
Ontology Engineering Group
Laboratorio de Inteligencia Artificial

Dept. Inteligencia Artificial, Facultad de Informática – UPM

Campus de Montegancedo, s/n – Boadilla del Monte – 28660 Madrid Phone: +34 91 336 74 39 – Fax: +34 91 352 48 19

OEG Publication

Blázquez M, Fernández M, García-Pinar JM, Gómez-Pérez A
Building Ontologies at the Knowledge Level using the Ontology Design

Environment

Banff Knowledge Acquisition for Knowledge-Based Systems Workshop (KAW’98)
Proceedings of the 11th Banff Knowledge Acquisition for Knowledge-Based Systems

Workshop (KAW’98). Volume II.
Editor: Gaines, B.R.; Musen, M.

Editorial: University of Calgary, Alberta, Canadá
18-23 de abril de 1998
Banff, Alberta, Canadá.

Pages: SHARE 4.1 – 4.15

Building Ontologies at the Knowledge Level
using the Ontology Design Environment

M. Blázquez, M. Fernández, J. M. García-Pinar, A. Gómez-Pérez
Laboratorio de Inteligencia Artificial

Facultad de Informática
Universidad Politécnica de Madrid

Campus de Montegancedo sn.
Boadill a del Monte, 28660. Madrid, Spain.

Tel: (34-1) 336-74-39, Fax: (34-1) 336-7412
Email: { mblazque, mfernand, jgarcia, asun}@delicias.dia.fi.upm.es

ABSTRACT

This paper discusses how ontologies can be specified at the knowledge level using the set of
intermediate representations (Gómez-Pérez, Fernández & de Vicente 1996) proposed by
METHONTOLOGY (Fernández, Gómez-Pérez & Juristo 1997; and Gómez-Pérez 1998). These
intermediate representations bridge the gap between how people think about a domain and the
languages in which ontologies are formalized. Thus, METHONTOLOGY enables experts and
ontology makers unfamiliar with implementation environments to build ontologies from scratch.
In this paper, we also present the ODE (Ontology Design Environment) as a software tool to
specify ontologies at the knowledge level. ODE allows developers to specify their ontology by
filli ng in tables and drawing graphs. Its multili ngual generator module automatically translates
the specification of the ontology into target languages.

1. INTRODUCTION

Like KBS development, ontology development faces the knowledge acquisition bottleneck
problem. However, unlike KBS, the ontology developer comes up against the additional problem
of not having any suff iciently tested and generalized methodologies recommending what
activities to perform and at what stage of the ontology development process these activities
should be performed. That is, each development team usually follows their own set of principles,
design criteria and steps in the ontology development process. The absence of structured
guidelines and methods hinders the development of shared and consensual ontologies within and
between teams, the extension of a given ontology by others and its reuse in other ontologies and
final applications. Until now, few domain-independent methodological approaches have been
reported for building ontologies. Uschold's methodology (Uschold & Gruninger 1996),
Grüninger and Fox's methodology (Grüninger & Fox 1995 and 1994) and METHONTOLOGY
(Fernández, Gómez-Pérez & Juristo 1997 and Gómez-Pérez 1998) are the most representative.
These methodologies have in common that they start from the identification of the purpose of the
ontology and the need for domain knowledge acquisition. However, having acquired a significant
amount of knowledge, Uschold proposes codification in a formal language and
METHONTOLOGY proposes expressing the idea as a set of intermediate representations (IR)
and then generating the ontology using translators. These IR's bridge the gap between how
people see a domain and the languages in which ontologies are formalized. The absence of the
conceptualization step causes the following problems:

• The conceptual models are implicit in the implementation codes. A reengineering process
is usually required to make the conceptual models explicit.

• Ontological commitments and design criteria (Gruber 1992) are implicit in the ontology
code.

• Ontology developer preferences in a given language condition the implementation of the
acquired knowledge. So, when people code ontologies directly in a target language, they
are omitting the minimal encoding bias criterion defined by Gruber (Gruber 1992).

• Ontology developers (who are unfamiliar with or simply inexperienced in the languages
in which ontologies are coded) may find it difficult to understand implemented ontologies
or even to build a new ontology. For example, it is hard for people who know how to
build ontologies in one particular language and for those who know how to build
ontologies (but are unfamiliar with the language in question) to work at the
implementation level because the ontology maker focuses on implementation issues
rather than on questions of design. For example, the expression d=m/v in a chemical
domain could be written in Ontolingua (Gruber 1993) as follows:

This example shows that unless you are very familiar with the language, it is almost impossible
for you to understand existing definitions and to write new definitions. If you are successful in
this process, it will have taken a big effort. So, the problem is not understanding that the density
is equal to the mass divided by the volume at the knowledge level but writing this in a target
language. Therefore, something which is apparently very simple at the conceptual level is
extremely complicated when expressed at the implementation level, if developers are not familiar
with the language. This means that ontologies are exclusively built by developers who are
perfectly acquainted with the languages in which they are to be implemented. As ontology
developers are not necessarily expert in the domain for which the ontology is built, ontologists
spend a lot of time and resources on the knowledge acquisition process.

First, we present the METHONTOLOGY framework, including the ontology development
process and a life cycle based on evolving protoypes. Then, we will show the process of building
ontologies from scratch and how to re-structure an ontology when an ontological reengineering
process is carried out. Finally, we will introduce the Ontological Design Environment (ODE), a
software tool that supports METHONTOLOGY.

2. METHONTOLOGY FRAMEWORK

Ontological engineering requires the definition and standardization of an ontology life cycle as
well as methodologies and techniques that drive their development. The METHONTOLOGY

framework enables the construction of ontologies at the knowledge level and includes: the
identification of the ontology development process, a li fe cycle based on evolving prototypes, a
method for specifying ontologies at the knowledge level and multili ngual translators that
automatically transform the specification into several target codes. The environment for building
ontologies using the METHONTOLOGY framework is called ODE (Ontology Design
Environment).

2.1 Ontology development process

The ontology development process (Fernández, Gómez-Pérez & Juristo 1997) refers to which
activities are carried out when building ontologies. It is crucial to identify these activities if
consensual ontologies are to be built by geographically distant co-operative teams with some
guarantee of correctness and completeness. If this is the case, it is advisable to perform the three
categories of activities presented below and steer clear of anarchic constructions.

Project Management Activities include Planning, control and quali ty assurance. Planning,
identifies which tasks are to be performed, how they will be arranged, how much time and what
resources are needed for their completion. This activity is essential for ontologies that need to use
ontologies which have already been built or ontologies that require levels of abstraction and
generali ty. Control, guarantees that planned tasks are completed in the manner that they were
intended to be performed. Finally, Quality Assurance, assures that the quality of each and every
product output (ontology, software and documentation) is satisfactory.

Development-Oriented Activities include specification, conceptualization, formalization and
implementation. Specification, states why the ontology is being built and what are its intended
uses and who are the end-users. Conceptualization, structures the domain knowledge as
meaningful models at the knowledge level. Formalization, transforms the conceptual model into
a formal o semi-computable model. Finally, Implementation builds computable models in a
computational language.

Support Activities include a series of activities, performed at the same time as development
oriented activities, without which the ontology could not be built . They include knowledge
acquisition, evaluation, integration, documentation and configuration management. Knowledge
Acquisition, acquires knowledge of a given domain. Evaluation, makes a technical judgment of
the ontologies, their associated software environments and documentation with respect to a frame
of reference during each phase and between phases of their li fe cycle (Gómez-Pérez, 1996).
Integration of ontologies is required when building a new ontology reusing other ontologies that
are already available. Documentation is details, clearly and exhaustively, each and every one of
the phases completed and products generated. Configuration Management records all the
versions of the documentation, software and ontology code and to control the changes.

2.2. Ontology Life Cycle

It identifies the set of stages through which the ontology moves during its li fe time, describes
what activities are to be performed in each state and how the states are related (relation of
precedence, return, etc.). In (Fernández, Gómez-Pérez & Juristo 1997), the authors justified why
the ontology li fe cycle is based on evolving prototypes. Figure 1 shows that:

• Planning is carried out prior to ontology development.

• Control and quali ty assurance are performed during the entire li fe cycle of the ontology.

• Most acquisition and evaluation are performed in the conceptualization phase. In the case
of acquisition, this is because the conceptualization phase is li ke assembling a jigsaw
puzzle from the pieces supplied by acquisition. As far as evaluation is concerned,
although evaluation (verification and validation) (Gómez-Pérez 1996) should be
performed throughout the ontology development li fe cycle, most evaluation is carried out
in the conceptualization phase to prevent errors and their propagation in the
implementation phase.

• Integration should not be understood as an integration in the implementation stage, it
should be performed throughout the entire ontology li fe cycle.

Figure 1. Ontology Life Cicle

3. ONTOLOGY DEVELOPMENT AT THE KNOWLEDGE LEVEL

The IRs used in the conceptualization phase are one of the essential pill ars of
METHONTOLOGY for building ontologies at the knowledge level. When most of the
knowledge has been acquired, the ontology maker has a lot of unstructured knowledge that needs
to be organized. The objective of conceptualization is precisely this: to organize and structure the
acquired knowledge using external representations that are independent of the implementation
languages and environments. METHONTOLOGY proposes ontology conceptualization using a
set of IRs based on the IRs used in the conceptualization phase of the IDEAL methodology for
knowledge-based systems development (Pazos 1995). In this paper, we discuss how ontologies
were built at the knowledge level in the context of the (KA)2 initiative.

(KA)2 is an initiative to develop an ontology that models the Knowledge Acquisition Community
(its researchers, topics, products...). A first release of this ontology was built i n Flogic (Kifer,
Lausen & Wu 1995). A decision was made to translate the ontology to Ontolingua to make it
accessible to the entire community through the Ontology Server. Since concepts as far apart as
authors, research centers, publications, etc., had been represented in a single ontology, the option

of directly translating from Flogic to Ontolingua was ruled out, and it was decided to carry out an
ontological reengineering process. First, we obtained the (KA)2 conceptual model attached to the
Flogic ontology manually by reverse engineering. Second, we restructured it (according to the
modularity criterion) using ODE conceptualization modules and we got a new conceptual model.
Finally, we converted the (KA)2 conceptual model into Ontolingua language using
METHONTOLOGY and ODE translators. Figure 2 shows the (KA)2 ontology life cycle. Note
that, in this case, our source of knowledge was an ontology that had already been implemented in
the Flogic language. So, knowledge acquisition involved understanding an ontology that had
already been built. The ontology implemented in Flogic was the specification we took as an input
for the conceptualization phase. The knowledge restructuring process at the knowledge level was
performed as shown in figure 3 and can be described as follows.

Figure 2. Ontological Reengineering Process of the KA2 Ontology

Figure 3. The knowledge restructuring process

First, we built a Glossary of Terms that included all the terms (concepts, instances, attributes,
verbs, etc.) of the domain and their description, as shown in table 1.

Table 1. Glosary of terms in (KA)2

When the glossary of terms contained a sizable number of terms, Concept Classification Trees
were build using relations like: subclass-of1, mutually-disjoint-subclass-of2, exhaustive-subclass-
of3, etc. So, we identified the main taxonomies of this domain, and each taxonomy produced an
ontology as prescribed by METHONTOLOGY. In the (KA)2 ontology, we identified five
taxonomies related to: people, publications, events, organizations and research topics. Figure 4
shows an outline of the above taxonomies.

Figure 4. Concept Classification Trees in (KA)2

The next step was to build "Ad-hoc" Binary Relations Diagrams between concept classification

1 Class C is a subclass of parent class P if and only if every instance of C is also an instance of P.

2 Is a set of subclasses of a class C whose objects have no elements which belong to different sets.

3 A subrelation-partition of a class C is a set of mutually-disjoint classes (a subclass partition) which covers C. Every
instance of C is an instance of exactly one of the subclasses in the partition.

trees. The goal of this diagram is to establish relationships between concepts of the same or
different ontologies. Note that this diagram will set out the guidelines for integrating ontologies,
because if a concept C1 is linked by a relation R to a concept C2, this means that the ontology
containing C1 includes the ontology containing C2, provided that C1 and C2 are in different
concept classification trees. Figure 5 presents a simplified diagram of the "ad hoc" binary
relations in the (KA)2 ontology. Note that the People-Ontology includes Organization-Ontology
because the source concept of the relations named Affiliation is in the People-Ontology hierarchy.
Similarly, if the relation Employs is defined as the inverse relation of Affiliation, the
Organization-Ontology can be said to include the People-Ontology.

Figure 5. Diagram of Binary Relations in (KA)2

For each concept classification tree generated, we built the following IRs:

1. A Concept Dictionary containing all the domain concepts, instances of such concepts,
class and instance attributes of the concepts, relations whose source is the concept and,
optionally, concept synonyms and acronyms. Tables 2 and 3 show a small part of the
concept dictionaries of the people and publication ontologies respectively.

Table 2. Concept Dictionary in the domain of People

Table 3. Concept Dictionary in the domain of Publication

2. A table of binary relations for each "ad-hoc" relation whose source concept is in the
concept classification tree. For each relation, we will specify: its name, the name of the
source and target concept, its inverse relation, etc. Tables 4 and 5 show the employs
relationship and its inverse affiliation.

Table 4. Binary Relation Employs Table 5. Binary Relation Affiliation

3. An Instance Attribute Table for each instance attribute that appears in the concept
dictionary. Instance attributes are attributes that are defined in the concept but that take
values in its instances. For example, the weight of a person is proper to each instance. For
each instance attribute, we will include: its name; the value type; the measurement unit
for numerical values; accuracy for numerical values; range of values; default values;
minimum and maximum cardinality; instance attributes, class attributes and constants that
are used to infer the value of the attribute that is being defined; attributes that can be
inferred using this attribute; a formula or rule for inferring the attribute that is being
defined; and references used to fill in the attribute. First, table 6 presents an attribute

(photo) defined as a string. Second, table 7 shows an attribute (weight) whose value type
is a mass-quantity (Gruber & Olsen 1994) and whose unit of measurement could be
kilograms. This last term is in the standard units ontology available at the Ontology
Server. Note that when a table field is filled in with a term belonging to another ontology,
this ontology can be said to also be integrated.

Table 6. Instance Attribute Photo Table 7. Instance Attribute Weight

4. A Class Attribute Table for each class attribute that appears in the concept dictionary.
Class attributes describe concepts, not concept instances. Thus, for each class attribute, it
will give: the name; possible value type; measurement unit for numerical values; value
accuracy; attribute cardinality; instance attributes that could be inferred using the value of
this attribute; and references, etc.

5. A Logical Axioms Table. This is used to define the concepts by means of logical
expressions that are always true. Each axiom defined includes: its name, its natural
language description, the concept to which the axiom refers, the attributes used in the
axiom, the logical expression that formally describes the axiom using FOPC and
references, as shown in tables 8 and 9.

Table 8. Named Axiom Table 9. Named Axiom
PhD-Student-Is-Not-InDoctoral-Tesis-Jury The-Head-of-Project-Works-on-at-Project

6. A Constants Table. For each constant, we will specify: its name, its natural language
description, the value type (number, mass, etc.), the constant value, the measurement unit
for numerical constants, the attributes that can be inferred using the constant and

references (see table 10).

Table 10. Constants in the domain of Publication

7. A Formula Table for each formula that appears in the instance attribute tables. These
tables will be used to infer numerical instance attribute values from the values of other
instance attributes, class attributes or even constants. Each table should specify
information about the name of the formula, the attribute inferred with the formula, the
mathematical expression of the formula; its natural language description; the instance and
class attributes and constants used in the calculation; the accuracy with which the value
will be calculated; the constraints under which it makes sense to use the formula; and the
references employed in filling in the formula table. Table 11 shows the formula of
standard-publications-rate.

Table 11. Formula of Normalized Publications

8. Attribute Classification Trees, which graphically show related attributes and constants in
a root attribute inference sequence, and the sequence of the formulas employed. Figure 6
summarizes the inference sequence of the attribute standard-publications-rate. We used
this IR to validate that all attributes used in the formula make sense and no attributes have
been omitted.

Figure 6. Attributes Classification Tree in (KA)2

9. An Instance Table for each instance that appears in the concept dictionary. Each table
will i nclude: the name of the instance, the attributes with known values in the instance
and the values of the above attributes. Table 12 presents instances in the People domain.

Table 12. Instances in the domain of People

Note that the process of building these IRs is not sequential in the sense of a waterfall li fe-cycle
model, but some order must be followed to assure the consistency and completeness of the
knowledge already represented. However, our experience in the use of the model shows that the
first table built i s the glossary of terms. After this, we build concept classification trees and "ad-
hoc" binary relations diagrams. Then, we proceed to build the concept dictionary, the "ad-hoc"
binary relations tables, the class attributes and instance attributes and axiom tables.

Embedded in the conceptualization method itself, there are a series of controls for verifying that
each IR is used correctly and that the knowledge represented is valid, that is, that the semantics
of the conceptualized knowledge is what it should be. For a detailed description of the
intermediate representations and individual and cross representation verification see (Gómez-
Pérez, Fernández & deVicente 1996).

4. ODE

4.1. An overview

ODE (Ontology Design Environment) is the environment that enables the development of
ontologies at the knowledge level using the approach proposed by METHONTOLOGY. The goal
of ODE is to support the ontology maker during the entire li fe cycle of the ontology development
process, from requirements specification, through the phases of knowledge acquisition and
conceptualization, to implementation with as much integration and evaluation as possible. To
reach this goal, it seeks to automate each ontology development activity and automatically
integrate the results of each phase with the input of the following phase.

The functions included in the current version of ODE are: manage ontologies (including: open,

close, save, save as, integrate, print, etc., an ontology); manage ontologies in tabular notation
(create and remove table, add and delete table rows, print table, etc.); manage intermediate
representations in graphic notation, automatically generate code in formal languages; customize
the user interface; and manage conceptualization and user interface errors.

As the conceptualization of a complete and consistent ontology involves the management of a
huge amount of information, the decision was made to store the entire ontology in a relational
database. This has the big advantage that future applications will access the ontology easily
using SQL queries because this database management and access language is widely used in
practice which facilit ates the creation of applications, networked or otherwise, that use our
program.

In order to maintain the consistency within each intermediate representation and between
intermediate representations, it was considered necessary to study the constraints in the fields of
a conceptual table or between the fields belonging to different conceptual tables. This study was
based on the rules of verification of the intermediate representations proposed in (Gómez-Pérez,
Fernández & de Vicente 1996) and seeks to identify any effects possibly caused by the
operations of editing an ontology at the conceptual level and how the above operations are
implemented in the database.

As user experience in ontology development varies, ODE also provides an option of guided
conceptualization that enables inexperienced users to learn about ontology development. This
guided conceptualization, has proved very useful for domain experts who want to build their own
ontologies.

It shuld be noted to say that ODE is being designed as an environment that is completely
independent of any system capable of managing ontologies. That is, although ODE generates
Ontolingua code in ASCII, ODE does not interact with Ontolingua.

Finally, the computational requirements to run ODE are: a Pentium with a Windows 95 operating
system. ODE has been programmed in Visual Basic version 5.0. Its user interface complies with
Microsoft design standards for the development of event-oriented applications and the ontology
is stored in an Access (version 7.0) database.

4.2. ODE translator module

ODE' s big advantage is that it enables specification of ontologies at the knowledge level,
delegating implementation to fully automated code generators. So, non-experts in the languages
in which ontologies are implemented could specify ontologies using this environment.

In order to assure translation of the conceptual model to as many languages as possible, the
translator module was designed using the principles of modularity and reusabili ty. The translator
module works on the following elements:

1. The conceptual model discussed in section 3 has been expressed declaratively using a
grammar. So, on the basis of the following rules notation:

• A → Bmeans: A has the structure indicated in B;

• [A] means: A is optional;

• [A | B] means the same as: A or B;

• {A}x
y is the same as: A is repeated a number of times which is between x and y ;

y

• terminal symbols are in bold and non-terminal symbols in italics;

the data dictionary is expressed as shown below:

2. A series of patterns have been identified containing structures to be generated in each
language. The patterns have been defined using the same notation as explained for the
intermediate representations. For example, the pattern for defining classes in Ontolingua
is defined, as follows:

3. For each type of valid definition in the language, a table has been built that relates the
terms used in the pattern to the terms employed in the conceptual model. So, the non-
terminal symbols of the pattern will be placed in the left-hand column and the fields of
the intermediate representations needed to get the information represented by the pattern
will be placed in the right-hand column. Table 13 shows that the name of the class in the
implementation matches a concept name in a concept dictionary (see table 2) of the
conceptualization, that the documentation in the implementation is obtained from the
description given in the glossary of terms (see table 1), that each superclass and subclass
name is supplied by the concept classification tree (see figure 4), that the names of the
instances are taken from the instance field defined in the concept dictionary (see table 2),
that the relation names are obtained from the instance and class attributes defined for the
concept in question in the concept dictionary (see table 2) and that the cardinalities appear
in a binary relations table or in the instance or class attributes table. So, for the ontology

specified in section 3, the translator generated the following Ontolingua code:

Using the translator that converts the conceptualization into an implementation, error-free code
can be generated, which dramatically cuts the time and effort involved in implementation.
Furthermore, the architecture of this translator allows other translators to be developed in series.
By merely changing the rules that identify the patterns of the terms to be generated and the
second column of the table which relates the conceptualization to the implementation, a new
translator can be built. This was how we built a translator for SFK in a short period of time.

Table 13. Relationship between conceptualization and implementation for classes

5. CONCLUSIONS

This paper provides a series of guidelines for specifying ontologies at the knowledge level, as
defined by Gruber (Gruber 1993), as an automatically generated explicit specification of a
conceptualization. It also presents ODE as an environment for building ontologies during the
entire ontology life cycle and implementing them automatically using translators.

METHONTOLOGY is a structured method for building ontologies at the knowledge level from
scratch and when an ontological reengineering process is carried out. It seeks to build the
ontology incrementally using a life cycle based on evolving prototypes. The methodology centers
on the process of building conceptual models by defining concepts, instances and properties of
the above concepts, organizing concepts in taxonomies, defining relations between taxonomies
by means of "ad-hoc" relations, defining concept axioms and defining formulas. It also includes
verification and validation of the ontology at the knowledge level.

ODE is a tool that automates ontology development activities and, therefore, seeks to
automatically integrate the results of each phase. ODE uses a relational database to store the

ontology and to assure consistency within and between IRs. Finally, the ontology can be
constructed off-line and target code can be generated using ODE translators. It has a very
intuitive user interface and it works on a Pentium.

Acknowledgements

We are grateful to the Knowledge Sharing and Reuse Group at the Laboratorio de Inteligencia
Artificial of the UPM for their contribution to ODE design and implementation, and particularly
to Julio Arpírez, Oscar Corcho and Javier Castill o.

REFERENCES

Fernández, M.; Gómez-Pérez, A.; Juristo, N. (1997) METHONTOLOGY: From Ontological
Art Towards Ontological Engineering. Spr ing Symposium Series. Stanford. PP: 33-40.

Gómez-Pérez. A. (1998). Knowledge Sharing and Reuse. The Handbook of Applied Expert
Systems. Edited by Liebowitz. CRC.

Gómez-Pérez, A. (1996). A framework to Verify Knowledge Sharing Tec hnology. Expert
Systems with Application. Vol. 11, N. 4. PP: 519-529.

Gómez-Pérez, A.; Fernández, M.; de Vicente, A. (1996). Towards a Method to Conceptualize
Domain Ontologies. Workshop on Ontological Engineering. ECAI' 96. Budapest. Hungary.
PP: 41-52.

Gruber, T. (1992). Toward Principles for the Design of Ontologies Used for Knowledge
Sharing. Technical Report KSL-93-04. Knowledge Systems Laboratory. Stanford
University, CA.

Gruber, T. (1993). A translation Approach to Portable Ontology Specifications. Knowledge
Acquisition. Vol5. 1993.

Gruber, T.; Olsen, G. (1994). An Ontology for Engineering Mathematics. Four th
International conference on Pr inciples of Knowledge Representation and Reasoning.
Doyle, Torasso and Sandewall (Eds). Morgan Kaufmann. Also as KSL-94-18.

Grüninger, M.; Fox, M.S. (1995). Methodology for the Design and Evaluation of Ontologies.
IJCAI Workshop on Basic Ontological Issues in Knowledge Shar ing. Montreal, Quebec,
Canada.

Grüninger, M.; Fox, M.S. (1994). The Role of Competency Questions in Enterprise
Engineering. IFIP WG 5.7. Workshop on Benchmarking. Theory and Practice. Trondheim,
Norway.

Kifer, M.; Lausen, G.; Wu, J. (1995). Logical Foundations of Object-Oriented and Frame-
Based Languages. Journal of the ACM .

Pazos J. (1995). Conceptualización. Máster en Ingeniería del Conocimiento. Facultad de
Informática de Madrid. Universidad Politécnica de Madrid. SPAIN.

Uschold, M.; Grüninger, M. (1996) ONTOLOGIES: Principles, Methods and Applications.
Knowledge Engineering Review. Vol. 11; N. 2.

