assess the estimated cost of using the ontology in a given 
organization. Since hardware and software costs vary widely and depend on the 
existing computer infrastructure, the total cost should be calculated by adding 
the cost of use and maintenance to the features identified above (estimated prices 
of the hardware and software required). 

The usage features refer to the applications that use this ontology as a source 
of their knowledge. The number of known applications and their names are the 
features to be filled in by the informant. 



3.2.3. Functional Features 

These properties give clues as to how the ontology can be used in applications. 
By observing these features, users will be able to estimate the technical and 
operational effort that will be required if they decide to reuse the ontology. We 
identified the following features: description of use tools (taxonomic browsers, 
editors, evaluators, translators, remote access modules, etc.), quality of documen­
tation (we identified five levels of quality: excellent, good, average, marginal, 
poor), training courses available, on-line help available, how to use the ontology 
(including the steps followed to access, manipulate, display and update knowledge 
from remote and on-site applications), availability of modular use, possibility of 
addition of new knowledge, possibility of dealing with contexts, availability of 
integrating PSMs, etc. 

3.3. Discussion 

Some of the above features can have different influence in the user requirements, 
and this influence depends on the particularities of the project or the company 
that will reuse the ontology. That is, in this paper, neither the particularities of 
the human and material resources of the company, nor the size and complexity 
of the project will be taken into account. However, all project managers should 
weigh up each category and features to decide how important they are, relating 
them to the peculiarities and demands of their particular project. 

4. Design of an Ontology about Ontologies: The Reference 
Ontology 

Having presented a living set of features that describe each ontology and differen­
tiate one ontology from another, the goal of this section is to show how we have 
built the Reference Ontology using the features identified in Section 3. As stated 
above, the Reference Ontology is a domain ontology about ontologies that plays 
the role of a kind of yellow pages of ontologies. Its aims are to gather, describe 
and have links to existing ontologies, using a common logical organization. 

The development of the Reference Ontology was divided into two phases. The 
first phase is concerned with the development of its conceptual structure, and the 
identification of its main concepts, taxonomies, relations, functions and axioms. It 
was carried out using the METHONTOLOGY framework (Fernández et al, 1997; 
Gómez-Pérez, 1998; Fernández et al, 1999) and the Ontology Design Environment 
(Blázquez et al, 1998). As one of the research topics of the (KA)2Ontology 
(Benjamins et al, 1999) is ontologies, we decided to incorporate the Reference 
Ontology into the Product ontology of the (KA)2 initiative that is currently being 
developed by the KA community. The second phase corresponds to the addition 
of knowledge about specific ontologies that act as instances in this Reference 
Ontology. Ontology developers will enter such knowledge using a WWW form 
also based on the features previously presented in Section 3. Thus, the effort made 
to collect information about specific ontologies is distributed among ontology 
developers while the development of the conceptual structure of the Reference 
Ontology is centralized. 



4.1. Reference Ontology Conceptual Structure 

4.1.1. Sources of Knowledge 

As starting points for developing our Reference Ontology, we took three sources 
of knowledge. The first source was the set of features presented earlier in Section 
3, which played the role of a specification document. The second source was 
the restructured (KA)2 conceptual model (Blázquez et al, 1998). The third source 
was the set of properties identified for the Research Topic ontology, which were 
established during the KEML workshop held at Karlsruhe, on January 23, 1998. 
The properties identified were : Name, Description, Approaches, Research-groups, 
Researchers, Related-topics, Sub-topics, Events, Journals, Projects, Application-
areas, Products, Bibliographies, Mailing-lists, WebPages, International-funding-
agencies and National-funding-agencies. All these properties describe the field 
of ontologies and differentiate it from other fields of research. However, the 
properties we presented in Section 3 characterize each ontology and differentiate 
one ontology from another. Some of the features presented in Section 3 lead to 
some minor changes and extensions to the (KA)2 Ontology. 

4.1.2. Conceptual Structure 

The goal of conceptualization in the METHONTOLOGY framework is to orga­
nize and structure the acquired knowledge in a complete and consistent knowledge 
model, using external representations (glossary of terms, concept classification 
trees, ad hoc binary relation diagrams, concept dictionary, table of ad hoc bi­
nary relations, instance attribute table, class attribute table, logical axiom table, 
constant table, formula table, attribute classification trees and an instance table) 
that are independent of implementation languages and environments. As a result 
of this activity, the domain vocabulary is identified and defined. The following 
describes the process followed to build the Reference Ontology conceptual model 
and how it was integrated into the (KA)2 Ontology. 

First, we built a glossary of terms that included all the terms (concepts, 
instances, attributes, verbs, etc.) of the domain and their description in natural 
language, as shown in Table 1. 

When the glossary of terms contained a sizeable number of terms, we struc­
tured the domain knowledge in concept classification trees following a hierarchical 
organizational principle. This principle aims to divide the domain knowledge into 
as many independent modules as possible to which inheritance can be applied. 
Each taxonomy produced an ontology. From there, we integrated the Reference 
Ontology into the (KA)2Ontology. Not only did we build concept classification 
trees for the Reference Ontology, but also the concepts identified in the glossary 
of terms of the Reference Ontology were integrated into the concept classifi­
cation trees of the (KA)2 Ontology. These concepts appear in bold type in Fig. 
3. For instance, the classes Servers and Languages are subclasses of Computer-
Support in the Product ontology. The subclass of the class Servers is the class 
Ontology-Servers, whose instances (in italics) are the Ontology-Server, the On-
tosaurus and the CycServer. The subclass of the class Languages is the class 
Ontology-Languages, whose instances are Ontolingua, CycL and LOOM. 

The next step was to build ad hoc binary relations diagrams between con­
cept classification trees. The goal of this diagram is to establish relationships 
between concepts of the same or different ontologies. Note that this diagram 



Table 1. Glossary of terms in the Reference Ontology. 

Name Description 

Ontology An explicit specification of a conceptualization 
Ontology-Languages Languages used to represent ontologies 
Ontology-Servers Servers that support ontologies 
Developed-by The organization that developed the ontology 
Purpose-of-Ontology Original purpose for which the ontology was built and its 

intended uses 
Server-Translates-to- The languages the server translates to 

Languages 
Is-Translated-from-Server The servers that have translators to the language 
Average-Branching-Factor Average number of outgoing branches of a node 
Ontology-Formalized-in- Language/formalism used to represent the knowledge 

Language contained in the ontology 
Ontolingua A language specially defined to represent ontologies 
List-of-Available- All formal knowledge representation languages in which 

Languages the ontology has been formalized and which can be 
supported by available translators 

will set out the guidelines for integrating ontologies, because if a concept CI 
is linked by a relation R to a concept C2, this means that the ontology con­
taining CI includes the ontology containing C2, provided that CI and C2 are 
in different concept classification trees. We have included new relations between 
classes in the ad hoc binary relations diagrams of the (KA)2 Ontology; for instance, 
the relation Ontology-Located-at-Server that relates an ontology to a server or 
the relation Ontology-Formalized-in-Language that relates an Ontology to an 
Ontology-Language. 

For each concept classification tree generated, we built the following IRs: 

1. A concept dictionary containing all the domain concepts, instances of such 
concepts, class and instance attributes of the concepts and, optionally, concept 
synonyms and acronyms. Table 2 sets out a small part of the concept dictionary 
of the Reference Ontology. 

2. A table of binary relations for each ad hoc relation whose source concept is 
in the concept classification tree. For each relation, we specified: its name, 
the name of the source and target concept, its inverse relation, etc. Tables 
3 and 4 show the Server-Translates-to-Languages relationship and its inverse 
Is-Translated-from-Server. 

3. An instance attribute table for each instance attribute that appears in the 
concept dictionary. Instance attributes are attributes that are defined in the 
concept but that take values in its instances. For example, the Average-
Branching-Factor of an ontology is proper to each instance. For each instance 
attribute, we included: its name; the value type; the measurement unit for 
numerical values; accuracy for numerical values; range of values; default 
values; minimum and maximum cardinality; instance attributes, class attributes 
and constants that are used to infer the value of the attribute that is being 
defined; attributes that can be inferred using this attribute; formula or rule for 
inferring the attribute that is being defined; and references used to fill in the 
attribute. Table 5 shows the attribute Average-Branching-Factor. 



Research-Topic 

Research-Topic-Application-A reas 
Research-Topic-Approaches 
Research-Topic-Related-Topics 
Research-Topic-Subtopics 

Research-Topic-International-Funding-Agencies 
Research-Topic-National-Funding-Agencies 
Groups-Working-on-Research-Topic 

Research- Topic'-Products 

(Organization 
(Department 
Enterprise 
Institute 
Research-Group 
Research-Organization 
University 
EC 
DARPA(USA 

Distributed-by 

Research-Topic-Researchers 

|Person 
Employee 

Academic-Staff 
Lecturer 
Researcher 

PhD-Student 
Administrative-Staff! 

Secretary 
Technical-Staff 

Student 
PhD-Student 

Ontoloey-Located-At-Server 
Ontoljgy-Locáted-At-Mirror-Serverl 

Is-Translated-from-Serven 

Ontology-Formalized-in-Language 

Research-Topic-Projects 

Project 
Development-Project 

Software-Project 
Research-Project 

METHONTOLOGY 

Research-Topic-Events 

|E vents 
Special-Issue 
Conference 

SSS '9 7-Ontological-Engineering 
Workshop 

EC AI '96-Ontological-Engineering 
EC AI '98-Appl. •of-Ontal&-Probl-Solv-Methods 

Activity 

Research-Topic-Journals 

Publication 
Article 

Article-In-Book 
Conference-Article 
Journal-Article 
Technical-Report 
Workshop-Article 

Book 
Journal 

IEEE-Expert 
1JHCS 
Special-Issue 

On-line-Publication 

Product 
KA-Methodologv 

Guideline 
Problem-Si living-Method 
Paper-Library 
Specification-Language 
Modeling-Language 

— Ontology 4 , 
Computer-Support List-ot'jl ntegr 

Intelligent-Editor | 
Transformational-Tool 
Problem-Solving-Mcthod-Libiary 
Ontology-Library 
Validator 
Verifier 
Implementation-Environment 
Elicitation-Tool 
Internet-Tool 
Natural-Language-Parser 

^ Servers -4 
" • Ontology-Server<i 

Ontology-Server 
Ontosaurus 
CycServer 

Language^ 
—• Ontology-Languages 

Ontolingua 
CvcL The-KR-L; 
LOOM 

er-l-anguage 
er-Translales 

iLanguages 

Product-Publication 

Fig. 3. Some of the relations and concepts added to the (KA)2 ontology. 

4. A logical axioms table. This is used to define the concepts by means of logical 
expressions that are always true. Each axiom defined included: its name, 
its natural language description, the concept to which the axiom refers, the 
attributes used in the axiom, the logical expression that formally describes the 
axiom using FOPC and references, as shown in Table 6. 

5. An instance table for each instance that appears in the concept dictionary. Each 
table includes : the name of the instance, the attributes with known values in 
the instance and the values of such attributes. It is important to mention that 



Table 2. Concept dictionary in the domain of the Reference Ontology. 

Concept 
name 

Ontology 

Ontology-
Languages 

Instances 

CycL 

Ontolingua 

LOOM 

Class 
attributes 

— 

Instance attributes 

Type- of-Ontology 

Subject-of-Ontology 

Purpose-of-Ontology 

Average-Branching-
Factor 

The- K R- Language- of-
Server 

Is-Translated-from-
Server 

Relations 

Ontology- Formalized-
in-Language 

Ontology-Located-at-
Server 

Ontology-Located-at-
Mirror-Server 

List-of-Integrated-
Ontologies 

List-of-Available-
Languages 

— 

F-Logic 

Relational-
Data-Base 

Table 3. Binary relation: Server-Translates-to-Languages in 
the domain of the Reference Ontology. 

Relation name 

Source concept 
Source cardinality 
Target concept 
Mathematical 
properties 

Inverse relation 
References 

Server-Translates-to-
Languages 

Servers 
(0,n) 
Languages 
— 

Is-Translated-from-Server 

the Reference Ontology includes only instances related to ontology servers 
and languages used to implement ontologies. It does not gather knowledge 
about specific ontologies because this knowledge will be collected from the 
community, in a distributive way, using the WWW instance collector broker. 

The conceptual structure of the Reference Ontology was built using the ODE 



Table 4. Binary relation: Is-Translated-from-Server in the 
domain of the Reference Ontology. 

Relation name Is-Translated-from-Server 

Source concept 
Source cardinality 
Target concept 
Mathematical 
properties 

Inverse relation 
References 

Languages 
(0,n) 
Servers 

Server-Trai 

Table 5. Instance attribute: Average-Branching-Factor in the 
domain of the Reference Ontology. 

Instance attribute name Average-Branching-
Factor 

Value type Real 
Unit of measure — 
Precision — 
Range of values [0, +co] 
Default value — 
Cardinality (1, 1) 
Inferred from instance attribute — 
Inferred from class attribute — 
Inferred from constants — 
Formula — 
To infer — 
References — 

conceptualization module. ODE assures the consistency and completeness of the 
knowledge represented in each IR and between IRs. It is important to mention 
that the process of building the conceptual model using these IRs is not sequential 
in the sense of a waterfall life-cycle model, but some order must be followed so as 
to assure the consistency and completeness of the knowledge already represented. 

Once the ontology had been conceptualized, we generated three implemen­
tations of this ontology using ODE translators : an Ontolingua implementation, 
an FLogic implementation and a relational database implementation. The broker 
used to select ontologies will use the latter implementation to search for the most 
appropriate ontology. 

4.1.3. Design Criteria 

This section presents the design criteria used to incorporate the Reference Ontol­
ogy into the (KA)2Ontology: 

• Modularity: we sought to build a module-based ontology to allow more flexi­
bility and varied uses. 

• Specialize: we identified general concepts that were specialized into more 
specific concepts until domain instances were reached. Our goal was to classify 
concepts by similar features and to guarantee inheritance of such features. 

• Diversify each hierarchy to increase the power provided by multiple inheritance 



Table 6. Named axiom: translation of ontologies written in Ontolingua in the domain of the Reference 
Ontology. 

Axiom 
name 

Translation of ontologies written in Ontolingua 

Description 

Concept 
Referred 
attributes 

Variables 
Expression 

Relations 
References 

Languages to which the translators available at the ontology server can 
translate a given ontology 

Ontologies 
Ontology- Formalized-in- Language 

X 
For all(X) (Ontology(X) and Ontology-Formalized-In-Language(X, 
Ontolingua) => 

List-of-Available-Languages(X, Clips) and 
List-of-Available-Languages(X, ClipsSententialFormat) and 
List-of-Available-Languages(X, CML-ATP) and 
List-of-Available-Languages(X, CML-Rule-Engine) and 
List-of-Available-Languages(X, EPIKIT) and 
List-of-Available-Languages(X, IDL) and 
List-of-Available-Languages(X, KIF3.0) and 
List-of-Available-Languages(X, KSL-Rule-Engine) and 
List-of-Available-Languages(X, LOOM) and 
List-of-Available-Languages(X, OKBC-friendly) and 
List-of-Available-Languages(X, Prolog-Syntax)) 

mechanisms. If enough knowledge is represented in the ontology and as many 
different classification criteria as possible are used, it is easier to enter new 
concepts (since they can be easily specified from the pre-existing concepts and 
classification criteria). 

• Minimize the semantic distance between sibling concepts: similar concepts are 
grouped and represented as subclasses of one class and should be defined using 
the same primitives, whereas concepts which are less similar are represented 
further apart in the hierarchy. 

• Maximize relationships between taxonomies: ad hoc relations and slots were 
filled in as concepts in the ontology. 

• We have not taken into account ontology server, ontology and language releases 
to build our ontology. For instance, in our ontology, the Ontology Server is an 
instance of servers and we do not keep records of its latest and future releases. 

• Standardize names: whenever possible we specified that a relation should be 
named by concatenating the name of the ontology (or the concept representing 
the first element of the relation), the name of the relation and the name of 
the target concept; for instance, the relation Ontology-Formalized-in-Language 
between the class of ontologies and one Language. 

All changes, the entry of new relations and properties and the entry of new 
concepts were guided by the features presented in Section 3. Essentially, the 
(KA)2 Ontology was extended using new concepts and some knowledge previously 
represented in the (KA)2 Ontology was specialized in order to represent the 
information that we found was of use and of interest for comparing different 
ontologies with a view to reuse or use as a basis for further applications. 



)K OntoAgent - Netscape 
Archivj Edición Yer ir Communicator Ayuda 

¿ ,. à •:+ sí t ; -* A M 

EH 

,$ * Marcadoras ..j Dirección: [hjitp./ / d eli dns Jiati. u p m. e s /OmoAge ntfmanul .Wm I 

B B w a EifflwaBUfn̂  | 

Ontology 
Properties 
The quelles in this form 
are organized into the 
following parts: 

f lJanlificaUoil 

,5 Ontology 

o Develop»r 

o Diskibutdi 

M Oftjtiailfsutí 

o Design 

^J 

Identification 
Ontology 

Ontology name ¡CHEMICAL 

Server site jhttpzZ/www-Ksi-svc. stand ford .±d-i : 

Mirror site |http://www-]tsl-svc-liÈi.dia.Ei. 1.1 pu 

Web pases I 

Mirror Web pages \~ 

Available FAQs [~ 

Mailing list p 

±1 
Documento: Ejecutado 

Fig. 4. HTML ontology questionnaire form. 

4.2. Reference Ontology: Instances 

Once the Reference Ontology conceptual structure has been built, a means is 
needed to provide its instances. The approach we took was to use a World Wide 
Web form based on the ontology features previously identified and presented in 
this paper. Its main aim is to gather information about specific ontologies and 
thus distribute the effort made in collecting this data from ontology developers. 
Part of this form (http://delicias.dia.fi.upm.es/OntoAgent/) is shown in Fig. 4. 

The features on the form are classed by categories, and the categories are 
divided into groups. There are compulsory features that ontology developers 
must fill in - for example, the ontology name, the language of the ontology -
while others are optional and offer a more detailed view of the ontology - for 
example, number of nodes at the first level. Ontology developers can choose to 
fill in the 70 features of the form or opt to fill in only the compulsory features. 
The form contains questions to obtain the values of the features of an ontology. 
Besides, it contains help to guide ontology developers through filling in the form. 
A set of possible values are also identified for some questions, so the user merely 
has to click on a radio button or check-box. 

However, it was not enough for our purposes to merely supply the form. We 
needed an easy and fast way to consult the information stored in the Reference 
Ontology. This is where the OntoAgent architecture and (ONTO)2Agent come in. 

http://www-%5dtsl-svc-li�i.dia.Ei
http://delicias.dia.fi.upm.es/OntoAgent/


4.3. Discussion 

One of the important features of the Reference Ontology is the fact that its devel­
opment was divided into two phases. The first was the centralized development of 
its conceptual structure and the second is the distributed collection of its instances. 
Usually, ontologies are either centrally developed (for instance, CHEMICALS; 
Fernández, 1996; Fernández et al, 1999) or distributively developed (for instance, 
(KA)2). 

Another important feature is the fact that the Reference Ontology was built 
according to a domain ontology building methodology, which has already suc­
cessfully been applied to several different domains. The inclusion of the Refer­
ence Ontology conceptual structure into the (KA)2 Ontology conceptual structure 
within ODE was simplified since we had access to it. 

We believe that although knowledge represented in the Reference Ontology 
is more important to ontologists in particular it may also be of value to the KA 
community and knowledge-based system builders in general since it can spread 
information about existing ontologies. 

The features characterizing ontologies shown in Section 3.2 provide a complete 
description of the characteristics to look for when ontologies are reused in a given 
project. However, new uses of ontologies or particular needs may require new 
features to be added. To face any demand from the KA community, which may 
arise either from ontology providers or from consumers, the procedure to follow 
will consist of extending the conceptual model of the Reference Ontology. In 
order to keep its consistency, we should follow the following steps: (1) extend 
and revise the conceptual model of the Reference Ontology taking into account 
the new knowledge; (2) add the new features to the (ONTO)2Agent web form; 
and (3) send this new form to all ontology providers (with the previous data 
concerning them already filled in) so that they can update the information about 
their ontologies accordingly. 

5. OntoAgent Architecture 

Having identified the relevant features of ontologies and built the conceptual 
structure of the Reference Ontology using the Ontology Design Environment, 
the problem of accessing and updating the information about each individual 
ontology arises. The approach we took was to build the OntoAgent architecture : 
a domain-independent technology used to create and maintain ontology-based 
WWW brokers to retrieve knowledge from ODE-built ontologies. OntoAgent is 
classed in the category of agents used to easily access knowledge. Simple and 
complex queries can be formulated by means of several OntoAgent components. 
An AND/OR tree-based wizard can even be used to query the ontologies using 
their own vocabulary. 

The approach we took to build OntoAgent is presented in Fig. 5. It consists 
of different modules, each of which has a major function within the system. These 
modules are: 

A. A World Wide Web instance collector broker, whose main capability is to 
instantiate the conceptual structure of an ontology about the broker domain 
of expertise. This instance collector needs : 



WWW Instance Collector Broker 

Ontology 
Information 

CuLtcctor 

• ^ •mlJirw ^ ^ ^ 
CoDcepluaJizçr 

LÜOM ÜnColin^uLi 

&:TK-m[i>r/Tni!Hlator 

C~ ^ 
MS taw 

Datable 

WWW Domain Model Retrieval Broker 

Query BuiLdcr ^ v Query Tramlalpr 

Answer Builder ^ ^ r ^ ^ ^ ^ ^ ^ ^ ^ ™ 

Fig. 5. The OntoAgent architecture. 

A.l. Ontology information collector: an easy-to-use interactive WWW user interface 
that facilitates data input by distributed agents (both programs and humans). 

A.2. An instance conceptualizer: for transforming the data from the WWW user 
interface into instances of the ontology specified at the knowledge level. 

A.3. Ontology generator/translators: For generating or translating the instances 
specified at the knowledge level into several target languages used to formalize 
ontologies and thus allow access from heterogeneous applications. 

B. A WWW domain model retrieval broker, whose aim is to provide help in 
accessing the information in an ontology warehouse and show it nicely. It is 
divided into : 

B.l. A query builder to help to build queries either using the ontology vocabulary 
or otherwise, as well as to reformulate and refine a query given by the user. 
The queries will be formulated upon a set of ontologies previously selected 
from the ontology pool available in the architecture. 

B.2. A query translator that transforms the user query into a query representation 
compatible with the format in which the ontology is implemented. 

B.3. An inference engine that searches for the answer to the query; as shown in 
Fig. 5, knowledge sources can be represented in several formats. 

B.4. An answer builder that presents the answers to the query obtained by the 
inference engine module to the customer in a simple and human-readable 
format. The answers are presented for each ontology that has been searched. 
Thus, one query may be answered in several domains, depending on the 
domains of the ontologies. 

If we compare OntoAgent with its nearest counterpart (Ontobroker; Fensel et al, 
1998), we can see they have several points in common. They are both distributive, 
joint efforts by the community (in the sense that both approaches need the 
community to introduce information about the broker domain expertise), they 
use an ontology as the source of their knowledge, they use the web to gather 



information, and they have a query language for formulating queries. However, 
the main differences between them are as follows : 

• The Onto Agent architecture uses: (1) a SQL database to formalize the ontology, 
(2) a WWW form and an ontology generator to store the captured knowledge, 
and (3) simple and complex queries based on ODE intermediate representations 
and AND/OR trees to retrieve information from the ontology. 

• Ontobroker uses: (1) an FLogic ontology, (2) Ontocrowler for searching WWW 
annotated documents with ontological information, and (3) an FLogic-based 
syntax to formulate queries. 

5.1. (ONTO)2Agent 

(ONTO)2Agent is an instantiation of the OntoAgent architecture. This broker is 
specialized in querying the Reference Ontology to provide ontology users with a 
tool to quickly examine what ontologies best meet their requirements. 

Using the Reference Ontology as a source of its knowledge, (ONTO)2 Agent lo­
cates and retrieves descriptions of ontologies that satisfy a given set of constraints. 
For example, when a knowledge engineer is looking for ontologies written in a 
given language applicable to a particular domain, (ONTO)2Agent can help in 
the search, supplying the engineer with a set of ontologies that totally/partially 
comply with the requirements identified. 

The above abstract architecture has been instantiated as follows : 

A. The WWW instance collector broker uses: 
A.l. The WWW form described in Section 4.2 to allow ontology developers to 

enter information about their ontologies into the Reference Ontology. 
A.2. The data are used to fill in the instances of the concepts identified in the 

ontology conceptual structure described in Section 4.1, which was built using 
ODE, thus ensuring full compatibility with this tool. 

A. 3. ODE code generators allow us to implement the ontology in several target lan­
guages; however, it is important to mention at this point that (ONTO)2Agent 
uses the relational database implementation of the ontology and not the On-
tolingua implementation, because we would need to build in a GFP (Chaudhri 
et al, 1997) module in order to interact with Ontolingua. 

B. With regard to the WWW domain model retrieval broker: 
B.l. Two query builders have been implemented. Both builders allow users to 

formulate simple and complex queries. Simple queries can be made using 
the predefined queries present in the agent. They are based on the ODE 
intermediate representations presented in Section 4.1.2, and include definition 
of a concept, instances of a concept, etc. They are used to get answers, loaded 
with information, easily and quickly. One of the query methods is similar to 
the method employed by Yahoo or Alta Vista, so anyone used to working 
with these Internet search tools is unlikely to encounter any problems using 
the interface. Complex queries can be formulated by using a query builder 
wizard that works with AND/OR trees (see Fig. 6) and the vocabulary 
obtained from the ontologies we are querying. It allows us to build a more 
restrictive and detailed query. Apart from this, before the query is translated 
to the proper query language, it is checked semantically for inconsistencies. 



L - I . U I , y , I J , « . U J J , B ! ^ — — — — ^ T T S T T T 

• j / Document Done >*-. ±* /.- i' 

Fig. 6. (ONTO) 2 Agent is asked to provide all the ontologies in the programming domain, written in 
Ontolingua, Loom or SFK, with Java as a defined term, using a query expressed by means of an 
A N D / O R tree. 

Syntactic correctness is implicit, thanks to the query building method. If it is 
all right, it is refined, eliminating any redundancies. 
The resulting query is then translated into the SQL language in order to 
match the ontology implementation stored in a database. For the Ontolingua 
implementation of a similar agent, a GFP-capable (Chaudhri et al, 1997) 
builder would be required. 
Once it has been sent to the OntoAgent server, the query is passed on to our 
inference engine : the MS Access search engine with a few add-ins. 
The query results are returned to the client, who visualizes them within the 
web browser. As we use standard technology, the results can be saved in 
HTML format for later consultation. An example is shown in Fig. 7, where 
the user requested all the ontologies in the Java domain. 

5.2. Chemical OntoAgent 

Chemical OntoAgent is another broker to which this technology has been applied. 
It is a chemistry teaching broker that allows students to learn chemistry in a 

B.2. 

B.3. 

B.4. 



rjiii,n.):i-Niw.u-i||n nsEJ; 

Term-based 
query 

Browse 

UeYPJopeiS 

Product 
PistriWgis 
Wpb Fjagf i 

WWW Main 
Addreis 

ImulpitmitatidH 
Staff 
Level of 
Formality of 
The 
Methodotagr 
Subject af 
O titulary 

PraduttNama 

Distributed by 

D#v»taped by 

PlQihlCt 
DtttribatoTi 
EmHÜ 

Fratbict 
DeYtJdpert 
Email 

h¿tp:fldeticÍM da.fi upmçfi 

Iríormal 

Java 

Julio's Ontology 

LIA 

LIA 

maílto:iarpireE(3ídehciag.dia.fi upm es 

j j 
IDûcunnant Done 

Fig. 7. HTML query result to a user request of all the ontologies in the Java domain. 

very straightforward manner, providing the necessary domain knowledge and 
helping students to test their skills. To make the answers more understandable to 
students, this technology is able to interact with a system called OntoGeneration 
(Aguado et al, 1998). OntoGeneration is a system that uses a domain ontology 
(CHEMICALS; Fernández, 1996; Fernández et al, 1999) and a linguistic ontology 
(GUM; Bateman et al, 1995) to generate Spanish text descriptions in response to 
the queries in the domain of chemistry. 

Chemical Onto Agent does not have the modules described for the World Wide 
Web instance collector broker, since the Chemicals ontology was built entirely 
using ODE, and needed no further dynamic updating after its completion. 

6. Current Status 

For the moment, the project is still in its early stages and only information about 
specific ontologies has been collected (there were more instances introduced but 
they were testing examples). Although not many instances have been introduced 
by the community, we have received very positive and encouraging comments. 

The only complaints from the Reference Ontology instance fillers are that 
sometimes some of the properties are difficult to fill in (for instance, estimated 
price of required hardware, description of use tools) since they do not know some 

http://da.fi
http://dia.fi


of the answers or they do not know what to answer. We should stress that only 
ontology developers should introduce information about a given ontology since 
it requires a deep knowledge/understanding about it. As we stated in Section 3.2, 
some features cannot be used to characterize certain ontologies, and ontology 
builders may not know the values of some features. However, we would like to 
stress that there are only 22 compulsory features (those from Fig. 2 in bold type) 
and, usually, fillers have no difficulty in filling them. 

Due to the limited amount of information collected from ontology developers, 
the broker can only search a limited set of ontologies. So, at this moment, we 
do not have feedback from real users searching ontologies for their applications 
using (ONTO)2Agent to provide an accurate and representative evaluation from 
users. 

7. Conclusions 

In this paper we presented (ONTO)2Agent, an ontology-based WWW broker to 
select ontologies for a given application. This application seeks to solve some 
important problems: 

1. To solve the problem of the absence of standardized features for describing 
ontologies, we have presented a living and domain-independent taxonomy of 
70 features to compare ontologies using the same logical organization. This 
framework differs from that of Hovy (1997), which was built to compare nat­
ural language processing ontologies. This framework also extends the limited 
number of features proposed in Fridman and Hafner (1997) for comparing 
well-known and representative ontologies. Further work will include a metric 
to weigh up features and categories that help the project manager to decide 
how important they are and how they are interrelated, relating them to the 
peculiarities and demands of their particular project. 

2. To solve the problem of the dispersion of ontologies over several servers and 
the absence of common formats for representing relevant information about 
ontologies using the same logical organization, we built a living Reference 
Ontology (a domain ontology about ontologies) that gathers, describes using 
the same logical organization and has links to existing ontologies. We built 
the conceptual structure ontology at the knowledge level using the METHON-
TOLOGY framework and the Ontology Design Environment. Knowledge 
about specific ontologies that act as instances in the Reference Ontology are 
entered by ontology developers using a WWW form based on the previously 
identified features. 

3. To solve the problem of searching for and locating candidate ontologies over 
several servers, we built (ONTO)2 Agent, an ontology-based WWW broker that 
retrieves the ontologies that satisfy a given set of constraints using the knowl­
edge formalized in the Reference Ontology. (ONTO)2 Agent is an instantiation 
of the OntoAgent architecture. This is a domain-independent technology used 
to create and maintain ontology-based WWW brokers to retrieve its knowledge 
from ODE-built ontologies. 

We hope that (ONTO)2Agent and the Reference Ontology will facilitate the 
search for ontologies to be used in other applications. 



Acknowledgements. We would like to thank Mar iano Fernandez and Juanma Garcia for 
their help in using ODE. We would also like to thank the anonymous reviewers of 
the ECAI98 workshop on Applications of Ontologies and Problem Solving Methods and 
KAIS journal anonymous reviewers for their comments. This work was partially supported 
by J N I C T grant PRAXIS X X I / B D / 1 1 2 0 2 / 9 7 (Sub-Programa Ciencia e Tecnologia do 
Segundo Quadro Comunitar io de Apoio). 

References 
Aguado G, Bateman J, Bañón A, Bernardos S, Fernández M, Gómez-Pérez A, Nieto E, Olalla A, 

Plaza R, Sanchez A (1998) ONTOGENERATION: reusing domain and linguistic ontologies for 
Spanish. In Workshop on applications of ontologies and PSMs, Brighton, UK, 1-10 August 1998 

Arpírez JC, Gómez-Pérez A, Lozano-Tello A, Pinto S (1998) (ONTO)2Agent: an ontology-based 
WWW broker to select ontologies. In Workshop on applications of ontologies and problem-
solving methods, ECAI '98, Brighton, UK, pp 16-24 

Basili V, Briand L, Thomas W (1994) Domain analysis for the reuse of software development 
experiences. In Proceedings of the 19th annual software engineering workshop, NASA/GSFC, 
Greenbelt, MD 

Bateman JA, Magnini B, Rinaldi F (1994) The generalized Italian, German, English upper model. In 
Proceedings of the ECAI '94 workshop on comparison of implemented ontologies, Amsterdam 

Bateman JA, Magnini B, Fabris G (1995) The generalized upper model knowledge base: organization 
and use. In Mars, N (ed), Towards very large knowledge bases. IOS Press, Amsterdam, pp 60-72 

Benjamins R, Fensel D (1998) Problem solving methods. International Journal of Human Computer 
Studies 49: 305-313 

Benjamins R, Decker S, Fensel D, Motta E, Plaza E, Schreiber G, Studer R, Wielinga B (1998) 
IBROW3 an intelligent brokering service for knowledge-component reuse on the World-Wide Web. 
In Workshop on applications of ontologies and problem-solving methods, ECAI '98, Brighton, 
UK, pp 25-30 

Benjamins R, Fensel D, Decker S, Gómez-Pérez A (1999) (KA)2: building ontologies for the Internet: 
a mid term report. International Journal of Human Computer Studies 51: 687-712 

Blázquez M, Fernández M, García-Pinar JM, Gómez-Pérez A (1998) Building ontologies at the 
knowledge level using the ontology design environment. In Knowledge acquisition workshop, 
KAW '98, Banff, Alberta, Canada 

Borst P (1997) Construction of engineering ontologies for knowledge sharing and reuse. PhD disser­
tation, University of Twente 

Borst P, Benjamins J, Wielinga B, Akkermans H (1996) An application of ontology construction. In 
Workshop on ontological engineering, ECAI '96, Budapest, pp 5-16 

Bylander T, Chandrasekaran B (1988) Generic tasks in knowledge-based reasoning: the right level 
of abstraction for knowledge acquisition. In Gaines BR, Boose JH (eds). Knowledge acquisition 
based systems, vol 1. Academic Press, London, pp 65-77 

Chandrasekaran B, Josephson JR, Benjamins VR (1998) Ontology of tasks and methods. In Workshop 
on applications of ontologies and PSMs, Brighton, UK, August, pp 31—43 

Chaudhri VK, Farquhar A, Fikes R, Karp PD, Rice JP (1997) The generic frame protocol 2.0, 21 
July 1997. Stanford University, Stanford, USA 

Dahlgren K (1988) Naive semantics for natural language understanding. Kluwer, Boston, MA 
Farquhar A, Fikes R, Pratt W, Rice J (1995) Collaborative ontology construction for information 

integration. Technical report KSL-95-10, Knowledge Systems Laboratory, Stanford University, 
CA 

Farquhar A, Fikes R, Rice J (1996) The Ontolingua server: a tool for collaborative ontology 
construction. In Proceedings of the 10th knowledge acquisition for knowledge-based systems 
workshop, vol 19, Banff, Alberta, Canada, pp 1—44 

Fensel D, Decker S, Erdman M, Studer R (1998) Ontobroker: the very high idea. In Proceedings of 
the 11th international Flairs conference (FLAIRS '98), Sanibal Island, FL, May 1998 

Fernández M (1996) CHEMICALS: ontología de elementos químicos. Proyecto fin de carrera. Facultad 
de Informática, Universidad Politécnica de Madrid, December 1996 

Fernández M, Gómez-Pérez A, Juristo N (1997) METHONTOLOGY: from ontological art to­
ward ontological engineering. In Spring symposium series on ontological engineering, AAAI '97, 
Stanford, CA, March 1997 

Fernández M, Gómez-Pérez A, Pazos A, Pazos J (1999) Building a chemical ontology using METHON­
TOLOGY and the ontology design environment. IEEE Intelligent Systems 14(1): 37^46 



Fikes R, Farquhar A (1997) Large-scale repositories of highly expressive reusable knowledge. Knowl­
edge Systems Laboratory, KSL-97-02, April 1997. Stanford University, Stanford, USA 

Foundation for Intelligent Physical Agents (1998) FIPA '98 specification: ontology service. FIPA, 
October 1998 

Fridman N, Hafner C (1997) The state of the art in ontology design. AI Magazine Fall: 53-74 
Genesereth M, Fikes R (1992) Knowledge interchange format. Technical report, Logic-92-1. Computer 

Science Department, Stanford University, Stanford, CA 
Gómez-Pérez A (1996) Towards a framework to verify knowledge sharing technology. Expert Systems 

with Applications 11(4): 519-529 
Gómez-Pérez A (1998) Knowledge sharing and reuse. In Liebowitz J (ed). Handbook of applied 

expert systems. CRC Press, Boca Raton, FL 
Gómez-Pérez A, Benjamins VR (1998) Preface: applications of ontologies and problem solving 

methods. Preface of the Workshop on applications of ontologies and problem-solving methods, 
ECAI '98, Brighton, UK, pp i-iv 

Gruber G (1993) Translation approach to portable ontology specifications. Knowledge Acquisition 5: 
technical report 

Gruber T (1993) Toward principles for the design of ontologies used for knowledge sharing. Technical 
report KSL-93-04, Knowledge Systems Laboratory, Stanford University, Stanford, CA 

Gruber T, Olsen R (1994) An ontology for engineering mathematics. Technical report KSL-94-18, 
Knowledge Systems Laboratory, Stanford University, Stanford, CA 

Gruninger M, Fox M (1995) Methodology for the design and evaluation of ontologies. In Proceedings 
of the IJCAI '95 workshop on basic ontological issues in knowledge sharing. Montreal, Canada 

Hovy E (1997) What would it mean to measure an ontology? Unpublished 
Humphreys B, Lindberg D (1993) UMLS project: making the conceptual connection between users 

and the information they need. Bulletin of the Medical Library Association 81(2): 170-7 
Kan SK (1995) Metrics and models in software quality engineering. Addison-Wesley, Reading, MA 
Karp PD (1993) A qualitative biochemistry and its application to the regulation of the tryptophan 

operon. In Hunter L (ed). Artificial intelligence and molecular biology. AAAI Press/MIT Press, 
Cambridge, MA, pp 289-325 

Khairuddin H, Key E (1995) A software reusability attributes model. International Journal of 
Computer Applications in Technology 8(1-2): 69-77 

Kifer M, Lausen G, Wu J (1995) Logical foundations of object-oriented and frame-based languages. 
Journal of the ACM 42: 741-843 

Lenat DB (1990) CYC: toward programs with common sense. Communications of the ACM 33(8): 
30^19 

MacGregor R (1991) Inside the Loom classifier. SIGART Bulletin 2(3): 70-76 
Miller GA (1990) WordNet: an on-line lexical database. International Journal of Lexicography 3(4): 

235-312 
Mizoguchi R, Vanwelkenhuysen J, Ikeda M (1995) Task ontology for reuse of problem solving 

knowledge. In Mars, N (ed), Towards very large knowledge bases: knowledge building and 
knowledge sharing. IOS Press, Amsterdam, pp 46-59 

Pressman R (1997) Software engineering: a practitioner's approach. McGraw-Hill 
Slagle J, Wick M (1988) A method for evaluating candidate. AI Magazine 88: 44-53 
Sowa JF (1997) Knowledge representation: logical, philosophical, and a computational foundations. 

PWS, Boston, MA 
Studer R, Benjamins R, Fensel D (1998) Knowledge engineering: principles and methods. Data and 

Knowledge Engineering 25: 161-197 
Swartout B, Patil R, Knight K, Russ T (1997) Towards distributed use of large-scale ontologies, AAAI 

'97 Spring symposium series on ontological engineering, Stanford University, Stanford, USA 
Tennison J, Shadbolt N (1998) APECKS: a tool to support living ontologies. In Proceedings of the 

11th Banff knowledge acquisition for knowledge-based systems workshop, Banff, Alberta, Canada 
Uschold M (1998) Where are the killer apps? In Workshop on applications of ontologies and 

problem-solving methods, ECAI '98, Brighton, UK, pp 107-111 
Uschold M, Gruninger M (1996) ONTOLOGIES: principles, methods and applications. Knowledge 

Engineering Review 11(2): 93-155 
Van der Vet PE, Speel P, Mars N (1994) The Plinius ontology of ceramic materials. In Proceedings of 

the ECAI '94 workshop on comparison of implemented ontologies, Amsterdam 
van Heist G, Schreiber A, Wielinga BJ (1997) Using explicit ontologies in KBS development. Inter­

national Journal of Human-Computer Studies 45: 183-292 


