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ABSTRACT

This paper discusses how ontologies can be spedfied at the knowledge level using the set of
intermediate representations (Gomez-Pérez, Ferndndez & de Vicente 199%) proposed by
METHONTOLOGY (Fernandez, Gomez-Pérez & Juristo 1997 and Goémez-Pérez 1998. These
intermediate representations bridge the gap between how people think abou a domain and the
languages in which ortologies are formalized. Thus, METHONTOLOGY enables experts and
ontology makers unfamiliar with implementation environments to buld ortologies from scratch.
In this paper, we dso present the ODE (Ontology Design Environment) as a software tod to
spedfy ontologies at the knowledge level. ODE all ows developers to spedfy their ontology by
filling in tables and dawing gaphs. Its multili ngual generator modue aitomaticdly trandates
the spedfication d the ontology into target languages.

1. INTRODUCTION

Like KBS development, ortology development faces the knowledge acquisition bdtlenedk
problem. However, urlike KBS, the ontology developer comes up against the alditional problem
of not having any sufficiently tested and generalized methoddogies recommending what
adivities to perform and at what stage of the ontology development process these adivities
shoud be performed. That is, each development team usually foll ows their own set of principles,
design criteria and steps in the ontology development process The asence of structured
guidelines and methods hinders the development of shared and consensual ontologies within and
between teams, the extension d a given ortology by others and its reuse in ather ontologies and
final applicaions. Until now, few domain-independent methoddogical approaches have been
reported for building ontologies. Uschad's methoddogy (Uschodd & Gruninger 199%),
Gruninger and Fox's methoddogy (Gruninger & Fox 1995and 1994 and METHONTOLOGY
(Fernandez, Gémez-Pérez & Juristo 1997and Gomez-Pérez 1998 are the most representative.
These methoddogies have in common that they start from the identification d the purpose of the
ontology and the nead for domain knavledge agquisition. However, having acquired a significant
amourt of knowledge, Uschod proposes codificaion in a formal language ad
METHONTOLOGY propases expressng the idea & a set of intermediate representations (IR)
and then generating the ontology using translators. These IR's bridge the gap between howv
people see adamain and the languages in which ortologies are formalized. The dsence of the
conceptuali zation step causes the foll owing problems:



» The conceptual models are implicit in the implementation codes. A reengineering process
isusually required to make the conceptual models explicit.

* Ontological commitments and design criteria (Gruber 1992) are implicit in the ontology
code.

* Ontology developer preferences in a given language condition the implementation of the
acquired knowledge. So, when people code ontologies directly in a target language, they
are omitting the minimal encoding bias criterion defined by Gruber (Gruber 1992).

* Ontology developers (who are unfamiliar with or ssimply inexperienced in the languages
in which ontologies are coded) may find it difficult to understand implemented ontol ogies
or even to build a new ontology. For example, it is hard for people who know how to
build ontologies in one particular language and for those who know how to build
ontologies (but are unfamiliar with the language in question) to work at the
implementation level because the ontology maker focuses on implementation issues
rather than on questions of design. For example, the expression d=m/v in a chemical
domain could be written in Ontolingua (Gruber 1993) as follows:

{Define-Function Depsity( 7 Element) - ? Depsiby-A1-20-C
"The density af an element is egual ta its atomic weight dividad by its atomic volims "
IFDef
{dnd (Elemeants ? Rlamant)
{Dersity-A1-20-C ? Blament ? Densi-A1-20-C)
{Exists {7 Alomic-Weight)
{ Exists { PAtamic-Volume-A1-20-C)
{dnd {Aiomic-Weight ? Zlement ? Alomic-Weight)
{Atomic-Vakime- At-20- 2 Blameant ? Atomic- Valume- Al-20-C1)
{= P dtomic-Voume-At-20-C 0)
i ? Atomic-Weight ? Atamic-Valume-A-20-CH)))

This example shows that unless you are very familiar with the language, it is almost impossible
for you to understand existing definitions and to write new definitions. If you are successful in
this process, it will have taken a big effort. So, the problem is not understanding that the density
Is equal to the mass divided by the volume at the knowledge level but writing this in a target
language. Therefore, something which is apparently very simple at the conceptual level is
extremely complicated when expressed at the implementation level, if developers are not familiar
with the language. This means that ontologies are exclusively built by developers who are
perfectly acquainted with the languages in which they are to be implemented. As ontology
developers are not necessarily expert in the domain for which the ontology is built, ontologists
spend alot of time and resources on the knowledge acquisition process.

First, we present the METHONTOLOGY framework, including the ontology development
process and alife cycle based on evolving protoypes. Then, we will show the process of building
ontologies from scratch and how to re-structure an ontology when an ontological reengineering
process is carried out. Finally, we will introduce the Ontological Design Environment (ODE), a
software tool that supports METHONTOLOGY.

2. METHONTOLOGY FRAMEWORK

Ontological engineering requires the definition and standardization of an ontology life cycle as
well as methodologies and techniques that drive their development. The METHONTOLOGY



framework enables the nstruction d ontologies at the knowledge level and includes: the
identificaion d the ontology development process alife cycle based onevolving prototypes, a
method for spedfying ontologies at the knowledge level and muiltili ngual translators that
automaticdly transform the spedfication into several target codes. The environment for buil ding
ontologies using the METHONTOLOGY framework is caled ODE (Ontology Design
Environment).

2.1 Ontology development process

The ontology development process (Ferndndez, Gémez-Pérez & Juristo 1997 refers to which
adivities are carried ou when bulding ontologies. It is crucial to identify these adivities if
consensual ontologies are to be built by geographically distant co-operative teans with some
guarantee of correctnessand completeness If thisisthe cae, it is advisable to perform the three
caegories of adivities presented below and stee clear of anarchic constructions.

Project Management Activities include Planning, control and quality assurance. Planning,
identifies which tasks are to be performed, how they will be aranged, hav much time and what
resources are needed for their completion. This adivity is essential for ontologies that need to use
ontologies which have drealy been bult or ontologies that require levels of abstradion and
generdity. Control, guarantees that planned tasks are wmpleted in the manner that they were
intended to be performed. Finally, Quality Assurance, asaures that the quality of each and every
product output (ontology, software and daumentation) is satisfadory.

Development-Oriented Activities include specification, conceptualization, formalization and
implementation. Specification, states why the ontology is being built and what are its intended
uses and who are the end-users. Conceptualization, structures the domain knowledge &
meaningful models at the knowledge level. Formalization, transforms the cnceptual model into
a forma o semi-computable model. Finaly, Implementation builds computable models in a
computational language.

Support Activities include aseries of activities, performed at the same time & development
oriented adivities, withou which the ontology could na be built. They include knowledge
aquisition, evaluation, integration, daumentation and configuration management. Knowledge
Acquisition, aaquires knowledge of a given damain. Evaluation, makes a technicd judgment of
the ontologies, their associated software environments and documentation with respect to a frame
of reference during ead phase and between pheses of their life cycle (Gémez-Pérez, 19969.
Integration of ontologiesis required when bulding a new ontology reusing other ontologies that
are drealy avail able. Documentation is detail s, clearly and exhaustively, each and every one of
the phases completed and poducts generated. Configuration Management records al the
versions of the documentation, software and ortology code and to control the changes.

2.2. Ontology Life Cycle

It identifies the set of stages through which the ontology moves during its life time, describes
what adivities are to be performed in each state and howv the states are related (relation d
precalence, return, etc.). In (Fernandez, Gémez-Pérez & Juristo 1997, the aithors justified why
the ontology life cycleis based onevolving prototypes. Figure 1 shows that:

* Planningiscaried ou prior to ortology development.



» Control and quality asaurance ae performed duingthe entire life cycle of the ontology.

* Most aqquisition and evaluation are performed in the cnceptuali zation plese. In the cae
of aqquisition, this is becaise the mnceptualization plese is like aembling a jigsaw
puzzZle from the pieces supgied by aaquisition. As far as evauation is concerned,
athowgh evauation (verificaion and validation) (Gémez-Pérez 1996 shoud be
performed throughou the ontology development life cycle, most evaluationis carried ou
in the onceptualization plese to prevent errors and their propagation in the
implementation plese.

* Integration shoud na be understood as an integration in the implementation stage, it
shoud be performed throughou the entire ontology life cycle.
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Figure 1. Ontology Life Cicle

3. ONTOLOGY DEVELOPMENT AT THE KNOWLEDGE LEVEL

The IRs used in the @nceptudization plase ae one of the esentia pillars of
METHONTOLOGY for bulding ontologies at the knowledge level. When most of the
knowledge has been acquired, the ontology maker has alot of unstructured knowledge that needs
to be organized. The objedive of conceptudizationis predsely this: to organize and structure the
aquired knowledge using external representations that are independent of the implementation
languages and environments. METHONTOLOGY propases ontology conceptuali zation wsing a
set of IRs based onthe IRs used in the @mnceptuali zation phese of the IDEAL methoddogy for
knowledge-based systems development (Pazos 1995. In this paper, we discuss how ontologies
were built at the knowledge level in the mntext of the (KA)? initi ative.

(KA)?isan initiative to develop an ortology that models the Knowledge Acquisition Community
(its reseachers, topics, produwcts...). A first release of this ontology was built in Flogic (Kifer,
Lausen & Wu 1995. A dedasion was made to translate the ontology to Ontolingua to make it
aacesgble to the entire community through the Ontology Server. Since oncepts as far apart as
authors, research centers, pullications, etc., had been represented in a single ontology, the option



of directly translating from Flogic to Ontolingua was ruled out, and it was decided to carry out an
ontological reengineering process. First, we obtained the (KA)? conceptual model attached to the
Flogic ontology manually by reverse engineering. Second, we restructured it (according to the
modularity criterion) using ODE conceptualization modules and we got a new conceptual model.
Finally, we converted the (KA)? conceptua model into Ontolingua language using
METHONTOLOGY and ODE transators. Figure 2 shows the (KA)? ontology life cycle. Note
that, in this case, our source of knowledge was an ontology that had already been implemented in
the Flogic language. So, knowledge acquisition involved understanding an ontology that had
already been built. The ontology implemented in Flogic was the specification we took as an input
for the conceptualization phase. The knowledge restructuring process at the knowledge level was
performed as shown in figure 3 and can be described as follows.
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Figure 2. Ontological Reengineering Process of the KA? Ontology
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First, we built a Glossary of Terms that included all the terms (concepts, instances, attributes,
verbs, etc.) of the domain and their description, as shown in table 1.

Nanwe Descxiption

A cadermic-Staft “Hefshe can be Echuer or wseawcher. Ome of losher
possible diaties 1510 aperrise PhD sudeats™

A fihatrm “Tt relates an enplyes to the crganmtin to which
heishe bebngs™

A sureyn-Gomes-Péres A resmawcher montologral engreermg

Emnploys “Tt velates m orzazsonto os enplimes™

Fota “Tt x the photo of the persom which may appear m the
weh”

Reseacher “Helshe 15 a membor of the acadamye staff, and can be
memmber of a reseawch gronp and oollborate with other
ressatchers™ .

Hinole-Cuarme “Heis aesemcher at CHE Hatiomal Fesearch Coumeil
His resarch pteted 15 catobges and he wodks on the
Onolesk project™

Fichard- Bempanms “He 15 2 weawher at OI4 CEIC Spamsh Connell Som
Sclemtifir Fessawh. His msearch nterest is Problm
Solving Methods™

Weight Tt 15 a persco’s weight. It 5 measned m kibgrmes™

Table 1. Glosary of termsin (KA)?

When the glossary of terms contained a sizable number of terms, Concept Classification Trees
were build using relations like: subclass-of*, mutually-disjoint-subclass-of?, exhaustive-subclass-
of, etc. So, we identified the main taxonomies of this domain, and each taxonomy produced an
ontology as prescribed by METHONTOLOGY. In the (KA)? ontology, we identified five
taxonomies related to: people, publications, events, organizations and research topics. Figure 4
shows an outline of the above taxonomies.

[P pla [Fub Lizaticn Froject IOz anzation
Enplbyee Article Developrent-Froject Departrent
A ad enie S taff Article-TnBock S oftrae-Project Erterprise
Lectarer Conférenee-Paper Researh Froject Institate
Eesearcher Jomal-Article Eeeawh Graip
Adntrstrative-S taff’ Tectutical-Feport Reseach Crgarization)
Stadert Wtk shop-Faper Trversty
PhI-Stadert Book
Janmal
[EEE-Expert
ITHCE
Special-Las

Figure 4. Concept Classification Treesin (KA)?

The next step was to build "Ad-hoc" Binary Relations Diagrams between concept classification

! Class Cisasubclass of parent class P if and only if every instance of C is also an instance of P.

Z |saset of subclasses of a class C whose objects have no elements which belong to different sets.

3 A subrelati on-partition of aclass C isaset of mutually-digjoint classes (a subclass partition) which covers C. Every
instance of Cisan instance of exactly one of the subclassesin the partition.



trees. The goal of this diagram is to establish relationships between concepts of the same or
different ontologies. Note that this diagram will set out the guidelines for integrating ontologies,
because if a concept C1 is linked by arelation R to a concept C2, this means that the ontology
containing C1 includes the ontology containing C2, provided that C1 and C2 are in different
concept classification trees. Figure 5 presents a simplified diagram of the "ad hoc" binary
relations in the (KA)? ontology. Note that the People-Ontology includes Organization-Ontology
because the source concept of the relations named Affiliation is in the People-Ontology hierarchy.
Similarly, if the relation Employs is defined as the inverse relation of Affiliation, the
Organi zation-Ontology can be said to include the People-Ontology.

Emplows
Head-of Groap
il ey B
¥ Leads
Secmetanraf Croperatesswith Head-of Werks Menber of Affiliafion
Pioject on Oz antzation
ﬁ Progect
b b 3
Secmtary Researcher | Puoject | | Organization
Fesearchlrderst

AradermieS taff
Fesearch Topic

Supervises
Studert
Person
PHD-3 todert

Stadies-at

Has Ediorof Oganizer of Merrber of
b bration Chairof Conmnittes

Pub lication ‘ | Evert ‘ University

Figure 5. Diagram of Binary Relationsin (KA)?

For each concept classification tree generated, we built the following IRs:

1. A Concept Dictionary containing all the domain concepts, instances of such concepts,
class and instance attributes of the concepts, relations whose source is the concept and,
optionally, concept synonyms and acronyms. Tables 2 and 3 show a small part of the
concept dictionaries of the people and publication ontologies respectively.



Concepi Name | Symomymie | Acromymis Instanwes Class Ins tanwce Relations
Attribudes | Atiribues
Academie-Staft - - - - fuperises

Person hge Has- Publication
First-Hame | Edowof
Last-Name | Crganizer-of Chairof

Pheto Merberof-Piogram-
Weight Conmuitte

PhL+-Shadert - - Jose Lopez Gonziles - - -
Researcher - - Fichard Benjamms - - Coopetates-with
S neyin-Gomez-Paren M ervthe y-of- Rese arch- Gronp

Drieter Fensel FesearchIrterest

Table 2. Concept Dictionary in the domain of People

Concept Nane | Synongmis | Acrongms Instances Class Insiance Attrdhruies Relations
Attribanes
Joumal - - - - Joumal Year Jommal Edsor
Vohme Jenmal Publisher
Joumal Fipnber Cort anants-f rhick- I Jourmal
Joumal Atxle — — EBerjamms-77-1 — — Ine Joumal
Fublication - - Hommalmed | Publication-Titk Has-fodhor

publicahon | Publicatio-Vear Dresortbes-Prgect
Ahstract
Ol me- Yersion

Table 3. Concept Dictionary in the domain of Publication

2. A table of binary relations for each "ad-hoc" relation whose source concept is in the
concept classification tree. For each relation, we will specify: its name, the name of the
source and target concept, its inverse relation, etc. Tables 4 and 5 show the employs
relationship and its inverse affiliation.

Relation Name Employs Relation Mame A fFiliation
Source Concept Organizatinm Source Concept Erployee
Source Cavdinaliiy (l,m) Source Cardinaliiy lm
Target Concept Ermploree Target Concept Organizatim
Mathemiatic Properties | — Mathentatic Propertier -

Inverze Relati Affibaten Inverse Relati Enploys
Fefetences - Befrences -

Table 4. Binary Relation Employs Table 5. Binary Relation Affiliation

3. An Instance Attribute Table for each instance attribute that appears in the concept
dictionary. Instance attributes are attributes that are defined in the concept but that take
valuesin itsinstances. For example, the weight of a person is proper to each instance. For
each instance attribute, we will include: its name; the value type; the measurement unit
for numerical values; accuracy for numerical values; range of values, default values,
minimum and maximum cardinality; instance attributes, class attributes and constants that
are used to infer the value of the attribute that is being defined; attributes that can be
inferred using this attribute; a formula or rule for inferring the attribute that is being
defined; and references used to fill in the attribute. First, table 6 presents an attribute



(photo) defined as a string. Second, table 7 shows an attribute (weight) whose value type
is a mass-quantity (Gruber & Olsen 1994) and whose unit of measurement could be
kilograms. This last term is in the standard units ontology available at the Ontology
Server. Note that when atable field isfilled in with aterm belonging to another ontology,
this ontology can be said to aso be integrated.

Instane Ativbuie Name Fhoto Instane Ativbuie Name Weight
Value Type Shring Vahe Type lass-
Crantity

Uit of Measure - Uit of Measure Eibgran
Precision - Precision 0,001

| Range of Valuer - | Range of Valuer [0, 007
Default Value - Default Value -
Candinality (1,H) Candinality (1,1}
Inde rred from insance ativibge | — Inde ryed from insance ativibue -
Inde ryed from class atiribne - Inde ryed from class atiribne -
Inde ryed from. consants - Inde ryed from. consants -
Formwla = Formwla -
To infer Beauty To infer —
Re b yenwes - Re b yenwes —

Table 6. Instance Attribute Photo Table 7. Instance Attribute Weight

4. A Class Attribute Table for each class attribute that appears in the concept dictionary.
Class attributes describe concepts, not concept instances. Thus, for each class attribute, it
will give: the name; possible value type; measurement unit for numerical values; vaue
accuracy; attribute cardinality; instance attributes that could be inferred using the value of
this attribute; and references, etc.

5. A Logical Axioms Table. This is used to define the concepts by means of logical
expressions that are aways true. Each axiom defined includes: its name, its natural
language description, the concept to which the axiom refers, the attributes used in the
axiom, the logical expression that formally describes the axiom using FOPC and
references, as shown in tables 8 and 9.

Axjom Mame | FhD-Stodend-Ts-Not-Ie Doctoral- Tess - hary Axiom. The-Head O f Froject- Works-In-The Project
Name
Description | “4 PhD Studert cannot be ma Tesis Jory" Description | “The enploves that 15 the head of a project, also
waotks mthe pangect™
| Coneept | PhIL-Shudent | Concept | Fruplopee
Refened - Refened -
Attribwies Attribaies
Variables IP Variahles EP
Expression | forall(s, P FhD-Stodent(8) == Expression | foraliE, P) Enplye(E) and
rot(MenherOf Doctozal Tesds (S, P Head Of Piojert(E, F) ==
Worls-At-Project(E, P
Relations - Relations -
References - Befemnoes -
Table 8. Named Axiom Table 9. Named Axiom

PhD-Student-1s-Not-InDoctoral-Tesis-Jury The-Head-of-Project-Works-on-at-Project

6. A Constants Table. For each constant, we will specify: its name, its natural language
description, the value type (number, mass, etc.), the constant value, the measurement unit
for numerical constants, the attributes that can be inferred using the constant and



references (see table 10).

Conetani Name Description Value Uit of To inder

CongiessF aper-Constat It 15 a ooefficient that 15 applied 075 - Standard-Publications
to obtam  the sandad
publications of congress papers
Wodishop Paper-Corstart | It 15 a coeffirient that 15 applied [V - Standard-Publications
to  obtam  the standad _rate

publicaions of  wodishop
papers

-rate

Table 10. Constants in the domain of Publication

7. A Formula Table for each formula that appears in the instance attribute tables. These
tables will be used to infer numerical instance attribute values from the values of other
instance attributes, class attributes or even constants. Each table should specify
information about the name of the formula, the attribute inferred with the formula, the
mathematical expression of the formula; its natural language description; the instance and
class attributes and constants used in the calculation; the accuracy with which the value
will be calculated; the constraints under which it makes sense to use the formula; and the
references employed in filling in the formula table. Table 11 shows the formula of
standard-publications-rate.

Formula Name Foanmila-of-5tandavd-Public sticms -rate

Concapt Person

Inferred ativibaoe | StandardPublicahons-rate

Formula Standard Publicahoms-rate = mmal Artrks + Congress-Paper-Constant * Congress-Papers +

Wor shop-Paper- Constart * Wodkshop-Fapers

Descxiption For standard publications, 2 joumal artiele has as vabe of 1, a congress paperof 075 and a
otk shop paper of 0 50

Basic Ativdbwies | Jouwrnal sty les Congress-Paper Workshop-P apers

Constands CongressFaper-Constat Worlshop Paper Const ant

Accuracy 001

Consirainis -

Reftences -

Table 11. For mula of Normalized Publications

8. Attribute Classification Trees, which graphically show related attributes and constants in
aroot attribute inference sequence, and the sequence of the formulas employed. Figure 6
summarizes the inference sequence of the attribute standard-publications-rate. We used
this IR to validate that al attributes used in the formula make sense and no attributes have
been omitted.

Standard-
Publications-rate

Standard-
Publication-rate

Jonarmal- A rticles Congress-Papers Workshop-Papers Congress-Paper-Constant Workshop-Paper-Constarnt

Figure 6. Attributes Classification Treein (KA)?



9. An Instance Table for each instance that appears in the concept dictionary. Each table
will i nclude: the name of the instance, the atributes with knowvn values in the instance
and the values of the @owe dtributes. Table 12 presents instances in the People domain.

Instance Atiribuie Value
Asuneidn Gémez Pérez Full Marne “Leuncidn Gomez Pérez”
First Mame “Lguncidn”
Last Name “Crdrnez Pérez”
E-Ivlail “aguniEil uprm.es”
Tuan Wanne]l Gareia Pinar | Full Hame “Tuan Ilarmel Crareia Pinar™
First Mame “Tuan Inlarmel™
Last Mame “(Farcia Pinar”
E-Ilail “jgarciaigde licias dia fiupmes™
Iariano Ferndndez Lopez | Full Name “Ilariano Femdndez Lopez™
First Mame “Inlariann™
Last Marae “Femandez Lapez™
E-Ivlail “rafermand @deliclas dia fi uproes”
Iercedes Blazeuez Chvico | Full Mame “Mlercedes Blizgues Cico™
First Mame “Mlercedes™
Last Mare “Blézguez Civica™
E-Ivlail “reblazoue @de licias dia fluprmes™

Table 12. Instances in the domain of People

Note that the processof building these IRs is nat sequentia in the sense of a waterfall li fe-cycle
model, bu some order must be followed to asaure the cnsistency and completeness of the
knowledge dready represented. However, our experience in the use of the model shows that the
first table built i s the glossary of terms. After this, we build concept classfication trees and "ad-
hoc" binary relations diagrams. Then, we proceeal to buld the mncept dictionary, the "ad-hoc"
binary relations tables, the dassattributes and instance dtributes and axiom tables.

Embedded in the conceptudi zation method itself, there ae aseries of controls for verifying that
eat IR is used corredly and that the knowledge represented is vaid, that is, that the semantics
of the @nceptualized knowledge is what it shoud be. For a detailed description d the
intermediate representations and individual and cross representation erification see (Gémez-
Pérez, Ferndndez & deVicente 1996).

4. ODE

4.1. An overview

ODE (Ontology Design Environment) is the environment that enables the development of
ontologies at the knowledge level using the gproach proposed by METHONTOLOGY. The god
of ODE isto suppat the ontology maker during the entire life cycle of the ontology development
process from requirements gedfication, through the phases of knowledge aquisition and
conceptuali zation, to implementation with as much integration and evaluation as posshle. To
read this goa, it seeks to automate each ontology development activity and automatically
integrate the results of each phase with the input of the following phase.

The functions included in the aurrent version d ODE are: manage ontologies (including: open,



close, save, save &, integrate, print, etc., an ortology); manage ontologies in tabular notation
(create and remove table, add and delete table rows, print table, etc.); manage intermediate
representations in graphic notation, automatically generate cde in formal languages; customize
the user interface; and manage anceptuali zation and wser interface arors.

As the oonceptualization d a complete and consistent ontology involves the management of a
huge anourt of information, the decision was made to store the entire ontology in a relational
database. This has the big advantage that future gplicaions will access the ontology easily
using SQL queries because this database management and access language is widely used in
pradice which fadlitates the aedion d applications, networked or otherwise, that use our
program.

In order to maintain the consistency within each intermediate representation and between
intermediate representations, it was considered necessary to study the anstraints in the fields of
a mnceptual table or between the fields belonging to different conceptual tables. This sudy was
based onthe rules of verification d the intermediate representations proposed in (Gomez-Pérez,
Ferndndez & de Vicente 1996 and seeks to identify any effeds possbly caused by the
operations of editing an ortology at the @nceptua level and hav the &owve operations are
implemented in the database.

As user experience in ortology development varies, ODE also provides an option of guided
conceptualization that enables inexperienced users to learn abou ontology development. This
guided conceptuali zation, hes proved very useful for domain experts who want to buld their own
ontologies.

It shuld be noted to say that ODE is being designed as an environment that is completely
independent of any system capable of managing ontologies. That is, athough ODE generates
Ontolingua cdein ASCII, ODE does nat interad with Ontoli ngua.

Finally, the computational requirementsto run ODE are: a Pentium with a Windows 95 operating
system. ODE has been programmed in Visua Basic version 5.0.1ts user interface omplies with
Microsoft design standards for the development of event-oriented applications and the ontology
is gored in an Access(version 70) database.

4.2. ODE trandator module

ODE' s big advantage is that it enablesspecification of ontologies at the knowledge level,
delegating implementation to fully automated code generators. So, nonexperts in the languages
in which ortologies are implemented could speafy ontologies using this environment.

In order to asaure trandlation o the conceptual model to as many languages as possble, the
trandator modu e was designed using the principles of moduarity and reusabili ty. The translator
modu e works on the foll owing elements:

1. The a@nceptua model discussed in sedion 3 tas been expressed dedaratively using a
grammar. So, onthe basis of the foll owing rules notation:

« A - Bmeans: A hasthe structure indicated in B;

* [A] meas. A isoptiond;



* [A|B] meansthesameas: A or B;

« {A}) isthesameas: A isrepeated a number of times which is between x and y ;
y

» terminal symbols arein bold and non-terminal symbolsin italics;

the data dictionary is expressed as shown below:

data_dictionary — Concept Name wornd
Synonyms [ (word) §|-]
Acronyms [{word} 2 |-]
Instances [{word} 2| -]
Class Attributes [ {word} % | --]
Instance Attributes [{wond} | --]
Relations [{ward} @ |--]

2. A series of patterns have been identified containing structures to be generated in each
language. The patterns have been defined using the same notation as explained for the
intermediate representations. For example, the pattern for defining classes in Ontolingua
Is defined, as follows:

def clase — ;s class

(Define-Class class (Pclass)

“documentation"

[:def

{and
{(superciass Telass))
[{Individual ?cixss)]
[(Superclass-Of {subelass])]
[(Has-Instance Tclzss {instzmrel)]
[ {(Has-At-Most Mclass relation max_cardinality)
(==Value-Cardinality ?class relation min_cadinaliby) |
(Has-Omne Tolzss relation) |
(Has-Some Pclass relation]} 9]

[:axiom-def (Exhaustive-Subclass-Partition class

(Setof {subelass} N

3. For each type of valid definition in the language, a table has been built that relates the
terms used in the pattern to the terms employed in the conceptual model. So, the non-
terminal symbols of the pattern will be placed in the left-hand column and the fields of
the intermediate representations needed to get the information represented by the pattern
will be placed in the right-hand column. Table 13 shows that the name of the class in the
implementation matches a concept name in a concept dictionary (see table 2) of the
conceptualization, that the documentation in the implementation is obtained from the
description given in the glossary of terms (see table 1), that each superclass and subclass
name is supplied by the concept classification tree (see figure 4 ), that the names of the
Instances are taken from the instance field defined in the concept dictionary (see table 2),
that the relation names are obtained from the instance and class attributes defined for the
concept in question in the concept dictionary (see table 2) and that the cardinalities appear
in a binary relations table or in the instance or class attributes table. So, for the ontology



specified in section 3, the translator generated the following Ontolingua code:
o0 Avademic-Staff

{Define-Class Academic-Stafi (7 Academic-Staif)
"HelShe can be a lecturer or ressarcher. One af kisfhar possible duties is
to supervise PhD Students ™

-def

jard
{Employes ? deademic-Staff)
== Value-Cardinality ? Acadenic-Siaff Supervises )
{Suparclass-Of Lecturer Researcher)))

Using the trandator that converts the conceptualization into an implementation, error-free code
can be generated, which dramaticaly cuts the time and effort involved in implementation.
Furthermore, the architecture of this trandator allows other trandators to be developed in series.
By merely changing the rules that identify the patterns of the terms to be generated and the
second column of the table which relates the conceptualization to the implementation, a new
trandator can be built. Thiswas how we built atranslator for SFK in a short period of time.

TMFLEMENTATION CONCEFTUALITATION

fass ** Cotucept hame ™ appeariieg Ithe Concept Dictioary

hcumsen fation “Dresoiptio i the Glossary of Terms

Supevciass Hum e of superclasses to which the class is related fnthe Corwept Clussdication Tree

Swdclass Mame of subclasses to mdich fhe class is related fhe Corcept Classification

Bastance “Hrstarices Cappeariig i fhe Concept Dictionary

Relanion "Belatiore", " Rutance atrbatesor® claes attribates ™ the Corwcept Dictiorery

Moy Cordinaiip Irdmim cardinality epressed m the * Cardkaliey™ field of s Strdngte Table or o the
"Sonmoe Cardinalinyfeld of it Binary Relation Table.

M Cordvalny Tifinimnm cardirality spressed the = Cardmatiny field of ite Rutance Stribate Table or
the "Sonmrce Cardinality'field of its Birary Relation Table.

Table 13. Relationship between conceptualization and implementation for classes

5. CONCLUSIONS

This paper provides a series of guidelines for specifying ontologies at the knowledge level, as
defined by Gruber (Gruber 1993), as an automatically generated explicit specification of a
conceptualization. It also presents ODE as an environment for building ontologies during the
entire ontology life cycle and implementing them automatically using translators.

METHONTOLOGY is a structured method for building ontologies at the knowledge level from
scratch and when an ontological reengineering process is carried out. It seeks to build the
ontology incrementally using alife cycle based on evolving prototypes. The methodology centers
on the process of building conceptual models by defining concepts, instances and properties of
the above concepts, organizing concepts in taxonomies, defining relations between taxonomies
by means of "ad-hoc" relations, defining concept axioms and defining formulas. It aso includes
verification and validation of the ontology at the knowledge level.

ODE is a tool that automates ontology development activities and, therefore, seeks to
automatically integrate the results of each phase. ODE uses a relational database to store the



ontology and to asure cnsistency within and between IRs. Finaly, the ontology can be
constructed off-line and target code can be generated using ODE trandators. It has a very
Intuiti ve user interface and it works on a Pentium.
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